
TPM Based Design for Enhanced Trust in SaaS Services

Mustapha Hedabou 1,2 , Ali Azougaghe 3 , Ahmed Bentajer 4

1 School of Computer and Communication Sciences

University Mohammed VI Polytechnic, Benguerir. Morocco

2Dept. Computer Science. ENSA de Sa�

University Cadi Ayyad, Marrakch. Morocco

3 ENSIAS Mohammed V University in Rabat, Morocco

4 ENSA School of Tetouan

Abdelmalek Essaadi University, Morocco

Abstract. On the past decade, Trusted Platform Modules (TPM) have be-
come a valuable tool for providing a high level of trust on locally executing
software. Indeed, in addition to its availability on most commodity com-
puters, TPM are totally free of cost unlike other available Hardware-Based
devices while they o�er the same level of security. Enhancing trust in SaaS
services regarding the security and the privacy of the hosted SaaS applica-
tion services can turn out to be a pertinent application scope of TMP. In
this paper we present a design for a trusted SaaS model that gives cloud
users more con�dence into SaaS services by leveraging TPM functionalities
combined with a trusted source code certifying authority facility. In our de-
sign, the cloud computing provider hosting the SaaS services acts as a root
of trust by providing �nal cloud users insurance on the integrity of the SaaS
application service running on its platform. A new mechanism of multisi-
gnature is developed for computing a join signature of SaaS service software
by the trusted authority and TPM. A prototype implementation of the pro-
posed design shows that the integrity of SaaS application service before and
after it was launched on a cloud provider platform is guaranteed at low cost.

Keywords. Cloud computing, SaaS services, TPM, trust, Code source cer-
ti�cation, Mutlisignature schemes.

1 Introduction

Cloud computing services demand is booming because they can reduce the cost and
complexity of owning and managing computers and networks. Customers have no in-
vestment in information technology infrastructure, purchase hardware, or buy software
licences because these charges are covered by cloud providers. On other hand, they can

David C. Wyld et al. (Eds): ITCSE, NLCA, ICAIT, CAIML, ICDIPV, CRYPIS, WiMo - 2020
pp. 217-226, 2020. CS & IT - CSCP 2020 DOI: 10.5121/csit.2020.100520

http://airccse.org/cscp.html
http://airccse.org/csit/V10N05.html
https://doi.org/10.5121/csit.2020.100520

bene�t from rapid return on investment, rapid deployment, and customization. Moreo-
ver, specialized cloud providers in a particular area (such as e-mail) can bring advanced
services that a single company can not provide. Cloud computing is often considered
e�cient because it allows organizations to devote their resources only to innovation and
product development.

Nowadays, cloud services are widely used by businesses. More than 3 millions businesses
have adopted Google Apps, Googles's cloud e-mail, calendar and collaboration solutions
for businesses. This rate is expanding at 3000 users a month [19].

Despite its potential bene�ts, many chef executives and IT manager are not willing to
lost the control of their data by o�oading it to cloud computing platforms. Their main
concerns are about the con�dentiality and privacy of their data. Their apprehension is
amply justi�ed because cloud provider employees can either accidentally or intentionally
tamper with the hosted data. This violation can take place without the knowledge of
the data's owner.

Many e�orts have been done by cloud services providers in order to Strengthen the
trust of users by reducing the threat of the insider attacks. For example, they protect
and restrict access to the hardware facilities, adopt strict accountability and auditing
procedures, and reducing the number of sta� who have access to critical components
of the infrastructure [16]. Nevertheless, cloud providers employees with administrator
privileges can still have access to cloud users data and tamper with it.

To establish more con�dence in their services, cloud providers have de�ned the spe-
ci�cation for the widely implemented Trusted Platform Module (TPM) [18, 11]. This
approach has been used by Santos et al. [16] to design a trusted cloud computing plat-
form based on TPM attestation chains. In [10], the authors have proposed Terra, a
trusted platform based on a virtual machine. Terra has the ability to prevent insider
abusers from tampering with the users data. With the capability to provide a remote
attestation capability, Terra enable a cloud users to determine upfront whether the host
can securely run the computation on their data.

