
Advanced Computational Intelligence: An International Journal (ACII), Vol.3, No.2, April 2016 

DOI:10.5121/acii.2016.3201                                                                                                                           1  

 

AN INTELLIGENT METHOD FOR ACCELERATING 

THE CONVERGENCE OF DIFFERENT VERSIONS OF 

SGMRES ALGORITHM 

 

MohadesehEntezari Zarch
1,2

, 
*
SeyedAbolfazlShahzadeh Fazeli

1,2
, and Mohammad 

Bagher Dowlatshahi
1,3

 
1
Parallel Processing Laboratory, Yazd University,Yazd,Iran. 

2
Department of Computer Science, Faculty of Mathematics, Yazd 

University,Yazd,Iran 
3
Department of Computer Engineering, Faculty of Electronic and Computer, Yazd 

University,Yazd,Iran. 

 

ABSTRACT 
 

In a wide range of applications, solving the linear system of equations Ax = b is appeared. One of the best 

methods to solve the large sparse asymmetric linear systems is the simplified generalized minimal residual 

(SGMRES(m)) method. Also, some improved versions of SGMRES(m) exist: SGMRES-E(m, k) and 

SGMRES-DR(m, k). In this paper, an intelligent heuristic method for accelerating the convergence of three 

methods SGMRES(m), SGMRES-E(m, k), and SGMRES-DR(m, k) is proposed. The numerical results 

obtained from implementation of the proposed approach on several University of Florida standard 

matrixes confirm the efficiency of the proposed method. 
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1. INTRODUCTION 
 

In a wide range of applied sciences, solution of problems is obtained from solving a linear system 

of equations Ax = b. In numerical analysis, the algorithms for solving linear systems commonly 

use one of the two following methods: Direct methods, Iterative methods. 

 

According to the coefficient of linear devices and matrix A, we can use one of these methods. If 

the matrix dimension is too small, direct methods such as Gaussian elimination method, Gauss-

Jordan and LU decomposition is preferred. These methods are composed of a finite number of 

steps. On the other hand, iterative methods are based on calculating a sequence of approximations 

to find the solution. In these methods, to stop the algorithm either an accurate solution is found or 

a certain number of iterations is performed. If the matrix A is relatively large, triangular-based 

direct methods are not recommended, because this method requires plenty of time and storage 

space. In addition, in many cases the coefficient matrix is sparse and triangular process destroys 

the sparseness of matrix, such we are faced with a large dense matrix. To solve such problems, it 

is recommended to use iterative methods which do not change the sparseness nature of matrix A. 
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One of the main iterative methods, which nowadays has found many applications, is the 

generalized minimal residual method (GMRES) proposed by Saad and Schultz [1]. Simpler 

GMRES (SGMRES) method is a new version of GMRES, which was proposed by Walker and 

Zhou [2] and analyzed by Jiránek et al. [4]. SGMRES(m)) is a restarted version of SGMRES 

which restarts at the iteration when the Krylov subspace reaches dimension m, then the current 

solution is used as the new initial guess for the next m iterations. 
 

Despite the good performance of these methods, it seems that we can make changes in their 

structure to accelerate their convergence. In this study, an intelligent heuristic method to change 

the update equations of three methods SGMRES(m), SGMRES-E(m, k), and SGMRES-DR(m, k) 

is proposed. The experimental results on several University of Florida standard matrixes confirm 

the efficiency of the proposed method. 

