Volume 13, Number 6
Performance Analysis of OLSR Protocol in Manet Considering Different
Mobility Speed and Network Density
Authors
Koay Yong Cett, Nor Aida Mahiddin*, Fatin Fazain Mohd Affandi, Raja Hasyifah Raja Bongsu, Aznida Hayati, Universiti Sultan Zainal Abidin (UniSZA), Malaysia
Abstract
A Mobile Ad Hoc Network (MANET) is created when an independent mobile node network is connected dynamically via wireless links. MANET is a self-organizing network that does not rely on pre-existing infrastructure such as wired or wireless network routers. Mobile nodes in this network move randomly, thus, the topology is always changing. Routing protocols in MANET are critical in ensuring dependable and consistent connectivity between the mobile nodes. They conclude logically based on the interaction between mobile nodes in MANET routing and encourage them to choose the optimum path between source and destination. Routing protocols are classified as proactive, reactive, or hybrid. The focus of this project will be on Optimized Link State Routing (OLSR) protocol, a proactive routing technique. OLSR is known as the optimized variant of link state routing in which packets are sent throughout the network using the multipoint relay (MPR) mechanism. This article evaluates the performance of the OLSR routing protocol under condition of changing mobility speed and network density. The study's performance indicators are average packet throughput, packet delivery ratio (PDR), and average packet latency. Network Simulator 2 (NS-2) and an external patch UM-OLSR are used to simulate and evaluate the performance of such protocol. As a result of research, the approach of implementing the MPR mechanism are able to minimise redundant data transmission during the normal message broadcast. The MPRs enhance the link state protocols’ traditional diffusion mechanism by selecting the right MPRs. Hence, the number of undesired broadcasts can be reduced and limited. Further research will focus on different scenario and environment using different mobility model.
Keywords
MANET, OLSR, Node Mobility, Density, Routing Scheme.