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ABSTRACT 
 

3D scene understanding is of importance since it is a reflection about the real-world scenario. 

The goal of our work is to complete the 3d semantic scene from an RGB-D image. The state-of-
the-art methods have poor accuracy in the face of complex scenes. In addition, other existing 

3D reconstruction methods use depth as the sole input, which causes performance bottlenecks. 

We introduce a two-stream approach that uses RGB and depth as input channels to a novel 

GAN architecture to solve this problem. Our method demonstrates excellent performance on 

both synthetic SUNCG and real NYU dataset. Compared with the latest method SSCNet, we 

achieve 4.3% gains in Scene Completion (SC) and 2.5% gains in Semantic Scene Completion 

(SSC) on NYU dataset. 
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1. INTRODUCTION 
 

We live in a three-dimensional world. In order to live in the three-dimensional world and 
interact with the external environment, humans rely on the observation and analysis of the 3D 

geometry and semantics of surrounding objects. Similarly, the ability to infer complete 3D 

shapes from local observations is essential for robots, it can achieve low-level tasks such as 

grasping and avoiding obstacles. Moreover, the ability to infer the semantics of objects in a 

scene can achieve higher-level goals, such as the task of object retrieval. Therefore, in order to 

better sense the surrounding environment, the robot needs to construct a semantic scene map. 
 

Semantic scene completion is a combined task of semantic segmentation and shape completion 

and discovers the hidden information existing in the 3D scene. For instance, a depth sensor can 

only capture information from object surfaces that are visible. Most of the geometric and 
semantic information of the 3D scene is, however, occluded by the objects themselves. As 

humans, we can estimate the geometry of objects even in the occluded area from experience, 

providing us instantly an effective model of the 3D scene surrounding us. 3D semantic scene 
completion tries to achieve the same goal. Given a single depth image, the goal is to predict the 

entire 3D geometry of all objects in the scene including the occluded areas. The technique has 

high potential in many areas ranging from domestic robotics and autonomous vehicles to health-
care systems. However, due to the dimensional curse brought by 3D representation and the 

limited annotation datasets, the research field of semantic scene completion still step slowly in 

the past decades. To push the scientific effort along these directions, recently large-scale 
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benchmark datasets, such as SUNCG[1], NYU[2], ScanNet[3] and SceneNet,[4] have been 

proposed to evaluate different visual scene understanding tasks including those of scene 
completion and semantic segmentation. 

 

Inspired by the way humans can imagine the 3D structure of a room by looking at a 2D image, 

we propose an algorithm that reconstructs the entire scene geometry and semantics from an 
RGB-D image. By directly reconstructing the scene from one view, the challenge is to plausibly 

complete the scene in place of the hidden structures that are not visible from the input RGB-D 

image. To this end, we utilize a learning strategy that allows the algorithm to simultaneously 
perceive the objects in the scene and use its contextual shape to fill the hidden structures. In 

addition, we simultaneously estimate a semantic segmentation of the completed 3D scene 

geometry. 

 
In this work, we focus on the data acquired from RGB-D cameras, with the goal of 

reconstructing and semantically labelling the whole scene from one single range image. As a 

scene may contain small objects and complicated shapes, we apply a generative adversarial 
model for this semantic completion task. Combined with an encoder and a generator, our 

architecture uses both RGB images and depth images as the input information and generate 3D 

volumetric data whose elements are labelled with object categories. Specifically, we use two 
discriminators to train the architecture to back-project the colour and depth information into the 

3D volumetric space with semantic labels. One discriminator is used to optimize the entire 

architecture by comparing the reconstructed semantic scene with the ground truth. Our 

generative adversarial network formulates the 3D scene completion and labelling as a joint task 
and learns in an end-to-end way. The main contributions of this paper are three-fold: 

 

(1) We propose a novel generative adversarial network (GAN) to predict semantic labels and 
occupancy in 3D space simultaneously. 

