Volume 14, Number 4
Energy Aware Talented Clustering with Compressive Sensing (TCCS) for Wireless Sensor Networks
Authors
Bejjam Komuraiah and M.S. Anuradha, AU College of Engineering (A), India
Abstract
Wireless sensor networks (WSNs) are networks of sensor nodes that interact wirelessly to gather information about the surrounding environment. Nodes are often low-powered and dispersed in an ad hoc, decentralized manner. Although WSNs have gained in popularity, they still have several serious shortcomings, like limited battery life and bandwidth. In this paper, the cluster head (CH) selection, the Compressive Sensing (CS) theory, the Connection-based Decentralized Clustering (CDC), the relay node selection, and the Multi Objective Genetic Algorithm (MOGA)are all taken into account The initial stage provided a theoretical revision to the concepts of network construction, compressive sensing, and MOGA, which impacted the improvement of network lifetime. In the second stage developed a novel model such as Energy Aware Talented Clustering with Compressive Sensing (TCCS) for the sensor network. This approach considers increasing longevity but also raises the network's overall quality of service (QoS). In the analysis, the TCCS model is applied to both the centralized and distributed networks and compared with the existing methods. When compared to the previous methods, the simulation results show that the proposed work performs better in terms of the calculation of maximum packet delivery ratio of 93.93 percent, minimum energy consumption of 8.04J, maximum energy efficiency of 91.04 percent, maximum network throughput of 465.51kbps, minimum packet loss of 282 packets, and minimum delay of 63.82 msec.
Keywords
Wireless sensor networks, clustering, clusterhead, compressive theory, decentralized clusting, relay node.