Another approach based on a trusted trusted party acting as a root of trust, that at-
testes cloud hosted services to their clients, was proposed in [6]. Cloud provider which
acts as trusted party, responsible runs programs upon request on behalf users, and is-
sues digital certi�cates of program's identity (e.g., a code hash) for use by other entities
that interact with the running program instance. Unlike the other approach, this model
does not use the TPM for issuing the remote attestations.

This paper proposes a new trusted SaaS platform that aims to addresses the trust
concerns unique to the SaaS model. Our model allows to reinforce the con�dence of
the cloud users in both cloud providers and services providers. For this purpose, the
source code of the SaaS application service must be certi�ed by a trusted code certifying

Computer Science & Information Technology (CS & IT)218

authority in order to prevent the cloud provider to tamper with the application service.
By using a new multisignature mechanism, the cloud provider trough the TPM, certi�es
also the source code. This will prevent the missuse of service application when it was
running in the cloud platform.

2 Background

The SaaS model is based on the distribured application architecture. It includes com-
ponents to facilitate and improve the business model. Unlike the traditional software
vendor that is only concerned with application functionalities, the SaaS provider is also
responsible for operating and managing the environment that supports all their cloud
users. This is done by adding more distriburion tiers to support the need of services
requests to be routed among more than physical operating environment.

SaaS services are located in high layers, which means in the software level, o�er a com-
plete online applications that can be used by cloud users without any development.
SaaS enables cloud users to utilise an application on a pay-as-you-go basis without need
to install nor to update the application. Maintenance an upgrade are carried out by the
service provider as a part of service. The application can be accessed trough web brow-
ser or thin client over internet. Early examples of SaaS can be traced back to Hotmail,
the e-mail service owned by Microsoft.

The location of the SaaS model in the higher layers increases the di�culty of guaran-
teeing the security of hosted data because the cloud and services providers have the full
control over the software and operating environment that manipulate the cloud users
data. Thus, the cloud users data may succumb to insiders attacks from two sides. Cloud
provider employees with root privileges can execute any attacks. On other hand, sy-
sadmins of the service provider can launche a malicious or faulty applications services
in order to misappropriate cloud users data or to conduct additional harmful functions
without the user approval. Consequently, the security of the SaaS must be strengthened
more than any of other available delivery models.

In addition to the standard security practices shared with other application delivery
models, including �rewalls, IPS, IDS, .., SaaS displays more security defenses related
to identity management, data storage and data transmission [15]. However, the deploy-
ment of all theses countermeasures does not prevent the insiders attacks. To strength
the trust of users on their services, cloud providers have proposed hardware and software
approaches to enable the construction of trusted platforms. In particular, the Trusted
Computing Group (TCG) introduced a standard for the design of the trusted platform
module (TPM) [18] chip that is now endowed with commodity hardware.

Computer Science & Information Technology (CS & IT) 219

2.1 Trusted Plaform Module (TPM)

The TPM is a security speci�cation de�ned by the TCG. It is almost installed on the
motherboard of a computer or laptop, and communicates with the rest of the system
using a hardware bus through well de�ned commands. The TPM provides cryptogra-
phic operations such encryption, decryption and signing as well as random number
generation. It also provides space for the storage of small amount of information such
as cryptographic keys. Since it was implemented carefully in the hardware, the TPM is
resistant to software attacks [9]. Many researches [2, 10, 17, 16] have proposed to use
the features of TPM chips for reinforcing trust in cloud computing platforms.