(2) 3D feature maps of RGB and depth are fused in multi-scale seamlessly, which enhances 

the network representation ability and boost the performance of SC and SSC tasks. 
(3) The proposed end-to-end training network achieves state-of-the-art performance on 

SUNCG and NYU datasets. 

 

2. RELATED WORKS 
 

2.1. 3D Scene Analysis 
 

A set of methods have been proposed for scene segmentation, scene completion, and object 
detection from an input RGBD image or depth image. 2D image-based methods regard the 

depth as an additional channel of the 2D RGB image and leverage manually-crafted 

features[5,6] or 2D deep neural networks for these scene analysis tasks[7,8]. 3D volume-based 

approaches convert the input depth map into a volumetric representation and exploit manually 
crafted 3D features[9] or 3D CNNs for detecting 3D objects from the input RGBD image[10]. 

Although these methods can successfully detect and segment visible 3D objects and scenes in 

the input RGBD images, they cannot infer the scenes that are totally occluded. Instead, our 
method predicts semantic labelling and 3D shapes for both visible and invisible objects in a 3D 

scene. 

 

Liu et al.[11] introduced 3DCNN-DQN-RNN for parsing 3D point cloud of a scene. 
PointNet[12] and PointNet++[13] develop deep learning framework on 3D point cloud for scene 

semantic labelling and other 3D shape analysis tasks. These methods take the 3D point cloud of 

whole 3D scene as the input. On the contrary, our method takes a single depth image for 
semantic scene completion. 
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2.2. 3D Scene Completion 
 

Firman et al.[14] inferred the occluded 3D object shapes from a single depth image via random 
forest. Zheng et al.[15] completed the occluded scene in the input depth image with a set of pre-

defined rules and refined the completion results by physical reasoning. These methods perform 

scene segmentation and completion in two separate steps. Recently, Song et al.[16] proposed 

3D SSCNet for simultaneously predicting the semantic labels and volumetric occupancy of the 
3D objects from a single depth image. Although this method unifies segmentation and 

completion and significantly improves the result, the expensive 3D CNN limits the input 

volume resolution and network depth, and thus restrains its performance. By combining 2D 
CNN and 3D CNN, our method efficiently reduces the training and inference cost, enhances the 

network depth and thus significantly improves the result accuracy. 
 

2.3. 3D Object Completion 
 

A set of methods reconstruct the 3D object shape from a single depth image using 3D shape 

retrieval[17], Convolutional Deep Belief Network (CDBN)[18,19], or a 3D Generative 

Adversarial Networks (GAN)[20]. All these methods model the input depth maps and resulting 
3D shapes with a 3D volumetric representation. Although these methods can be combined with 

other scene segmentation methods for predicting 3D shapes of the visible object in the input 

depth map, they cannot be used for inferring objects that are totally occluded. Our method is 
designed for recovering complete 3D shapes of both visible and occluded 3D objects from a 

single depth image of a 3D scene. 
 

2.4. 3D Scene Completion and Semantic Labelling 
 

3D semantic scene completion has become a popular research problem recently. Some prior 

works considered completing and labelling 3D scenes as a combined task, but they used 

separate modules for feature extraction and context modelling [20,21,22]. Song et al.[23] 
pioneered in applying deep learning to semantic scene completion. They proposed a 3D 

convolutional network that leverages dilated convolutions [24] as well as skip connections [25]. 

Also, this work has been extended by adding a second input stream which contains the 2D 
semantic labels from RGB images [26,27], the authors proposed a coarse-to-fine 3D fully 

convolutional network for processing 3D scenes with arbitrary spatial extents and capturing 

both local details and the global structure of the scenes [28]. 
 

3. RGBD BASED SEMANTIC SCENE COMPLETION WITH GANS 
 

Inspired by the successful application of GANs in other domains, we introduce a novel model to 

perform semantic scene completion using GANs. 

