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ABSTRACT 

  

With the rapid development of cloud computing, the privacy security incidents occur frequently, especially 

data security issues. Cloud users would like to upload their sensitive information to cloud service providers 

in encrypted form rather than the raw data, and to prevent the misuse of data. The main challenge is to 

securely process or analyze these encrypted data without disclosing any useful information, and to achieve 

the rights management efficiently. In this paper, we propose the encrypted data processing protocols for 

cloud computing by utilizing additively homomorphic encryption and proxy cryptography. For the tradi-

tional homomorphic encryption schemes with many limitations, which are not suitable for cloud computing 

applications. We simulate a cloud computing scenario with flexible access control and extend the original 

homomorphic cryptosystem to suit our scenario by supporting various arithmetical calculations. We also 

prove the correctness and security of our protocols, and analyze the advantages and performance by com-

paring with some latest works. 
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1. INTRODUCTION 

Cloud computing is a style of computing in which dynamically scalable and often virtualized re-

sources are provided as a service over Internet, it describes a type of outsourcing of computer ser-

vices. With the rapid development of cloud computing, there are an increasing number of 

cloud-based services, such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) 

and Software-as-a-Service (SaaS). Under the cloud computing architecture, information is per-

manently stored in servers on the Internet and cached temporarily on clients [1], users and service 

providers are separated, data owners and custodians are separated, so the data owners do not have 

the full control over their own private data, the service provider can access the data that is in the 

cloud at any time. The cloud providers may share private information with third parties without 

the permission of the data owners, it is inevitably to incur some new privacy issues. At present, 

the urgent problem is to study how to protect user privacy efficiently under the cloud computing. 

To the best of our knowledge, a promising solution to solve such privacy issues is to encrypt the 
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data and then operate on these data in encrypted form. There are lots of schemes have been pro-

posed with various techniques: for instance, encrypted data processing based on secure multiparty 

computation (SMC) such as the sharemind [2], and based on homomorphic encryption (e.g., fully 

homomorphic encryption (FHE) or partial homomorphic encryption (PHE)) such as [3,4,5,6]. 

However, the SMC-based scheme usually needs at least two non-colluding cloud servers, for the 

sharemind, it requires at least three servers to complete the secure computations, which is not so 

convenient for data management. For the FHE-based scheme, it is easily to support various 

arithmetic computations (e.g., addition and multiplication) over ciphertexts, but is not practical 

because of the complexity. And the PHE-based scheme which has lower computational complex-

ity but with limited computations (e.g., only support addition or multiplication), there were many 

previous works [5,6,7] extending PHE-based scheme to support multiple types of computations 

(e.g., addition, multiplication, exponentiation and natural logarithm), and a boosting linear-

ly-homomorphic encryption scheme [8] has been proposed in 2015, which is capable of evaluat-

ing degree-2 computations on ciphertexts by utilizing linearly-homomorphic encryption scheme. 

But they are not so efficient with too many interactions or with a weaker security setting consid-

eration. It is also a challenge allowing the data requesters to request most of the calculation tasks 

while not disclosing the original data or mid-result processed by cloud, namely achieving secure 

data access control in cloud computing [9]. The cloud server should only provide computing ser-

vice for the delegatee, which is an efficient way to prevent data misuse. In 1998, Blaze, Bleumer 

and Strauss (BBS) [10] proposed the notion "atomic proxy cryptography", which utilized a 

semi-honest proxy to convert ciphertexts for Alice into ciphertexts for Bob without seeing the 

plaintext. Then Dodis and Ivan [11] implemented proxy encryption by dividing the user's secret 

key into two components, they proposed the unidirectional proxy encryption for ElGamal, RSA 

and an IBE scheme, but the drawback is that the delegatee needs to store extra secrets for delegate 

decryption, it is difficult for delegatee to manage the keys. And followed by some pairing based 

proxy re-encryption schemes have been proposed, such as [12,13], which have been used to many 

applications. In this paper, we utilize the original BBS's idea, and construct the re-encryption 

protocol for our scenario. 
 

Most of existing schemes are hard to meet the requirements of various real applications, in this 

paper, we aim to design a non-interactive privacy-preserving cloud computing system with scala-

ble data access control, which utilizes the partial homomorphic cryptosystem (e.g., the BCP 

cryptosystem [14]) and the proxy cryptography. The main contributions of our paper can be 

summarized as below:  

(1) We design a complete privacy-preserving cloud computing system with flexible access 

control. 

