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ABSTRACT 
 
In this paper, we propose a privacy-preserving pattern recognition scheme that well supports 

image com- pression. The proposed scheme is based on secure sparse coding using a random 

unitary transform. It offers the following two prominent features: 1) It is capable of pattern 

recognition in the encrypted image domain. Even if data leaks, privacy can be maintained 

because data remains encrypted. 2) It realizes Encryption-then-Compression (EtC) systems, 

where image encryption is conducted prior to compression. The pattern recognition can be 

carried out in the compressed signal domain using a few sparse coefficients. Based on the 

pattern recognition result, it can compress the selected images with high quality by estimat- ing 

sufficient number of sparse coefficients. We use the INRIA dataset to demonstrate its 

performance in detecting humans. The proposal is shown to realize human detection with 

encrypted images and efficiently compress the images selected in the image recognition stage. 
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1. INTRODUCTION 
 

With the increase in threats and criminal activity, security is seen as a major public concern. 

Image/video surveillance is one approach to addressing this issue. Many image/video surveillance 

systems are now widely deployed in many public spaces such as airports, banks, shopping streets, 
public streets, etc., and they are recording huge amounts of image/video every day. Fortunately, 

edge/cloud computing offers an efficient way of handling and analyzing the huge amounts of 

image/video data. However, edge/cloud computing poses some serious issues for end users, such 
as unauthorized use, data leaks, and privacy failures due to the unreliability of providers and 

accidents [1]. 
 

Many studies have examined the processing of encrypted data; most proposals use homomorphic 
encryption (HE) and secure multiparty computation (MPC) [2]. Even though service providers 

cannot directly access the native content of the encrypted signals, they can still apply HE and 

MPC. In particular, fully homomorphic encryption (FHE) allows arbitrary computation on en- 
crypted data [3]. However, these methods impose high communication costs, high computation 

complexity or large cipher text size, so further advances are needed for attractive applications 

such as big data analysis and advanced image/video processing. We take the random unitary 

transform approach as we focus on secure image processing [4]. Random unitary transform based 
encryp- tion methods have lower communication costs, lower computation complexity or small 

cipher text size. We continue to study secure sparse coding for pattern recognition [5]-[8], 
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Encryption- then-Compression (EtC) systems [9]-[11]. Orthogonal Matching Pursuit (OMP), a 
sparse coding algorithm, is executed in the encrypted signal domain. 
 

Early work on sparse coding was based on the efficient coding hypothesis, which states that the 

goal of visual coding is to faithfully reproduce the visual input while minimizing the neural effort 
[12]. It effectively represents observed signals as the linear combination of a small number of 

atoms. Sparse dictionary learning has been successfully applied to various image/video and audio 

processing applications [13]-[16]. The effectiveness of sparse coding has been reported for 

pattern recognition [15], image compression [16]. For example, the experiments of Ref. [16] 
show that rate-distortion based sparse coding outperforms JPEG and JPEG2000 by up to 6+ dB 

and 2+ dB, respectively. 
 

In this paper, we propose a privacy-preserving pattern recognition scheme that extends previ- 
ously proposed EtC methods [9]-[11]. The secure pattern recognition methods and EtC systems 

mentioned above were proposed separately. This current proposal offers not only image pattern 

recognition but also image compression. The integrated system is realized by performing pattern 
recognition in the secure compressed domain. 1) It is capable of efficient pattern recognition in 

the encrypted image domain. Even if data leaks, privacy is maintained because the data remains 

encrypted. 2) It works as an EtC system. Pattern recognition and image compression can be 
carried out seamlessly in the same compressed signal domain. This means that the proposed se- 

cure OMP algorithm chooses the atoms sequentially and then calculates the sparse coefficients. 

Pattern recognition employs the few sparse coefficients. Based on the pattern recognition result, 

additional atoms are chosen and used to compress the selected images. Finally, we employ the 
INRIA person dataset to evaluate the human detection performance of the proposed method [17]. 

Detecting humans in images is essential for not only image/video surveillance but also many 

applications such as automatic driver assistance, etc. 
 

The organization of this paper is as follows. In Sec. 2, we explain related work. Section 3 

describes sparse coding for image modeling. In Sec. 4, we propose secure sparse coding for 

secure sparse coding for pattern recognition with image compression. Section 5 shows simulation 
results. Conclusions and future work are given in Sec. 5. 

 

2. RELATED WORK 
 

In this section, we review the conventional secure pattern recognition methods and Encryption- 
then-Compression (EtC) systems. 