 

2. THE SGMRES AND ITS VARIANTS 
 

The generalized minimal residual (GMRES) method developed by Saad and Schultz [1] is one of 

the most popular iterative methods for solving the large sparse nonsymmetrical system of linear 

equations Ax=b, in which A∈R
n×n

is nonsingular, b∈R
n
 is a right-hand side vector, and x∈R

n
 is the 

sought-after solution. Let x0∈R
n
 be the initial guess, and r0 = b−Ax0 the initial residual vector. At 

the m
th
 iteration step, GMRES finds the approximate solution xmin the affine subspace x0+Km(A, 

r0), such that xm minimizes the Euclidean norm of the residual, i.e.: 

 

‖��‖ = ‖� − �	�‖ = ‖� − �(	� + 
�)‖
= min

�∈��(�,��)
‖� − �(	� + 
)‖ = min

�∈��(�,��)
‖�� − �
)‖				(1) 

 

Note that ��(�, ��) = ���� ��, ���, … , ��"#��$is the m
th
Krylov subspace constructed by the 

matrix A and the initial residual vector r0. It is obvious that (1) is corresponding to the 

orthogonality condition, i.e.: 

�� ⊥ ���(�, ��)           (2) 

 

where the orthogonality relation is established upon the Euclidean inner product. 

The traditional implementation of GMRES is inspired from the Arnoldi process [3]. Application 

of m steps of the Arnoldi process to the matrix A with the nonzero residual vector r0 yields the 

Arnoldi factorization 

�&� = &�'#()� 
 

where the columns of the matrix Vm form the orthonormal basis of the Krylov subspace Km(A, r0) 

and ()�∈R
(m+1)×m 

is an upper Hessenberg matrix. We can reformulate the least-squares problem as 

the reduced minimization problem 

 

‖� − �	�‖ = ‖� − �(	� + &�*�)‖ = min
+∈,�-./# − ()�*- 

 

where. = ‖��‖and e1 is the first column of an identity matrix of order m + 1. The QR 

factorization of ()�with Givens rotations can be used to solve the reduced minimization problem. 
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Simpler GMRES (SGMRES) method is a new version of GMRES, which was proposed by 

Walker and Zhou [2] and analyzed by Jiránek et al. [4]. In their method, instead of building an 

orthonormal basis of Km(A, r0), an orthonormal basis Vmof AKm(A, r0) is established and then 

carries out the orthogonality relation (2). In a specific manner, suppose Zm= [z1,z2, . . ., zm] be a 

basis of Km(A, r0). Then, the QR factorization of AZmcan be used to acquire the orthonormal basis 

VmofAKm(A, r0), i.e. 

AZ2 = V2R2 
 

whereVm=[v1, v2, . . . , vm] has orthonormal columns and Rmis an m×m upper triangular and 

nonsingular matrix. By accomplishing the orthogonality relation (2), we can compute the m
th
 

residual vector rmrecursively as 

r2 = r� − V26V2
7r�8 = r2"# − α2v2						m ≥ 1 

 

where αm=v
T

mr0. The corresponding approximate solution is 

 

x2 = x� + Z2t2 
 

where tm is the solution of the upper triangular system 

 

R2t2 = =α#, α?, … , α2@7. 
 

By lapse of iterations, the amount of required computational time and space for GMRES or 

simpler GMRES increases meaningfully; and this subject makes GMRES and simpler GMRES 

impractical. In order to overcome this shortcoming, the restarted version of these algorithms is 

proposed. In restarted GMRES (GMRES(m)) or restarted simpler GMRES (SGMRES(m)), 

GMRES or SGMRES is restarted at the moment that the Krylov subspace reaches dimension m, 

then the current solution is used as the new initial guess for the next m iterations. Some details of 

SGMRES(m) is presented in Algorithm 1[13]. 

 

Algorithm 1 (SGMRES(m)). 

 

Input: A : the coefficient matrix; b : the right-hand side; x0 : an initial approximation; m : the 

maximal dimension of the Krylov subspace; ε : a tolerance. 

 

Output: An approximate solution x. 

