Volume 11, Number 4

CPU Hardware Classification and Performance Prediction using Neural Networks and Statistical Learning

  Authors

Courtney Foots1, Palash Pal2, Rituparna Datta1 and Aviv Segev1, 1University of South Alabama, USA, 2Burdwan University, India

  Abstract

We propose a set of methods to classify vendors based on estimated CPU performance and predict CPU performance based on hardware components. For vendor classification, we use the highest and lowest estimated performance and frequency of occurrences of each vendor to create classification zones. These zones can be used to identify vendors who manufacture hardware that satisfy a given performance requirement. We use multi-layered neural networks for performance prediction, which account for nonlinearity in performance data. Various neural network architectures are analysed in comparison to linear, quadratic, and cubic regression. Experiments show that neural networks obtain low error and high correlation between predicted and published performance values, while cubic regression produces higher correlation than neural networks when more data is used for training than testing. An analysis of how the neural network architecture affects prediction is also performed. The proposed methods can be used to identify suitable hardware replacements.

  Keywords

Computer Hardware, Performance Prediction and Classification, Neural Networks, Statistical Learning, Regression.