(2) Our scheme is non-interactive, it reduces the communication overhead efficiently, which 

is simple and feasible in practical applications. 

(3) For the data security, all the raw data and processed data (including intermediate and final 

results) are not disclosed, only known by the specific person. 



Advanced Computing: An International Journal (ACIJ), Vol.9, No.6, November 2018 

3 

 

The rest of this paper is organized as follows. In section 2, we discuss the related work about 

encrypted data processing. Section 3 is dedicated to some preliminaries used in our work. Then 

we give the problem formulation in section 4. And the procedure of our scheme is described in 

section 5. Section 6 shows the security analysis. And the system evaluation will be given in sec-

tion 7. Followed by conclusion and future work in section 8. 

2. RELATED WORK  

There are many researches about privacy-preserving data processing with homomorphic encryp-

tion, we can divide them into two types: the first type with fully homomorphic encryption (FHE), 

and the second type with partial homomorphic encryption (PHE). In previous FHE-based works, 

it is not so efficient for practical because of the storage consumption and computation cost are 

still too heavy. There are many schemes to support arbitrary computations over encrypted data, 

for instance, Gentry et al. proposed many schemes with ability to process arbitrary arithmetic 

computations [3,15], but impractical because of the high computation overhead. In 2012, 

López-Alt et al. [16] proposed the notion of "On-the-Fly" secure multiparty computation on the 

cloud, it is a multi-key fully homomorphic encryption scheme that allows calculation over data 

encrypted by different public keys, but still having the efficiency shortcomings as other FHE 

schemes and relying on an interactive decryption phase, which also leads to heavy communica-

tion overhead. And until now, many scholars are still studying how to improve the efficiency of 

FHE. 

 

In 2013, Anday et al. [17] proposed a privacy-preserving data aggregation scheme based on the 

revised Paillier's cryptosystem, they divided the decryption key into two parts and distributed 

them to two different parties. This method reduced the risk of decrypting the raw data directly, but 

their scheme does not allow multiparty access to the ciphertexts processing result. In the same 

year, Peter et al. [5] proposed an efficient outsourcing multiparty computation system under mul-

tiple keys based on an additively homomorphic encryption (the BCP cryptosystem), in their 

two-servers model, one of the servers known the master secret key, then two servers performed 

multiple interactions to compute over encrypted data, but this scheme is not flexible for the data 

access control. In 2016, Liu et al. [6] achieved a toolkit for efficient and privacy-preserving out-

sourced calculation that called EPOM, which realized by using a double trapdoor decryption 

cryptosystem (the BCP cryptosystem). In the study, their idea is the same as Anday's, the master 

private key are distributed to two non-colluding servers, it somewhat reduces the risk of private 

key leakage, but this scheme can only support the multiplication over a small number of input 

data. Splitting the single private key to different parties is not flexible for encrypted data compu-

ting and management, what is more, this way will produce extra communication overhead. Then 

in 2017, Ding et al. [7] achieved encrypted data processing with homomorphic re-encryption, 

their system utilizes two non-colluding servers to manage encrypted data and supports access 

control on encrypted data processing, but the access control supported by two servers is not suita-
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ble for many scenarios. In Ding's scheme, the two servers should do Diffie-Hellman key exchange 

algorithm to generate a joint public key, and then broadcast it to the data providers, we will avoid 

this drawback in our system. Although Ding's scheme avoid some interactions, the computation 

overhead for each party is still too heavy, especially for the data requester who wishes to directly 

decrypt the message to get the correct result. What is more, in Ding's system, it implemented the 

access control using both two servers, to tackle these problems, we present a scenario achieving 

the access control with only one server (the access control server), and support ciphertext transfer 

(e.g., transfer the encrypted data to a specific data requester) by using the re-encrypt technique. 

Our goal is to simulate the practical scenario, and design lightweight protocols for the encrypted 

data processing. 