 

1. Compute r� = b − Ax�	, z# = r� ‖r�‖⁄ 	, zD# = Az#	, r## = ‖zD#‖	, v# = zD#/r##	 
2. Compute α# = v#

7r�	, r# = r� − α#v# 

3. For j = 2,3,… ,m 

3.1. zI = vI"#	
3.2.zDI = AzI 
3.3. For i = 1,2,… , j − 1 

rJI = vJ
7zDI	

zDI = zDI − rJIvJ 
End For 

3.4. rJI = -zDI-	, vI = zDI rII⁄ 	, αI = vI
7rI"# 
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3.5. rI = rI"# − αIvI 
3.6. If -rI- < Lthen solve the linear triangular system 

RIt = α	
with α = Mα#, α?, … , αIN

7
، and form the approximate solutionx2 = x� + Z2t	and stop 

4. Solve the linear triangular system 

RIt = α 

With α = Mα#, α?, … , αIN
7

 and form the approximate solution x2 = x� + Z2t 
5. Set x0 = xm and go to Step 1. 

 

This implementation of SGMRES(m) was proposed by Walker and Zhou [2]. In their 

implementation, they used O� = =r� ‖r�‖⁄ , V2"#@. Note that different restarted simpler GMRES, 

called the residual-based restarted simpler GMRES (RB-SGMRES(m)), is proposed in [4]. RB-

SGMRES(m) uses 

 

Z2 = =r� ‖r�‖⁄ , r# ‖r#‖⁄ ,… , r2"# ‖r2"#‖⁄ @ 
 

and is equivalent to SGMRES(m). The implementation of RB-SGMRES(m) is closely similar to 

that of SGMRES(m) except that 
P = �P"#/-�P"#- in Step 3.1 in Algorithm 1. In [4], it has been 

shown that SGMRES(m) is essentially unstable, but RB-SGMRES(m) is conditionally stable 

provided that we have some reasonable residual decrease. 

 

In general, because the Krylov subspace dimension is restricted at each cycle for the restarted 

methods, often, the convergence for the matrix with Ahaving small eigenvalues slows down. The 

main reason of this is that the Krylov subspace used at each cycle does not include good 

approximations to the eigenvectors corresponding to small eigenvalues. To accelerate the 

convergence of restarted GMRES, it is proposed to compute the approximate eigenvectors 

corresponding to small eigenvalues in modulus at each restart, and then augment the Krylov 

subspace by these approximate eigenvectors to improve the convergence of restarted GMRES. 

This kind of methods includes GMRES-E [5], GMRES-IR [6], and GMRES-DR [7]. These 

methods are equivalent at the end of each cycle. Although, GMRES-IR needs less matrix-vector 

products than GMRES-E at each cycle, it is slightly more complicated to implement. Moreover, 

GMRES-IR suffers from stability problems because it uses the implicitly restarted Arnoldi 

process [8], which may suffer from stability when a shift used in the implicitly restarted Arnoldi 

process is close to a true eigenvalue of the problem. GMRES-DR which is a good improvement 

of GMRES-IR has the efficiency of GMRES-IR, but is simpler to use and does not have the 

numerical stability problems [7]. 

 

Boojhawon and Bhuruth[9] by using augmentation technique applied the idea in GMRES-E to 

SGMRES, and proposed the simpler GMRES method augmented with approximate eigenvectors 

(SGMRES-E). The main advantage of SGMRES-E over GMRES-E is SGMRES-E requires a less 

computational time than GMRES-E. 

 

Ref [13] improves the SGMRES-E by following the idea behind GMRES-DR and proposed the 

simpler GMRES method with deflated restarting (SGMRES-DR). SGMRES-DR includes the 

harmonic Ritz vectors corresponding to the smallest eigenvalues of the coefficient matrix A at the 
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beginning of each cycle. SGMRES-DR requires less matrix-vector products than SGMRES-E, 

and thus is more efficient.  

 

2.1 SGMRES with deflated restarting 
 

Suppose W ⊂Rnbe a subspace with dimension m, the columns of Zm = [z1, z2, . . .,zm] be a basis of 

W, x0∈Rn be the initial guess, and r0 = b−Ax0 the initial residual vector. The purpose is to find the 

approximate solution xmin the affine subspace x0+W by imposing the minimization of the residual 

norm. It is equivalent to finding xm such that 

 

r2 ⊥ AW										(3) 
 

whererm= b−Axm, and xm= x0 + Zmymfor some ym∈Rm. 

