Volume 16, Number 2
High Performance NMF based Intrusion Detection System for Big Data IoT Traffic
Authors
Abderezak Touzene, Ahmed Al Farsi and Nasser Al Zeidi, Sultan Qaboos University, Oman
Abstract
With the emergence of smart devices and the Internet of Things (IoT), millions of users connected to the network produce massive network traffic datasets. These vast datasets of network traffic, Big Data are challenging to store, deal with and analyse using a single computer. In this paper we developed parallel implementation using a High Performance Computer (HPC) for the Non-Negative Matrix Factorization technique as an engine for an Intrusion Detection System (HPC-NMF-IDS). The large IoT traffic datasets of order of millions samples are distributed evenly on all the computing cores for both storage and speedup purpose. The distribution of computing tasks involved in the Matrix Factorization takes into account the reduction of the communication cost between the computing cores. The experiments we conducted on the proposed HPC-IDS-NMF give better results than the traditional ML-based intrusion detection systems. We could train the HPC model with datasets of one million samples in only 31 seconds instead of the 40 minutes using one processor), that is a speed up of 87 times. Moreover, we have got an excellent detection accuracy rate of 98% for KDD dataset.
Keywords
Intrusion Detection Systems, Machine Learning, Dimensionality Reduction, High Performance Computing, IoT traffic.