3. PRELIMINARIES 

3.1. Additively Homomorphic Encryption 

 

There were many additively homomorphic encryption schemes, such as Paillier's cryptosystem 

[18], Damgard-Jurik's cryptosystem [19] and some variants of ElGamal scheme (e.g., DGK cryp-

tosystem [20]). In this paper, we use the notation "[𝑚]" to denote the encryption of 𝑚. In an ad-

ditively homomorphic cryptosystem, it always satisfies the following properties: 

(1) Add. Given two ciphertexts [𝑎] and [𝑏], then [𝑎 + 𝑏] = [𝑎] ⊙ [𝑏] 𝑚𝑜𝑑 𝑁2 (addition of 

two messages, the symbol "⊙" represents the multiplication of two ciphertexts). 

(2) cMult. Given an encrypted message [𝑎]  and a constant k  in clear, then [𝑎]𝑘 =

[𝑘𝑎] 𝑚𝑜𝑑 𝑁2 (multiplication of an encrypted message by a known constant). 

(3) Note that there is a special property: [𝑎]−1 = [𝑎]𝑛−1 = [−𝑎] 𝑚𝑜𝑑 𝑁2. 

 

3.2. The BCP Cryptosystem 

 

The public key cryptosystem with a double trapdoor decryption mechanism proposed by Bresson, 

Catalano and Pointcheval, namely the BCP cryptosystem [14]. In this cryptosystem, it provides 

two independent decryption mechanisms, the first decryption mechanism performs the decryption 

algorithm that can successfully decrypt ciphertexts by specific secret key, while the second de-

cryption mechanism using the master secret key can decrypt any given ciphertext successfully. 

For simplicity, we only describe the decryption algorithm with the weak secret key (the first de-

cryption mechanism) in this paper, for more details about how to use master key to decrypt the 

ciphertext successfully (the second decryption mechanism), you can refer to the original paper. 

 

As same as other public key cryptosystems, the BCP cryptosystem also contains four main al-

gorithms: Setup, KeyGen (key generation), Enc (encryption)and Dec (decryption). This cryp-

tosystem is semantically secure, we briefly recall the construction of it as follows.  
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Setup: This algorithm generates the public parameters by inputting a security parameter κ. Let 

N = pq be an RSA modulus with the length of κ, 𝑔 is an element of maximal order in 𝔾, 

where 𝔾 is the cyclic group of quadratic residues modulo N2. The plaintext space is ℤ𝑁, the 

public parameters PP = (N,𝑔) and the master key MK = (p, q). 

KeyGen: Given the public parameters PP, then randomly choose a secret values 𝑥 ∈ [1, ord(𝔾)], 

we can compute h = 𝑔𝑥 mod N2. The public key pk = (N,𝑔, h), while the corresponding pri-

vate key is sk = 𝑥. 

Enc: Given the user's public key and a message 𝑚 ∈ ℤ𝑁, and choose a random number r ∈ ℤ𝑁2. 

This algorithm outputs the ciphertext [𝑚] as 

[𝑚] = (A, B) = (𝑔𝑟  mod 𝑁2, (1 + mN)h𝑟 mod 𝑁2).     (1) 

Dec: Given the ciphertext [𝑚] and the user's weak secret key 𝑥, this algorithm outputs the 

plaintext 𝑚 as 

𝑚 = L(B/A𝑥 mod 𝑁2), where L(u) =
u−1

𝑁
 .      (2) 

Next, we assume that the weak private key is sk = 𝑠𝑘1 + 𝑠𝑘2, and the corresponding public 

key is pk′ = (N,𝑔, h′), where h′ = 𝑔𝑠𝑘 mod N2. The encryption algorithm is the same as de-

picted above but encrypted with pk′. We present a two-phase decryption mechanism as follows: 

Partial decryption with 𝑠𝑘1(PDec1): This algorithm can transfer the original ciphertext into 

another ciphertext that can be decrypted by 𝑠𝑘2, it operates as follows: 

[𝑚]′ = (A′, B′) = (𝑔𝑟 mod 𝑁2, (1 + mN)𝑔𝑠𝑘2𝑟 mod 𝑁2), where B′ =
B

A𝑠𝑘1
mod 𝑁2 . (3) 

Partial decryption with 𝑠𝑘2(PDec2): This algorithm can directly decrypt the ciphertext from 

PDec1 by using 𝑠𝑘2 as follows: 

𝑚 = L(B′/A𝑠𝑘2  mod 𝑁2), where L(u) =
u−1

𝑁
 .     (4) 

4. PROBLEM FORMULATION 

4.1. System Model 

 

In this work, we focus on encrypted data processing under the cloud computing. As you know, in 

the normal cloud computing environment, the service provider can access the data that is in the 

cloud at any time, this poses serious privacy concerns. To protect data in terms of confidentiality 

and privacy from unauthorized users, we propose a practical scheme for encrypted data pro-

cessing under cloud computing. Our system comprises four types of entities, as shown in Figure 

1. 