 

By applying the QR decomposition of AZm we have: 

 

AZ2 = V2R2(4) 
 

and applying the orthogonality relation (3), the expression of the m
th
 residual vector is obtained: 

 

r2 = r� − V2V2
7r� = r2"# − v26v2

7 r�8 

 

The harmonic Ritz vectors corresponding to the smallest eigenvalues of A is used in SGMRES-

DR because they are better approximate eigenvectors for eigenvalues with small modulus [10]. 

Note that the term “the smallest eigenvalues” means the smallest eigenvalues in modulus. The 

harmonic Ritz vector u = Zmy satisfies the following orthogonality condition 

 

(Au − λu) ⊥ AZ2 
which is equivalent to   

V2
7(AZ2y − λZ2y) = 0 

i.e., 

R2y = λV2
7Z2y									(5) 

 

Suppose y1, y2, . . .,ykare k eigenvectors corresponding to k smallest eigenvalues of the reduced 

generalized eigenvalue problem (5). 

 

In the SGMRES-E, proposed by Boojhawon and Bhuruth in [9], approximate eigenvectors used 

to augment the Krylov subspaces are harmonic Ritz vectorsxDI = Z2yI, j = 1,2,… , k. The 

implementation of SGMRES-E is outlined in Algorithm 2[13]. 

 

Algorithm 2(SGMRES-E(m, k)). 

 
Input:A : the coefficient matrix; b : the right-hand side; x0 : an initial approximation; m : the 

maximal dimension of the Krylov subspace; k : the number of harmonic Ritz vectors; ε : a 

tolerance. 

Output:An approximate solution x. 

 



Advanced Computational Intelligence: An International Journal (ACII), Vol.3, No.2, April 2016 

6 

1. Apply one cycle of SGMRES(m) to generate Zm, Vm, Rm, xm, and rm. 

2. Compute the eigenvalues and eigenvectors of the generalized eigenvalue problem (6) by 

the QZ algorithm [11]. Let y1, y2, . . .,yk be k eigenvectors corresponding to k smallest 

eigenvalues of (6). 

3. Form k harmonic Ritz vectors xDI = Z2yI	, j = 1,2,… , k 

4. Set x0 = xm, and compute r� = r2	, z# = r� ‖r�‖⁄ , zD# = Az#	, r## = ‖zD#‖, v# = zD#/r## 

5. Compute α# = v#
7r�	, r# = r� − α#v# 

6. For j = 2,3,… ,m 

6.1. If j ≤ m − kthen zI = vI"#else zI = xDI"2'[ 

6.2. zDI = AzI 
6.3. For i = 1,2,… , j − 1 

rJI = vJ
7zDIzDI = zDI − rJIvJ	

End For 

6.4. rII = -zDI-	, vI = zDI rII⁄ 	, αI = vI
7rI"# 

6.5.rI = rI"# − αIvI 
6.6. If -rI- < L	then solve the linear triangular system  

RIt = α	
with  α = M0,… ,0, α['#, … , αIN

7
، and form the approximate solution x = x� + ZIt, and 

stop. 

7. Solve the linear triangular systemRmt=α  with α = Mα#, α?, … , αIN
7

 and form the 

approximate solution x2 = x� + Z2t. Go to Step 2. 

