Volume 10, Number 5
Data Virtualization for Decision Making in Big Data
Authors
Manoj Muniswamaiah, Tilak Agerwala and Charles Tappert, Pace University, USA
Abstract
Data analytics and Business Intelligence (BI) are essential components of decision support technologies that gather and analyze data for faster and better strategic and operational decision making in an organization. Data analytics emphasizes on algorithms to control the relationship between data offering insights. The major difference between BI and analytics is that analytics has predictive competence which helps in making future predictions whereas Business Intelligence helps in informed decision-making built on the analysis of past data. Business Intelligence solutions are among the most valued data management tools whose main objective is to enable interactive access to real-time data, manipulation of data and provide business organizations with appropriate analysis. Business Intelligence solutions leverage software and services to collect and transform raw data into useful information that enable more informed and quality business decisions regarding customers, market competitors, internal operations and so on. Data needs to be integrated from disparate sources in order to derive valuable insights. Extract-Transform-Load (ETL), which are traditionally employed by organizations help in extracting data from different sources, transforming and aggregating and finally loading large volume of data into warehouses. Recently Data virtualization has been used to speed up the data integration process. Data virtualization and ETL often serve unique and complementary purposes in performing complex, multi-pass data transformation and cleansing operations, and bulk loading the data into a target data store. In this paper we provide an overview of Data virtualization technique used for Data analytics and BI.
Keywords
Data Analytics, Business Intelligence, Big data, Data Virtualization, ETL and Data Integration