Volume 16, Number 2
Enhancing Traffic Routing Inside a Network through IoT Technology & Network Clustering by Selecting Smart Leader Nodes
Authors
Radwan S.Abujassar, Arab Open University Kuwait, Kuwait
Abstract
IoT networking uses real items as stationary or mobile nodes. Mobile nodes complicate networking. Internet of Things (IoT) networks have a lot of control overhead messages because devices are mobile. These signals are generated by the constant flow of control data as such device identity, geographical positioning, node mobility, device configuration, and others. Network clustering is a popular overhead communication management method. Many cluster-based routing methods have been developed to address system restrictions. Node clustering based on the Internet of Things (IoT) protocol, may be used to cluster all network nodes according to predefined criteria. Each cluster will have a Smart Designated Node. SDN cluster management is efficient. Many intelligent nodes remain in the network. The network design spreads these signals. This paper presents an intelligent and responsive routing approach for clustered nodes in IoT networks. An existing method builds a new sub-area clustered topology. The Nodes Clustering Based on the Internet of Things (NCIoT) method improves message transmission between any two nodes. This will facilitate the secure and reliable interchange of healthcare data between professionals and patients. NCIoT is a system that organizes nodes in the Internet of Things (IoT) by grouping them together based on their proximity. It also picks SDN routes for these nodes. This approach involves selecting one option from a range of choices and preparing for likely outcomes problem addressing limitations on activities is a primary focus during the review process. Predictive inquiry employs the process of analyzing data to forecast and anticipate future events. This document provides an explanation of compact units. The Predictive Inquiry Small Packets (PISP) improved its backup system and partnered with SDN to establish a routing information table for each intelligent node, resulting in higher routing performance. Both principal and secondary roads are available for use. The simulation findings indicate that NCIoT algorithms outperform CBR protocols. Enhancements lead to a substantial 78% boost in network performance. In addition, the end-to-end latency dropped by 12.5%. The PISP methodology produces 5.9% more inquiry packets compared to alternative approaches. The algorithms are constructed and evaluated against academic ones.
Keywords
Optimized Link State Routing Protocol (OLSR) ,Internet of Things (IoT)* , Smart designated node (SDN)* , Predictive Inquiry Small Packets (PISP), Nodes Clustering-Based on IoT (NCIoT)