 

SupposeY[ = =y#, y?, … , y[@and let P[L[ = Y[be the QR decomposition of Yk. Multiplying (4) by 

Pkfrom the right yields 

AZ2P[ = V2R2P[ 
 

Let Q[R[
`ab = R2P[be the QR decomposition of RmPk. From the above equality, we obtain 

 

AZ2P[ = V2Q[R[
`ab 

Define  

Z[
`ab = Z2P[			, V[

`ab = V2Q[ 

So, we have 

AZ[
`ab = V[

`abR[
`ab 

 

where Z[
`ab, V[

`ab ∈ R`×[, and V[
`abhas orthonormal columns, de

fgh ∈ de×eis an upper 

triangular matrix. This is aQR decomposition with k new vectors.We now restart the GMRES 

method. Note that 

 

 x�
`ab = x2, r�`ab = r2 = r� − V2V2

7r� 
 

Therefore, the k
th
 residual vector at the new cycle is 

 

r[`ab = r�`ab − V[
`ab6(V[

`ab)7r�`ab8 

Since 

(V[
`ab)7r�`ab = Q[

7V2
7r2 = Q[

7V2
76r� − V2V2

7r�8 = 0 
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we obtain 

r[`ab = r�`ab 

 

to extend the new QR factorization of order k (7) to obtain a QR factorization of order m, i.e., a 

QR factorization with m vectors. 

 

In SGMRES-DR, we have 

	zI'#
`ab. j = k, k + 1,… ,m − 1aszI'#

`ab = vI
`ab 

 

Then, the expansion of (7) to a QR factorization of order m can be done as follows: the vector 

Az['#
`ab = Av[

`abis orthogonalized against V[
`aband normalized to give v['#

`ab, after which	R['#
`ab	is 

formed from R[
`ab. With zI'#

`ab = vI
`ab, j = k, k + 1,… ,m − 1	, the process is iterated until a QR 

factorization of order m is obtained. The implementation of SGMRES-DR is outlined in 

Algorithm 3[13]. 

 

Algorithm 3 (SGMRES-DR(m, k)). 

 

Input: A : the coefficient matrix; b : the right-hand side; x0 : an initial approximation; m : the 

maximal dimension of the Krylov subspace; k : the number of harmonic Ritz vectors; ε : a 

tolerance. 

Output: An approximate solution x. 

 

1. Apply one cycle of SGMRES(m) to generate Zm, Vm, Rm, xm, and rm. 

2. Compute the eigenvalues and eigenvectors of the generalized eigenvalue problem (6) by 

the QZ algorithm [11]. Set Y[ = =y#, y?, … , y[@, where y#, y?, … , y[are k eigenvectors 

corresponding to k smallest eigenvalues of (6). 

3. Compute the QR decomposition of Y[:P[L[ = Y[and the QR decomposition of 

R2P[: Q[R[
`ab = R2P[. 

4. Set Z[
`ab = Z2P[and  V[

`ab = V2Q[. 

5. Let Z[ = Z[
`ab, V[ = V[

`ab, R[ = R[
`ab, x� = x2, r� = r2, r[ = r� 

6. For j = k + 1, k + 2,… ,m 

6.1. zI = vI"# 

6.2.zDI = AzI 
6.3. For i = 1,2,… , j − 1 

rJI = vJ
7zDIzDI = zDI − rJIvJ	

End For 

6.4.rII = -zDI-	, vI = zDI rII⁄ 	, αI = vI
7rI"# 

6.5. rI = rI"# − αIvI 
6.6. If -rI- < L, then solve the linear triangular system 

RIt = α 

With α = =0,… ,0, α['#, … , α2@7, and form the approximate solution x2 = x� + Z2t.  
Go to Step 2.  
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If the eigenvector yiat Step 2 in Algorithm 3 is complex, the matrix Ykshould include both the real 

and imaginary parts of yi. In this situation, we may have to tune k eigenvectors at a restart. 