Each TPM is associated with a number of signing keys. The endorsement private key
(EK) identi�es the TPM and thus, the physical host. The EK stands for the validity of
TPM [18]. The respective manufacturers sign the corresponding public key to guarantee
the correctness of the chip and validity of the key. Related to the EK are Attestation
Identity Keys (AIKs). An AIK is created by the TPM and linked to the local platform
through a certi�cate for that AIK. This certi�cate is created and signed by a certi�cate
authority (CA) [9]. In particular, a privacy CA allows a platform to present di�erent
AIKs to di�erent remote parties, so that it is impossible for these parties to determine
that the AIKs are coming from the same platform. In our model, the used AIK key
represents the pulic key of the TPM with regard to multisignature schemes.

The TPM Attestation consists of several steps of cryptographic authentication by which
the speci�cation for each layer of the platform is checked from the hardware up to the
operating system and application code. At a high level, the TPM attests the source
code of service application by signing its hash with an attestation identity key (AIK).
This will be done by following the trust chain TPM → BIOS → BootLoader → OS
→ Application [13]. Direct Anonymous Attestation (DDA) [5] can be used to protect
the privacy of the TPM in such a way that a user will able to verify the validity of
attestation without linking it with the platform that contains the TPM.

2.2 Multignature schemes

Multisignature schemes [12, 14] are designated to enable a group of signers to produce
a compact, joint signature on a common message. Any other user can verify the au-
thenticity of a given message based only on the multisignature and all signers public
keys. Consider entities 1, · · · , N each having a public key and corresponding secret key.
A multisignature (MS) scheme allows, at any time, any subset L ∈ 1, · · · , n of users
to engage interactively a protocol that outputs is a joint signature on a given message
m. Veri�cation can be done by any user given just L,m, the computed multisignature
σ , and the public keys of all signers in L. Multisignatures can be useful for contract
signing, co-signing, or distribution of a certi�cate authority.

Computer Science & Information Technology (CS & IT)
220

Earlier implementations of a multisignature σ on a message m is obtained by setting
(σi : i ∈ L) where σi is is signature on the message m. This multisignature is however
large, in particular of size proportional to the number |L| of signers. Moreover, Earlier
multisignature schemes require a set up process between all the signers which make their
use impraticable especially for devices with small ressources such as PDAs, cell phones
and TPM chips. Research e�orts have lead to recent multisignature schemes [3, 4] that
require nothing more than that each signer has a certi�ed public key. Furthermore, the
these multisignature schemes have become as e�cient as others signature schemes in
both signing and veri�cation process.

In 2003, a non interactive multisignature scheme based on the signature of Boneh, Lynn
and Shacham [8] was proposed by Boldyreva [7]. Let G be a Di�e-Hellman group of
prime order p and let g be a generator of G. Let H be a description of a random mem-
ber of the family of hash functions and {P = P1, · · · , Pn} be the group of players. Any
player Pj ∈ P with a secret key sKj = xj , that wishes to participate in signing takes
M , computes and broadcasts σj ← H(M)xj . Let L = {P1, · · · , Pl} be a subgroup of
players participating to the signing process. Let J = {1, · · · , l} denotes the indices of
involved players. The leader, which can be any player, collects the signature of each
player and computes σ =

∏
j∈J(σj) and outputs T = (M,L, σ).

The veri�er takes T = (M,L, σ) and the list of public keys of the players involved in
signing L = {pK1, · · · , pKl} where pKi = gsKi for each i ∈ L. The veri�er computes
pKl =

∏
j∈J(pKj) =

∏
j∈J(g

sKj) and outputs VDDH(g, pKl, H(M), σ). We recall that
VDDH(g, u, v, h, σ) outputs valid if log(u)g = log(h)v and false otherwise.

3 Proposed trusted SaaS design

In a SaaS model, the service provider launches the application service as an instance
hosted on a physical platform owned by a cloud provider. cloud users gain access to the
service application through an API supplied by the cloud provider. The TPM facilities
are used to provide cloud users with evidence of well de�ned security properties of the
platform that hosts the application service. This only security practice deployed in the
cloud platform does not provide cloud users with any evidence about authenticity of
the application service running in the platform which can lead to lack of trust in SaaS
services.