(1) Cloud Service Provider (CSP). This entity mainly stores the encrypted data from data 

providers and provides some homomorphic computation service. We can think of it as a 

storage cloud with computing capabilities. 
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(2) Access Control Server (ACS). The entity provides service of secure data computation 

with data access control for the target user, and performs the ciphertext transformation. In 

our scenario, there could exist several ACSs. 

 

 

Figure 1. System overview 

 

(3) Data Providers (DPs). There are several data providers encrypting their private data and 

uploading these ciphertexts to the CSP. These encrypted data stored in the cloud will be 

used for further computation and analysis. 

(4) Data Requesters (DRs). These parties are the data consumers that acquire the result of 

specific data processing. We point out that a DR could also be a DP. Each DR could 

choose one of the ACSs he trusts, and he only communicates with ACS (e.g., puts a data 

processing request and then receives the processed result). 

 

In the beginning, each DP will choose an ACS he trusts, then encrypts his private data using the 

combined public key of ACS and CSP, and then uploads these ciphertexts to CSP. When DR puts 

a request to the ACS he trusts, the ACS will generate a re-encryption key for him, then sends this 

key and the request to CSP, so the CSP will cooperate with ACSs to process the outsourced en-

crypted data which satisfy the demands of the DR. At the end, the chosen ACS will return the fi-

nal encrypted results to DR who can decrypt to get the plain processing results. In our system, we 

design the non-interactive protocols to process encrypted data. 

 

4.2. Privacy Requirements 

 

Privacy preserving is crucial for the success of our outsourced data processing service. In our 

system, we consider both the CSP and the ACS are semi-honest (e.g., they will execute the pro-

tocols honestly but curious about sensitive data), and they do not collude with each other. In order 
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to prevent each party from information leakage, our system should satisfy the following privacy 

requirements. 

(1) DP's privacy: The DP's private data stored in the cloud should be permanently confidential, 

it cannot be directly exposed to any other parties, and we must ensure these private data 

will not be used directly by the CSP. 

(2) DR's privacy: The DR puts the encrypted data processing request (encrypted by CSP's pub-

lic key) to the ACS he trusts, but the ACS should not disclose DR's identity to other parties. 

And the processed results should only be decrypted by the DR. 

 

4.3. Design Goals 

 

In order to achieve an efficient secure system which fulfills the aforementioned scenario and pri-

vacy requirements, our scheme should consider the security and performance overhead (mainly 

the communication cost and computation cost) as follows. 

(1) Correctness and security. To achieve the privacy-preserving cloud computing system, it 

must guarantee the correctness of our protocols and the privacy requirements as mentioned 

before. 

(2) Lightweight. We aim to design a lightweight system with minimum communication and 

computation overhead. For communication cost, we must minimize the communication cost 

for each party, especially for DR, he just needs to put requests and then receives the pro-

cessed results. And for computation cost, in order to save the computing resource, we 

should better design the arithmetic operations over encrypted data with light-weight calcu-

lation. 

5 .THE PROCEDURES OF OUR SCHEME 

5.1. General Description 

 

We propose the privacy-preserving data processing scheme under the cloud computing environ-

ment, it utilizes the BCP cryptosystem [14] to realize our system, the procedures are depicted as 

follows: 

Init: This procedure initializes the system parameters with the Setup algorithm of BCP cryp-

tosystem, and broadcasts the public parameters PP = (N,𝑔) to all parties. 

KeyGen: After all participants received the parameters, they choose random private number as 

their secret key, respectively. For instance, the CSP chooses 𝑎, the ACS chooses b, the DR 

chooses c. So the public key of each corresponding party is 𝑔𝑎, 𝑔𝑏 and 𝑔𝑐 𝑚𝑜𝑑 𝑁2. It is eas-

ily to compute the joint public key of ACS and CSP as PK = 𝑔𝑎+𝑏 𝑚𝑜𝑑 𝑁2. 