 

After running one cycle of SGMRES(m), we reach toZ2 = =r� ‖r�‖⁄ , V2"#@. Based on [12], the 

matrix V2
7Z2in the generalized eigenvalue problem (5) can be formulated as 

V2
7Z2 =

k
l
l
mv#

7

v?
7

⋮
v2
7 o
p
p
q
=r� ‖r�‖⁄ V2"#@ =

k
l
l
l
l
l
l
l
mv#

7r�
‖r�‖

1

v?
7r�

‖r�‖
0 1

⋮
⋮

v2
7 r�

‖r�‖

0 ⋱
⋱	 1

0 o
p
p
p
p
p
p
p
q

=

k
l
l
l
l
l
l
l
m v#

7r�
‖r�‖

1

v?
7r#

‖r�‖
0 1

⋮
⋮

v2
7 r2"#
‖r�‖

0 ⋱
⋱	 1

0 o
p
p
p
p
p
p
p
q

 

 

Here, the next identity: for all j > i, vI
7rJ = vI

7rI"#, has been used. BecausevI
7rI"#, j = 1,2, …m , 

has been generated in applying one cycle of SGMRES (m), the matrix V2
7Z2without additional 

inner products of vectors can be formed with order n. 

 

For other cycles, we have Z2 = =z#, … , z[, v[, … , v2"#@ 
 

So, V2
7Z2 =

k
l
l
l
l
l
m v#

7

⋮
v[
7

v['#
7

⋮
v2
7 o

p
p
p
p
p
q

=z#, … , z[, v[, … , v2"#@ =

k
l
l
l
l
l
l
m v#

7z#
⋮

⋯
⋮

v#
7z[
⋮

v[
7z#

v['#
7 z#

⋮
⋮

v[
7z[

v['#
7 z[

1
0 1

v['?
7 z#
⋮

v2
7 z#

⋮
⋮
⋯

v['?
7 z[
⋮

v2
7 z[

0 ⋱
⋱ 1

0 o
p
p
p
p
p
p
q

 

 

Thus, km additional inner products of vectors with order n to form V2
7Z2 is required. 

 

3. THE PROPOSED METHOD 
 

As mentioned in the previous section, methods for solving linear system Ax = b start with an 

initial vector x, and iteratively try to change the values of these vectors in order to reduce the 

estimation error. In this methods, unfortunately, the process of calculating the amount of change 

of the vector x is a time consuming process. Therefore, in this paper, we will use an intelligent 

heuristic method to quickly predict the amount of change of the vector x in each iteration. The 

proposed heuristic is as follows: “The value of each dimension d of vector x which in c previous 

iterations of the algorithm steadily decreases (increases) is likely to decrease (increase) further in 

the next iteration.” So, without much calculation, we can perform intelligent changes in the 

direction of each dimension of vector x. By this assumption, in practice dramatic convergence 

will be reached. 

 

By changing the step 6 of algorithm 1, the Improved SGMRES(m) (ISGMRES(m)) is obtained. 

The implementation of ISGMRES(m) is outlined in Algorithm 4. 
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Algorithm 4:The template of ISGMRES(m) 

1. Step 1 to step 5 of algorithm 1. 

2. Decrease (increase) the value of each dimension d of vector x which in c previous 

iterations of the algorithm steadily decrease (increase), by β ∗ xw(d), where βis a real 

number that is called the update rate and xw(d)is the amount of change in the value of 

vector xin dimension d in the before iteration. 

3. Goto step 1. 

 

By changing the step 8 of algorithm 2, the Improved SGMRES-E(m,k) (ISGMRES-E(m,k)) can 

be obtained. The implementation of ISGMRES-E(m,k) is outlined in Algorithm 5. 

Algorithm 5: The template of ISGMRES-E(m,k) 

1. Step 1 to step 7 of algorithm 2. 

2. Decrease (increase) the value of each dimension d of vector x which in c previous 

iterations of the algorithm steadily decrease (increase), by β ∗ xw(d), where βis a real 

number that is called the update rate and xw(d)is the amount of change in the value of 

vector xin dimension d in the before iteration. 

3. Goto step 1. 

 

By changing the step 8 of algorithm 3, the Improved SGMRES-DR(m,k) (ISGMRES-DR(m,k)) is 

obtained. The implementation of ISGMRES-DR(m,k) is outlined in Algorithm 6. 

