Volume 16, Number 2

Advanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems

  Authors

Ali Muayed Fadhil1,2, Norashidah Md Din1, Norazizah Binti Mohd Aripin1 and Ali Ahmed Abed2, 1University Tenaga Nasional, Malaysia, 2University of Basrah, Iraq

  Abstract

In -Vehicle Ad-Hoc Network (VANET), vehicles continuously transmit and receive spatiotemporal data with neighboring vehicles, thereby establishing a comprehensive 360-degree traffic awareness system. Vehicular Network safety applications facilitate the transmission of messages between vehicles that are near each other, at regular intervals, enhancing drivers' contextual understanding of the driving environment and significantly improving traffic safety. Privacy schemes in VANETs are vital to safeguard vehicles’ identities and their associated owners or drivers. Privacy schemes prevent unauthorized parties from linking the vehicle's communications to a specific real-world identity by employing techniques such as pseudonyms, randomization, or cryptographic protocols. Nevertheless, these communications frequently contain important vehicle information that malevolent groups could use to Monitor the vehicle over a long period. The acquisition of this shared data has the potential to facilitate the reconstruction of vehicle trajectories, thereby posing a potential risk to the privacy of the driver. Addressing the critical challenge of developing effective and scalable privacy-preserving protocols for communication in vehicle networks is of the highest priority. These protocols aim to reduce the transmission of confidential data while ensuring the required level of communication. This paper aims to propose an Advanced Privacy Vehicle Scheme (APV) that periodically changes pseudonyms to protect vehicle identities and improve privacy. The APV scheme utilizes a concept called the silent period, which involves changing the pseudonym of a vehicle periodically based on the tracking of neighboring vehicles. The pseudonym is a temporary identifier that vehicles use to communicate with each other in a VANET. By changing the pseudonym regularly, the APV scheme makes it difficult for unauthorized entities to link a vehicle's communications to its real-world identity. The proposed APV is compared to the SLOW, RSP, CAPS, and CPN techniques. The data indicates that the efficiency of APV is a better improvement in privacy metrics. It is evident that the AVP offers enhanced safety for vehicles during transportation in the smart city.

  Keywords

VANET, Privacy Protection, Smart Transportation System, Adversary, Pseudonym Change, Urban Area.