The proposed trusted SaaS design aims to mitigate trust issue on SaaS sevices by en-
suring the integrity of a SaaS service application before and after it wa running on
a cloud provider's platform. For this purpose, the service provider requests a trusted
authority in order to certify the source code of the service application, Prior to deli-
ver it to the cloud provider. The cloud provider certi�es also the source code of the
application service trough the TPM technology before to launch it. The signatures of

Computer Science & Information Technology (CS & IT) 221

the trusted certifying authority and the cloud provider are sealed to each other via the
multisignature schemes to produce a compact, joint signature on the source code of the
application service .

By signing a source code of an application service, a trusted authority certi�es the Au-
thenticity and integrity of the source code. In some ways, the trusted authority binds
the proprieties veri�ed by the application to the signature of its source code. In our
trusted SaaS model, the service provider requests a trusted certifying authority to sign
the source code of its service application before to host it in a cloud computing platform.
Digital signatures contain proof of content integrity so that the source code cannot be
altered which gives users a serious base to determine the trustworthy in the service
application and its behavior. Once this step achieved, the service provider forwards the
service application and certi�cate issued by the trusted authority to the cloud provider
for attesting its code source by using the TPM facilities.

3.1 Multisignature scheme using TPM

Even if TPM 2.0 products and systems have important security advantages over TPM
1.0, including elliptic curves digital signature ECDSA, it still not support signature
based on decisional and computational Di�e-Hellman problems. Therefore, the multi
signature scheme prposed by Boldyreva [7] can not be implemented directly by TPM.
In this paper, we propose to use Di�e-Hellman oracle process introduced by Acar et al.
[1] to modify Boldyreva's scheme to meet the RSA-based signature requirements of the
TPM.

In [1], the authors use TPMv2 API commands with Schnorr signature in order to de-
�ne a function fx : G → g such that fx(h) = hx, where x is the TPM Di�e-Hellman
private key. By exploiting the Di�e-Hellman oracle process, we can compute H(M)x

for a message M by applying the function fx to H(M).

In our design only two players are involved in multisignature process, namely the cer-
tifying code trusted authority and the TPM. Let P1 denotes the trusted authority
and P2 the TPM. By using the same notations as in section 2.2, let sK1 = x1 and
pK1 = gx1 the couple of private and public keys of trusted authority P1. The trusted
authority computes the signature σ1 ← H(M)x1 of a message M and make it avai-
lable to other players. A TPM with a private key sK2 = x2 compute the signature M
σ2 ← H(M)x2 by applying the Di�e-Hellman oracle process to H(M). The TPM si-
gnature is broadcasted to other players. The leader collects the signature of each player,
computes σ =

∏
j∈{1,2}(σj) and outputs T = (M,L, σ). In our design, the dealer is the

SaaS service application provider.

To verify the validity of the multisignature T = (M,L, σ), the �nal cloud user takes
T = (M,L, σ) and public keys of the trusted authority and the TPM (pK1 = gx1 ,

Computer Science & Information Technology (CS & IT)222

pK2 = gx2), computes pK = pK1 × pK2 = gx1+x2 and outputs VDDH(g, pK,H(M), σ).

3.2 Prototype implementation

In this section we describe the prototype implementation of the proposed trusted SaaS
platform. We describe the protocols and commands used for certifying the source code
of the SaaS application service by the cloud provider and the trusted authority. The
private and public keys of the trusted authority and TPM are a simple keypair of an
asymmetric cryptographic scheme, namely Di�e-Hellman keys. Figure 1 depicts the
architecture of the proposed design