 

2.1. Secure Pattern Recognition 
 

We have proposed secure sparse coding for pattern recognition [5]-[8]. Feeding the encrypted im- 

ages into the secure OMP computation yields the sparse coefficients used for pattern recognition. 
We verified that by adopting the random unitary transform, the pattern recognition performance is 

not degraded, which proves that the proposed framework operates securely with no performance 

degradation. Furthermore, compared with deep-learning based methods such as SPCANet [18], 
the sparse coding based method has several prominent advantages such as 1) low computational 

complexity and less data needed for training, 2) transparent machine learning: the algorithm is 

interpretable as the optimization problem is written in closed form. Refs. [6][7] detail the experi- 

ments and results. 
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2.2. Encryption-then-Compression (EtC) Systems 
 

Encryption-then-Compression (EtC) systems [9]-[11] [19]-[21] have been proposed to securely 

transmit and compress images through an untrusted channel provider; the traditional technique is 
to use Compression-then-Encryption (CtE) systems. EtC systems allow us to close non-encrypted 
 

 
 

Figure 1: Sparse coding for image patches 

 

images to SNS providers, because encrypted images can be directly compressed even when the 

images are multiply recompressed by SNS providers. Well-known EtC systems are block 

scrambling-based encryption schemes that are compatible with international standards, e.g. JPEG, 
JPEG2000, etc [19]-[21]. While the sparse coding based EtC systems [9]-[11] are not compatible 

with international compression standards, they do provide high coding performance because they 

form dictionaries that fit the observed signals. 
 

3. SPARSE CODING FOR IMAGE MODELING 
 

In this section, we overview sparse coding for image modeling which is the basis of secure 

pattern recognition and EtC systems. 
 

3.1. Sparse Coding for Image Patches 

 

 
 

 

If n < K and D is a full-rank matrix, an infinite number of solutions to the representation problem 

are available. The solution with the fewest number of nonzero coefficients is certainly an 

appealing representation. This sparsest representation is the solution given by 
 

 
 

3.2. Selection of Dictionary Atoms 
 

Dictionary atoms are typically estimated by a ”pursuit algorithm” that finds the following 
approximate solution: 
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We assume dictionary D is fixed. Well-known pursuit algorithms include Orthogonal Matching 

Pursuit (OMP) [22]. OMP is a greedy, step-wise regression algorithm. At each stage, OMP 

selects the dictionary atom having the maximal projection onto the residual signal. After each 
selection, the representation coefficients w.r.t. the atoms selected so far are found via least-

squares search. 
 

 

3.3. Dictionary Learning 
 

 
 

K-SVD is an iterative method that uses singular value decomposition; it alternates between sparse 

Coding based on the current dictionary and the process of updating the dictionary atoms to better 

Fit the data. 
 

4. SECURE SPARSE CODING FOR PATTERN RECOGNITION WITH IMAGE 

COMPRESSION 
 

In this section, we propose a privacy-preserving pattern recognition system that offers image 

compression as an integrated component. The integrated system is realized by performing pattern 

recognition in the secure compressed domain. 
 

4.1. Secure Computation Architecture 
 

 



Computer Science & Information Technology (CS & IT)                                5 

 

4.2. Random Unitary Transform 
 

 
 

 
 

(a) Training: generating encrypted dictionary 
 

 
 

(b) Running: pattern recognition with image compression 
 

Figure 2: Architecture of privacy-preserving pattern recognition with secure OMP computation. 
 

 
 

where [·]∗ and I mean the Hermitian transpose operation and the identity matrix, respectively. 

In addition to unitarity, Qp must have randomness for generating the encrypted signal. 

GramSchmidt orthogonalization is a typical method for generating Qp. Furthermore, the 

encrypted vector has the following properties. 
 

· Property 1: Conservation of Euclidean distances. 
 

                                       
· Property 2: Norm isometry 
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· Property 3: Conservation of inner products. 

 

                                                  
 
 

 

 
 

4.3. Secure OMP Computation 
 

 
 

Main Iteration: 
 

Increment k by 1 and perform the following steps: 
 

· Sweep: Compute the errors 

                                               
· Update Support: Find the minimizer 
 

                                       
· Update Provisional Solution: compute 
 

                                            
· Update Residual: compute 
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· Stopping Rule: 

 

 
 

Figure 3: Feature extraction and classification. 

