Volume 9, Number 2

A Novel Approach for Named Entity Recognition on Hindi Language Using Residual Bilstm Network

  Authors

Rita Shelke1 and Devendrasingh Thakore2, 1Research Scholar, Pune, India 2Bharati Vidyapeeth College
of Engineering, Pune, India

  Abstract

Many Natural Language Processing (NLP) applications involve Named Entity Recognition (NER) as an important task, where it leads to improve the overall performance of NLP applications. In this paper the Deep learning techniques are used to perform NER task on Hindi text data as it found that as compared to English NER, Hindi language NER is not sufficiently done. This is a barrier for resource-scarce languages as many resources are not readily available. Many researchers use various techniques such as rule based, machine learning based and hybrid approaches to solve this problem. Deep learning based algorithms are being developed in large scale as an innovative approach now a days for the advanced NER models which will give the best results out of it. In this paper we devise a Novel architecture based on residual network architecture for preferably Bidirectional Long Short Term Memory (BiLSTM) with fasttext word embedding layers. For this purpose we use pre-trained word embedding to represent the words in the corpus where the NER tags of the words are defined as the used annotated corpora. BiLSTM Development of an NER system for Indian languages is a comparatively difficult task. In this paper, we have done the various experiments to compare the results of NER with normal embedding and fasttext embedding layers to analyse the performance of word embedding with different batch sizes to train the deep learning models. Here we present a state-of-the-art results with said approach F1 Score measures.

  Keywords

Natural Language Processing, Named Entity Recognition, Residual Network, Machine Translation