Algorithm 6: The template of ISGMRES-E(m,k) 

1. Step 1 to step 7 of algorithm 3. 

2. Decrease (increase) the value of each dimension d of vector x which in c previous 

iterations of the algorithm steadily decrease (increase), by β ∗ xw(d), where βis a real 

number that is called the update rate and xw(d)is the amount of change in the value of 

vector xin dimension d in the before iteration. 

3. Goto step 1. 

 

4. Experimental results 
 

To investigate the performance of proposed methods, several experiments on a number of 

standard matrices of the University of Florida has been carried out. In all these experiments, the 

vector x0 is initialized by zero, and computational error ‖� − � ∗ 	‖ ‖�‖⁄  intended. In Table 1, 

SGMRES(m) and ISGMRES(m) are compared. According to Table 1, Figure1, and Figure 2, the 

performance of ISGMRES(m) is better than SGMRES(m). 
 

Table 1: Comparison of the results of SGMRES(m) and ISGMRES(m) 

 

Problem m error SGMRES ISGMRES 

 iteration c . iteration 

Tols1090 20 0.2375 200 10 0.05 144 

Tols1090 20 0.1847 500 10 0.007 458 

Zenios 30 0.9585 200 5 0.00006 84 

Zenios 30 0.9584 500 5 0.00007 252 

Qh148 20 0.9898 200 5 0.005 200 
Qh148 20 0.9898 500 5 0.9 257 



Advanced Computational Intelligence: A 

Figure 1: Comparison of convergence of SGMRES(m) and ISGMRES(m) on Zenios matrix with up to 200 

Figure 2: Comparison of convergence of SGMRES(m) and ISGMRES(m) on Zenios matrix with up to 500 

In Table 2, SGMRES-E(m,k) and ISGMRES

and Figure 4, the performance of ISGMRES

 

Table 2: Comparison of the results of SGMRES

 

Problem m k 

 

Tols1090 20 5 

Tols1090 20 5 

Zenios 30 10 

Zenios 30 10 

Qh148 20 5 

Qh148 20 5 
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Figure 1: Comparison of convergence of SGMRES(m) and ISGMRES(m) on Zenios matrix with up to 200 

iteration 

 

 
 

f convergence of SGMRES(m) and ISGMRES(m) on Zenios matrix with up to 500 

iteration 

 

E(m,k) and ISGMRES-E(m,k) is compared. According to Table 2,Figure3, 

and Figure 4, the performance of ISGMRES-E(m,k) is better than SGMRES-E(m,k). 

e 2: Comparison of the results of SGMRES-E(m,k) and ISGMRES-E(m,k)

error SGMRES-

E 

ISGMRES-

iteration c . 
0.2603 200 20 0.8 

0.2063 500 20 0.4 

 0.9574 200 5 0.00005 

 0.9570 500 10 0.0005 

0.9758 200 1 0.006 

0.9750 500 15 0.1 
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Figure 1: Comparison of convergence of SGMRES(m) and ISGMRES(m) on Zenios matrix with up to 200 

f convergence of SGMRES(m) and ISGMRES(m) on Zenios matrix with up to 500 

E(m,k) is compared. According to Table 2,Figure3, 

 

E(m,k) 

-E 

iteration 

128 

408 

 182 

500 

190 

500 
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Figure 3: Comparison of convergence of SGMRES

Figure 4: Comparison of convergence

In Table 3, SGMRES-DR(m,k) and ISGMRES

3,Figure5, and Figure 6, the performance of ISGMRES

DR(m,k). 
 

