Academy & Industry Research Collaboration Center (AIRCC)

Volume 10, Number 15, November 2020

An Intelligent and Data-Driven Mobile Platform for Youth Volunteer Management
using Machine Learning and Predictive Analytics

  Authors

Alyssa Huang1 and Yu Sun2, 1USA, 2California State Polytechnic University, USA

  Abstract

Volunteering is very important to high school students because it not only allows the teens to apply the knowledge and skills they have acquired to real-life scenarios, but it also enables them to make an association between helping others and their own joy of fulfillment. Choosing the right volunteering opportunities to work on can influence how the teens interact with that cause and how well they can serve the community through their volunteering services. However, high school students who look for volunteer opportunities often do not have enough information about the opportunities around them, so they tend to take whatever opportunity that comes across. On the other hand, as organizations who look for volunteers usually lack effective ways to evaluate and select the volunteers that best fit the jobs, they will just take volunteers on a first-come, firstserve basis. Therefore, there is a need to build a platform that serves as a bridge to connect the volunteers and the organizations that offer volunteer opportunities. In this paper, we focus on creating an intelligent platform that can effectively evaluate volunteer performance and predict best-fit volunteer opportunities by using machine learning algorithms to study 1) the correlation between volunteer profiles (e.g. demographics, preferred jobs, talents, previous volunteering events, etc.) and predictive volunteer performance in specific events and 2) the correlation between volunteer profiles and future volunteer opportunities. Two highest-scoring machine learning algorithms are proposed to make predictions on volunteer performance and event recommendations. We demonstrate that the two highest-scoring algorithms are able to make the best prediction for each query. Alongside the practice with the algorithms, a mobile application, which can run on both iPhone and Android platforms is also created to provide a very convenient and effective way for the volunteers and event supervisors to plan and manage their volunteer activities. As a result of this research, volunteers and organizations that look for volunteers can both benefit from this data-driven platform for a more positive overall experience.

  Keywords

Machine learning, Predictive Analytics, Flutter, Volunteer Management, Scikit-learn.