Re-KeyGen: This algorithm is executed by ACS. When DR puts the request to ACS, the ACS will 

generate a re-encryption key for DR, which computed as 𝑟𝑘𝐴𝐶𝑆→𝐷𝑅 = 𝑔𝑐/𝑏 𝑚𝑜𝑑 𝑁2. Then the 

𝑟𝑘 and the request will be sent to CSP. 
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Enc: This algorithm is executed by DPs. Using the combined public key PK, DPs encrypt their 

private data and then upload the ciphertexts to the CSP. For example, we assume a message 𝑚 ∈

ℤ𝑁, then choose a random number r ∈ ℤ𝑁2, so the ciphertext [𝑚] is computed as: 

[𝑚] = (A, B) = (𝑔𝑟  mod 𝑁2, (1 + mN)h𝑟 mod 𝑁2) .    (5) 

Partial-Dec (PDec): This algorithm is executed by CSP. Using CSP's secret key 𝑎, it can get a 

fresh ciphertext which can be decrypted by ACS. The fresh ciphertext is: 

[𝑚]′ = (A′, B′) = (𝑔𝑟 mod 𝑁2, (1 + mN)𝑔𝑏𝑟 mod 𝑁2), where B′ =
B

A𝑎 mod 𝑁2 .  (6) 

Then CSP adds noise δ to [𝑚]′ and get [𝑚 + δ]𝐴𝐶𝑆, in the meanwhile he encrypts δ with 

𝑟𝑘𝐴𝐶𝑆→𝐷𝑅 . The CSP sends [𝑚 + δ]𝐴𝐶𝑆 and [δ]𝑟𝑘 to ACS. 

Re-Enc: This step performed by ACS. ACS uses his secret key b to decrypt [𝑚 + δ]𝐴𝐶𝑆 and 

transfer [δ]𝑟𝑘 to [δ]𝐷𝑅. After performing this step correctly, the ciphertexts will be switched to 

[𝑚]𝐷𝑅 (a message encrypted by DR's public key). 

Dec: When DR receives the data from ACS, he can decrypt it with his secret key c to get the 

processed result. 

 

5.2. Encrypted Data processing 

 

We assume that the encrypted data has been stored in the CSP, and the latter operations on ci-

phertexts do not need the DPs to participate in. So we introduce how to implement two basic op-

erations (addition and multiplication) herein. 

Addition. This operation aims to obtain the sum of some raw data: 𝑚 = ∑ 𝑚𝑖
𝑛
𝑖=1 . 

Step 1 (@ CSP): Due to the additively homomorphic property, the CSP can directly multiply 

the ciphertexts one by one as following: 

[𝑚]𝑃𝐾 = ∏ [𝑚𝑖]𝑃𝐾
𝑛
𝑖=1  .       (7) 

Then as described before, the CSP partially decrypts [𝑚]𝑃𝐾 and adds noise to it, sends the data 

package ([𝑚 + δ]𝐴𝐶𝑆,[δ]𝑟𝑘) to ACS. 

Step 2 (@ ACS): ACS utilizes his secret key b to process the encrypted data, switch the ci-

phertexts to [𝑚]𝐷𝑅, which is the encrypted data processed result can be decrypted by DR who 

puts the request. 

Step 3 (@ DR): Upon receiving the encrypted data from ACS, the DR decrypts it to get the 

clear processed result. 

Multiplication. This operation aims to obtain the product of some non-zero raw data: 𝑚 =

∏ 𝑚𝑖
𝑛
𝑖=1 . For ease of presentation, we give the instance of multiplying two messages here. 

Step 1 (@ CSP): The CSP first chooses two random numbers r1 and r2, and computes 

r3 = (r1 ∗ r2)
−1. Then he performs the PDec1 algorithm to get [𝑚1]𝐴𝐶𝑆 and [𝑚2]𝐴𝐶𝑆, com-

putes [𝑚1]𝐴𝐶𝑆
r1  and [𝑚2]𝐴𝐶𝑆

r2, sends the data package ([𝑚1r1]𝐴𝐶𝑆, [𝑚2r2]𝐴𝐶𝑆, [r3]𝑟𝑘) to ACS. 