Table 3: Comparison of the results of SGMRES
 

Problem m k 

 

Tols1090 20 5 

Tols1090 20 5 

Zenios 30 10 

Zenios 30 10 

Qh148 20 5 

Qh148 20 5 
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Figure 3: Comparison of convergence of SGMRES-E(m,k) and ISGMRES-E(m,k) on Tols1090 matrix 

with up to 200 iteration 
 

 
 

Figure 4: Comparison of convergence of SGMRES-E(m,k) and ISGMRES-E(m,k) on Tols1090 matrix 

with up to 500 iteration 
 

DR(m,k) and ISGMRES-DR(m,k) is compared. According to Table 

3,Figure5, and Figure 6, the performance of ISGMRES-DR(m,k) is better than SGMRES

le 3: Comparison of the results of SGMRES-DR(m,k) and ISGMRES-DR(m,k)

error SGMRES-

DR 

ISGMRES-DR

iteration c . 
0.3292 200 10 0.3 

0.0327 500 5 0.005 

 0.9576 200 10 0.00005 

 0.9575 500 10 0.0005 

0.9758 200 5 0.04 

0.9757 500 5 0.02 
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E(m,k) on Tols1090 matrix 

E(m,k) on Tols1090 matrix 

DR(m,k) is compared. According to Table 

DR(m,k) is better than SGMRES-

DR(m,k) 

DR 

iteration 

119 

355 

182 

500 

164 

453 
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Figure 5: Comparison of convergence of SGMRES

Figure 6: Comparison of convergence of SGMRES

It should be noted that the computational complexity of each iteration of ISGMRES(m), 

ISGMRES-E(m), and ISGMRES

SGMRES(m), ISGMRES-E(m), and ISGMRES

 

As it can be observed from the above tables and figures, the proposed methods compared with 

corresponding standard methods for finding solutions with the same error require a lesser number 

of iterations. 

 

5. CONCLUSIONS 
 

Based on the mathematical techniques, to improve the performance of SGMRES(m), SGMRES

E(m, k) and SGMRES-DR(m, k) methods, [5] 

computational complexity and sometimes execution time and n

vector multiplication greatly increase, a modified technique is proposed. Although, improving the 
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Figure 5: Comparison of convergence of SGMRES-DR(m,k) and ISGMRES-DR(m,k) on Qh148 matrix 

with up to 200 iteration 

 

 
 

gence of SGMRES-DR(m,k) and ISGMRES-DR(m,k) on Qh148 matrix 

with up to 500 iteration 

 

It should be noted that the computational complexity of each iteration of ISGMRES(m), 

E(m), and ISGMRES-DR(m) is approximately equal to each iteration of 

E(m), and ISGMRES-DR(m), respectively. 

As it can be observed from the above tables and figures, the proposed methods compared with 

corresponding standard methods for finding solutions with the same error require a lesser number 

Based on the mathematical techniques, to improve the performance of SGMRES(m), SGMRES

DR(m, k) methods, [5] - [8] - [7] - [13], that each of which have their own 

computational complexity and sometimes execution time and number of operations in the matrix 

vector multiplication greatly increase, a modified technique is proposed. Although, improving the 
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DR(m,k) on Qh148 matrix 

DR(m,k) on Qh148 matrix 

It should be noted that the computational complexity of each iteration of ISGMRES(m), 

DR(m) is approximately equal to each iteration of 

As it can be observed from the above tables and figures, the proposed methods compared with 

corresponding standard methods for finding solutions with the same error require a lesser number 

Based on the mathematical techniques, to improve the performance of SGMRES(m), SGMRES-

[13], that each of which have their own 

umber of operations in the matrix 

vector multiplication greatly increase, a modified technique is proposed. Although, improving the 



Advanced Computational Intelligence: An International Journal (ACII), Vol.3, No.2, April 2016 

13 

efficiency of these algorithms by using the concepts and techniques of artificial intelligence has 

received little attention, in this paper, an intelligent heuristic method that has very little 

computational complexity is used to improve the performance of procedures SGMRES(m), 

SGMRES-E(m, k) and SGMRES-DR(m, k).The numerical results obtained from implementation 

of the proposed method on several University of Florida standard matrixes confirm the efficiency 

of the proposed method. 
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