 
 

Figure 1. Proposed network architecture. 



120                                    Computer Science & Information Technology (CS & IT) 

3.1. Network Architecture 
 
From the RGB-D image to the 3D volume, our architecture is a concatenation of an encoder Edep 

with 2D convolutional operators that convert the input depth image into a lower dimensional 

latent feature ldep; and, an encoder Ergb with 2D convolutional operators that convert the input 

colour image into a lower dimensional latent feature lrgb ; a feature fusion module Ffusion that 

convert the latent feature ldep  and  lrgb into a fusion feature lfusion ;a generator G with 3D 

deconvolutional kernels that takes lfusion to build the semantic reconstruction. This architecture is 

illustrated in Figure. 1. 

 

3.2. Encoder for depth image 
 
The encoder Edep  compresses the depth image into a feature in the latent space. Its architecture 

is a concatenated network that sequentially combines 2D convolutional layers and max-pooling 

layers. The operators for the paired convolutional and pooling layers are 2D convolutional 

kernels with, respectively, the size of 3 * 3 and stride of 1 * 1 and the size of 2 * 2 with stride of 
2 * 2. Each of these paired layers is processed by a leaky ReLU activation function. Therefore, 

the output of every ReLU activation is a multi-channel 2D image. After six convolutions 

operations, the result is an 80-channel 5 * 3 image. The output of the encoder represents the 
latent feature ldep of the semantic reconstruction architecture.  

 

3.3. Encoder for colour image 
 

The encoder Ergb is first processed by a 2D-CNN for semantic segmentation. The network is an 

adaptation of the Resnet101 architecture for semantic segmentation. While all but one pooling 
layer are omitted, dilated convolutions are used to keep the output resolution high while 

simultaneously increasing the receptive field. The output is down sampled by a factor of 4 with 

respect to the input. The output is then upsampled using bilinear interpolation. The 2D-CNN 
predicts the softmax probabilities for every class and pixel. The output of the encoder represents 

the latent feature lrgb of the semantic reconstruction architecture. 

 

3.4. Feature fusion module 
 
We propose a novel feature fusion strategy which can fully use the multi-modal features. We 

employ multi-modal CNN feature fusion while preserving the lower computational cost. In 

specific, different levels of features are extracted through Ergb and Edep, and then these features 

are merged together by element-wise add. The reason for using element-wise add rather than 
other operations is because it can fuse the features neatly with insignificant computation costs. 

 

3.5. Generator 
 

With the goal of regressing the semantic reconstruction, the generator G unwraps the latent 
feature to a higher dimensional voxel data. We assemble the generator with 3D deconvolutional 

layers with the size of 3 * 3 * 3 and stride of 2 * 2 * 2 which are processed by the ReLU 

function as activation. After four deconvolutional layers, the output of the generator is the 
voxel-wise classification y. By doing this, y is presented in the shape of 80  *  48  *  80  *  K,  
with K object classes. 
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3.6. Discriminator 
 
The discriminator network consists of several convolutional blocks. Each block comprises a 

convolution layer with a 3D kernel, a normalization layer, and a leaky ReLU activation layer. 

The output of the last convolutional layer with the size of 5 * 3 * 5 * 16 is reshaped to a vector 
of 1200 dimensions. After that, it is processed by three fully-connected layers with output sizes 

of 256, 128 and 1, respectively. Hence, the final logit is a binary indicator to determine whether 

the predicted volumetric data is generated or sampled from the ground truth data. 

 

4. OPTIMIZATION 
 
In this method we propose to use a hybrid loss function that is a weighted sum of two terms. 