Step 2 (@ ACS): Upon receiving the data package, the ACS decrypts [𝑚1r1]𝐴𝐶𝑆  and 

[𝑚2r2]𝐴𝐶𝑆 to get the message with "noise", and computes 𝑚1r1 ∗ 𝑚2r2. Then, the ACS switches 
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[r3]𝑟𝑘 to [r3]𝐷𝑅 using his secret key b. Finally, the ACS computes [r3]𝐷𝑅
𝑚1r1∗𝑚2r2 to get the 

final result [𝑚1𝑚2]𝐷𝑅. 

Step 3 (@ DR): The DR can obtain the correct result after decrypting the data from ACS. 

6. SECURITY ANALYSIS 

As described in the previous section, the correctness of our protocols is obvious, so we focus on 

the security of our system in this section. Our system aims to achieve the privacy of user data in 

cloud, the intermediate and final results security under the semi-honest model. And we assume 

that there is no collusion between the CSP and ACS. We first introduce the semantic security of 

BCP cryptosystem. 

 

Theorem 1.If Decisional Diffie-Hellman Assumption in ℤ𝑁2
∗  holds, then the BCP cryptosystem is 

semantically secure. 

Proof. We say the Diffie-Hellman computational problem is hard, if for every probabilistic poly-

nomial time algorithm 𝒜, there exists a negligible function 𝑛𝑒𝑔𝑙() such that for sufficiently 

large ℓ. 

Pr

[
 
 
 
 

𝒜(N, X, Y, 𝑍𝑏) = b
|
|

𝑝, 𝑞 ← 𝑆𝑃 (
ℓ

2
) ;𝑁 = 𝑝𝑞; 𝑔 ← 𝔾;

𝑥, 𝑦, 𝑧 ← [1, 𝑜𝑟𝑑(𝔾)];𝑋 = 𝑔𝑥 𝑚𝑜𝑑 𝑁2;

𝑌 = 𝑔𝑦 𝑚𝑜𝑑 𝑁2;𝑍0 = 𝑔𝑧  𝑚𝑜𝑑 𝑁2;

𝑍1 = 𝑔𝑥𝑦 𝑚𝑜𝑑 𝑁2; 𝑏 ← {0,1}; ]
 
 
 
 

−
1

2
 = 𝑛𝑒𝑔𝑙(ℓ) . (8) 

Given a quadruple (𝑔, 𝑔𝑎 ,𝑔𝑏, 𝑔𝑐), to use 𝒜 to decide whether c = 𝑎b mod 𝑜𝑟𝑑(𝔾) or not. 

The public key is first set as (N, 𝑔, h), where h = 𝑔𝑎. Once the adversary has chosen the mes-

sages 𝑚0 and 𝑚1, we flip a coin 𝑑 and then encrypt the message 𝑚𝑑 as follows: 

𝐸(𝑚𝑑) = (A, B) = (𝑔𝑏 mod 𝑁2, (1 + 𝑚𝑑N)𝑔𝑐 mod 𝑁2) .    (9) 

If this quadruple is a Diffie-Hellman quadruple (i.e., c = 𝑎b), the above is a valid encryption of 

𝑚𝑑 and 𝒜 will give the correct response with non-negligible advantage. If it is not a Dif-

fie-Hellamn quadruple, we claim that even a polynomial unbounded adversary gains no extra in-

formation from 𝐸(𝑚𝑑) in a strong information-theoretic sense. You can refer the original BCP 

paper [14] for the detail. 

 

Corollary 1(Two-phase decryption security). The two-phase decryption mechanism of the BCP 

cryptosystem is semantically secure based on the hardness of DDH assumption over ℤ𝑁2
∗ . 

Proof. The Shamir secret sharing scheme [21] proposed in 1979, which is information theoretic 

secure can guarantee the privacy of divided private key. The private message is randomly split 

into two shares in a way that any less than two shares cannot recover the original message (i.e., 

the (2, 2) Shamir threshold secret sharing scheme). And the adversary can only recover the origi-

nal plaintext by both two shares of partial decrypted ciphertexts. 
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Lemma 1(Privacy of data). While the two-phase decryption BCP cryptosystem is semantically 

secure, without collusion, our system always protects the security of the data (e.g., user data and 

processed results). 