 

4.4. Feature Extraction and Classification 
 

 
 

where ω is a weight parameter and b is a bias. SVM also has a technique called the kernel trick, 
which is a function that takes a low dimensional input space and transforms it into a higher 

dimensional space. This can be used for non-linear classification. For the pattern recognition task, 

classification is performed using a linear SVM. The SVM is trained using task data from training 
subjects. 
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4.5. Quality Control for Image Compression 
 

 
 

5. EXPERIMENTAL RESULTS 
 

We carried out experiments on detecting humans in images from the INRIA person dataset [17]. 

Here we assume that we compress only those that include human(s) captured by surveillance 
systems. 
 

 
 

Figure 4: A trained dictionary and corresponding encrypted dictionary for human images. 
 

 
 

Figure 5: A sample of original and encrypted human images. 
 

 
 

Figure 6: A sample of original and encrypted non-human images. 
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5.1. INRIA Person Dataset and Parameters 
 

The INRIA person dataset is one of the most popular and widely used pedestrian detection 

benchmark datasets. The INRIA person dataset contains images of various sizes with and without 
humans. We evaluated the performance of the proposed method by challenging it with 480 × 640 

pixels human and non-human images. The parameters settings are as follows: 

 

1) Designing K-SVD: We applied K-SVD and trained a dictionary of size 64 × 256. The 
training data consisted of a set of image patches of size 8 × 8 pixels, randomly taken from 

20 human images. 

2) Creating the random unitary transform: We generated a 64 × 64 random unitary 
transform by the Gram-Schmidt orthogonalization method. 

3) Designing and running the SVM: block size B=20 for local pooling of the sparse 

coefficients. For the human detection task, two-class classification is performed using a 
linear SVM. In the training step, the SVM is trained using 100 images (50 human images 

and 50 non-human images). 

 

In the evaluation, we used 10-fold cross-validation. 100 images were partitioned into 10 
subsamples (a single sub-sample contains 5 human and 5 non-human images). Of the10 sub-

samples, a single sub-sample is retained as the validation data for testing, and the remaining 9 

subsamples 
 

Table 1: Detection Rate (DR) [%] of the proposed method. 
 

 
 

Table 2: Detection Rate (DR) [%] of the non-encrypted method. 
 

 
 

are used as training data. The cross-validation process is then repeated 10 times, with each of 
the 10 subsamples used exactly once as the validation data. The 10 results were then averaged to 

produce a single estimate. 

 

5.2. Results 
 

The trained dictionary and corresponding encrypted dictionary are shown in Fig. 4. Figures 5 and 
6 show the original and corresponding encrypted images for a sample of human and non-human 

images, respectively. Feeding the encrypted dictionary and the encrypted images into the secure 

OMP computation yielded the sparse coefficients xˆ
i for each image patch yi. 
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Detection rate of the proposed privacy-preserving pattern recognition method is shown in Table 
1. We evaluated two cases: the number of atoms L = 1 and L = 5. Detection rate is calculated by 
 

                       
 

Table 1 shows that the proposed method achieves a detection rate of around 80 [%]. Note that 

the results were obtained from encrypted images. Setting the number of atoms at L = 1 or L = 5 
yielded almost the same performance. For comparison, we evaluated a pattern recognition method 

with the input being the non-encrypted version of OMP. Detection rate of the non-encrypted 

version is shown in Table 2. The 10-fold cross-validation used the same training and testing 
datasets for non-encrypted version of OMP and the secure OMP. The results show that the 

proposal has exactly the same detection performance as the non-encrypted version of the pattern 

recognition method. 
 

Figure 7 plots coding efficiency (number of atoms vs. decoded image quality PSNR [dB]) for the 

selected human images. We controlled the image quality of the human images at each patch by 

setting number of atoms L = {1, 2, 3, 4, 5}. This figure shows that proposed method increases 

decoded image quality by adding the atoms sequentially. Note that there is no need to decompress 
and decrypt images when running the secure OMP algorithm. 

 

6. CONCLUSIONS AND FUTURE WORK 
 
In this paper, we proposed privacy-preserving pattern recognition with image compression. The 

pattern recognition can be carried out in the compressed signal domain. It can efficiently 

compress the images selected by the pattern recognition stage. We confirmed its performance by 

 

 
 

Figure 7: Coding efficiency (Number of atoms L vs. decoded image quality). 

 

detecting humans in the INRIA dataset. In terms of estimation accuracy for pattern recognition, 

these experiments are merely the first step. Further study is required to enhance the proposal’s 
performance. 
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