The first term is a multi-class cross-entropy loss that is used for the generator to predict the right 

class label at each voxel location independently. We use g(x) to denote the class probability map 
over the C classes for the volume H * W * D, which is produced by the generator network. The 

second loss term is based on the output of the discriminator network. This loss term is large if 

the discriminator can differentiate between the predictions of the generator network and the 

ground truth label maps. We use d(x, y) ∈  [0, 1] to represent the probability with which the 
discriminator network predicts that y is the ground truth label map of x, as opposed to being a 

label map produced by the generator network g(·). Given a dataset of N training images xn and a 

corresponding 3D ground truth volume yn, we define the loss as: 
 

 

 (1) 

 
 

where θg and θd denote the parameters of the generator and discriminator network, respectively. 

The multi-class cross-entropy loss for prediction y is given by: 
 

 

(2) 
 

which equals the negative log-likelihood of the target ground truth volume y in a one-hot 

encoding representation. 

 
Similarly, the binary cross-entropy loss is denoted as: 

 

(3) 
 

 

We then minimize the loss according to the parameters θg of the generator network, while 
maximizing it with respect to the parameters θd of the discriminator network. 

 

5. EXPERIMENTS 
 

We implement our network architecture in PyTorch and use a batch size of 4. For our generator 
network, we use a SGD optimizer with weight decay of 0.0005 and learning rate of 0.01. For the 

discriminator network, we use an Adam optimizer with a learning rate of 0.0001.  

 
We separate our evaluation results mainly in two parts: Semantic scene completion (SSC) and 

scene completion (SC). While scene completion only considers whether a voxel is occupied or 

empty, semantic scene completion also evaluates whether an occupied voxel is given the correct 
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semantic label. We measure the precision, recall, and Jaccard index (IoU) for scene completion 

and the average (avg.) of the IoU across all categories for semantic scene completion. 
 

5.1. Evaluation on SUNCG 
 

SUNCG is a dataset of 3D scenes which contains pairs of depth image and its corresponding 

volumetric scene where all objects in the scene are semantically annotated. We implemented the 

10-fold validation on the pairs for the 111,697 different scenes. 
 

Table 1 shows the quantitative results of the SUNCG data set. We mainly compare our 

framework with the benchmark method (SSCNet) and its derivative methods. It can be seen that 
the 3D scene constructed by the SSCGAN network has a higher IoU, which is 78.5 \%; for the 

semantic scene reconstruction task, SSCGAN shows a better generation effect on the objects in 

the scene, especially for chairs, Smaller objects such as beds, sofas and furniture. The final 

average value (avg.) of IoU increased from 46.4 \% to 64.3 \%. 

 

5.2. Evaluation on NYU 

 

NYU dataset which is also an indoor scene dataset. It contains both the depth images captured 

by Kinect and the 3D models. This includes the volumetric 3D data with the annotated object 
labels for every voxels in 1,449 scenes. The semantic annotations for the volumetric data in this 

dataset consist of 33 objects in 7 categories. 

 
Table 2 shows the quantitative results of the NYU dataset. Although for 3D scene 

reconstruction tasks, the improvement brought by the SSCGAN network is not very obvious. 

However, for semantic segmentation tasks, the introduction of generative adversarial networks 

and RGB image streams enhances understanding of the details in the scene. The average IoU 
(avg.) Increased from 30.5 \% to 33.0 \%. 

 
Table 1.  Results on the SUNCG dataset. 

 
Table 2.  Results on the NYU dataset. 
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Figure 2. Qualitative Results 

 
Figure 2. Qualitative Results. From left to right: Input RGB-D image, ground truth, results 

obtained by our approach, and results obtained by SSCNet . The scene completion results of our 

method are richer in details (marked with red dashed lines in the figure), and less prone to 

errors. 

 

6. CONCLUSION 
 

We presented a novel GAN architecture to perform 3D semantic scene completion base on an 

RGB-D image. The results show that the RGBD-GAN improves the network performance on 
both test sets. In comparison to the baseline, our models yield a significant improvement on 
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NYU v2 dataset. On SUNCG our models outperform the baseline by a large margin. If we 

compare the results qualitatively, the proposed model produces significantly more realistic 
appearing scenes than the baseline. 
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