 

User data privacy. We claim the privacy of user data stored in the cloud server here. The original 

private data are encrypted by data owners with the joint public keys of CSP and ACS, and stored 

in the CSP who can only decrypt the encrypted data partially. As we assumed that the CSP and the 

ACS do not collude with each other, the user data in the cloud will be permanently confidential. 

 

Processed result privacy. We show the privacy preserving of the processed result. The CSP do 

calculations over ciphertexts, and he has no ability to decrypt it completely. So he decrypts the 

encrypted result partially with his own secret key, and blinds the result with a random message 

(namely, the "noise"), he sends the blinded result to ACS, although ACS has another half secret 

key, he only decrypts the message to get the blinded result. While the noise were encrypted with 

𝑟𝑘, no one can decrypt it directly, the ACS processes the encrypted with his own secret key, so it 

can be transformed to the data encrypted by DR's public key. Then the ACS performs encrypted 

data calculations to get the final result under the DR's public key, which will be sent to DR. In our 

procedures, all the mid/final results are not disclosed, and only the DR who puts the request can 

get the final result. 

 

What is more, we also protect the identity of data requester, only the access control server 

(ACS) recognizes DR's identity. But in Ding's scheme [7], the access control was implemented by 

both CSP and ACS. 

7. EVALUATION AND IMPLEMENTATION 

7.1. Scheme Evaluation 

 

In this section, we compare our system with some latest work [5,6,7], which were also the similar 

researches with partial homomorphic encryption (PHE). And there are also some other works 

based on different techniques, for instance, SMC-based [2,22] and FHE-based [4,23], but we 

think FHE and SMC will introduce significant communication/computation overhead. We aim to 

achieve the lightweight scheme, so there should be no extra computations for client, and less in-

teractions in the procedures will be better. For the security concern, using the master key will in-

crease the risk of system, if the master key is disclosed, all these data will not secure. Our scheme 

overcomes all these drawbacks, and more efficient for the practical. 
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Figure 2. Computation time of each algorithm in BCP with various N 

 

 

Figure 3. Computation time of addition protocol with various N 

 

 

Figure 4. Computation time of multiplication protocol with various N 

 



Advanced Computing: An International Journal (ACIJ), Vol.9, No.6, November 2018 

12 

7.2. Experiment Analysis 

 

We have implemented our proposed scheme with Python, the experiments are conducted on Ub-

untu 16.04.3 LTS with Intel(R) Core(TM) i7-6700 CPU 3.40GHz and 4GB RAM. To achieve 

better accuracy, we performed each test 500 times and reported the average value of all results. In 

our implementation, we tested the influence of different parameters (i.e., the length of secret key, 

the length of data and the length of N), and we found that the length of the parameter N is signif-

icant. So we set other parameters by default, for instance, the length of secret key is 500 bits, the 

length of data is 200 bits and the length of random number is 500 bits. Then we tested the per-

formance of each algorithm with different length of N (i.e., 512 bits, 768 bits, 1024 bits, 1280 bits 

and so on). 

 

The performance of each algorithm in BCP cryptosystem was shown in Figure 2, the computa-

tion costs affected much by the length of N.And we tested the performance of our two proposed 

protocols (addition and multiplication) in section 5.2, we analyzed the computation costs of each 

step, corresponding to three parties: CSP (the step1), ACS (the step2) and DR (the step3). As you 

can see in Figure 3 and Figure 4, both in addition and multiplication protocol, most of the com-

putation overhead has been transferred to DSP and ACS, the computation costs of DR is little, 

when he received the result, he can decrypt it in a few milliseconds. 

 

In general, the above tests show that we achieve the lightweight of DR in our scheme, nearly 

all of the computation overhead has been transferred to CSP and ACS, which is practical in the 

real cloud computing environments. 

8. CONCLUSION AND FUTURE WORK 

In this paper, we proposed an efficient encrypted data processing scheme with access control. We 

overcame some drawbacks of existing works, and designed some lightweight protocols which are 

non-interactive and more flexible for access control. In the future, we aim to construct a more 

secure system with multi-key homomorphic cryptosystem, which can provide better priva-

cy-preserving service for data providers. What is more, we also want to extend our scheme to a 

malicious one, that is, even the CSP and ACS collude with each other, there are no sensitive in-

formation disclosed. 
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