Service Provider

Trusted authorityCloud provider

 User

TPM

BIOS

Boot Loader

OS

Application

1

5

4

3

2

Figure 1 � Architecture of the proposed trusted SaaS platform

In our implementation, we used an auto-signed code source certi�cate through Openssl.
Other more trusted authorities that support Di�e-Hellman based signature, such as
Certum, can be leveraged for issuing Code Signing Certi�cate. In order to compute the
TPM signature, we have issued the TPMv2 API command TPM CreatePrimary for
generating the private/public key (x2, g

x2) of TPM. The call of TPM Commit with

Computer Science & Information Technology (CS & IT) 223

input h(M) where M is the formated code source of the service application outputs
W = H(M)w for a random r ∈ Z and the command TPM Sign with an arbitrary
input c outputs r = cx + w. We derived the signature of the TPM by computing
(H(M/W))1/c = H(M)x1 wrapped in a TPMU−SIGNATURE structure. In order
to compute the multisignature issued by the trusted authority and the TPM, we have
extracted the relevant bits from the �le.bin that contains the TPM Signature.

3.3 Security study

The code source certi�cation of the application service by the a trusted authority and
the cloud provider addresses the speci�c need to prevent the misuse of the applica-
tion before and after it was launched. The use of multisignature schemas establishes
a mechanism of double protection since it prevents attackers from service and cloud
providers to act jointly or separately in order to misrepresent the behavior of the appli-
cation . The attestation provided by the trusted authority ensures the integrity of the
application when it was under the monitoring of the cloud provider. After launching the
application, its control is under the service provider but the cloud provider still control
the server platform and the launch procedure. Thus, the cloud provider can be respon-
sible for guaranteing the application's integrity after it was launched by using the TPM
certi�cation. In various TPM-based platform, such as Intel's Trusted Technologies [6],
the proposed functionalities have been extended to post-launch checks. This makes the
task of the cloud provider more a�ordable.

Trust in a cloud provider is mainly based on its reputation, therefore it has no interest
to corrupt the behavior of the service instance it hosts. It can strength assurances of
trustworthiness to its cloud users by issuing attestations of its own software stack based
on a hardware root of trust. The cloud provider is also responsible for granting the pri-
vileges access the admin interface to the service provider. Thus, it can limit the control
of the service provider on the application after it was launched to only the legitimate
operations (launch, stop, ...). For all these reasons, the cloud provider itself can be seen
as a trusted platform that run a well tested software stack and o�ers hosting platform
for multi tenants users. This means that the cloud provider in our model can serve as a
guarantor for preventing the service provider from tampering with application service
after it was launched even if it was still under its control.

The mere fact that the cloud provider acts as a root of trust in our model does not mean
that it is completely trusted. since it can still tamper with application service before
running it. This issue was addressed by incorporating a trusted certifying source code
authority that ensures the application's integrity when it was under the control of the
cloud provider. This process allows to prevent any attempt for subverting the instance
before it was hosted in the cloud platform.

Computer Science & Information Technology (CS & IT)224

4 conclusion and Future Work

In this paper we have proposed a new trusted SaaS model that mitigates the trust issues
in SaaS delivering model by reinforcing the cloud users con�dence in SaaS application
services. In our model, the source code of the SaaS service application is certi�ed by
a trusted authority and the cloud provider via TPM by using a new multisignature
mechanism that we have developed for this purpose. The proposed SaaS model gives the
cloud users the ability to cheek the integrity of the SaaS service application before and
after it was running in a cloud platform. In addition, we have implemented a prototype
of the proposed design in a local environment. In the future, we plane to implement an
instance of our design for deployment in real cloud computing environments.

Références

[1] T. Acar L. Nguyen and G. Zaverucha. A TPM Di�e-Hellman Oracle. Cryp-
tology ePrint Archive : Report 2013/667, 2013.

[2] S. Berger, R. Caceres, K. A. Goldman, R. Perez, R. Sailer, and L. van

Doorn. vTPM : virtualizing the trusted platform module. In Proc. of USENIX-SS'06,
Berkeley, CA, USA, 2006.

[3] M. Bellare, G. Neven. New multi-signatures and a general forking lemma. in
CCS06, 2006.

[4] M. Bellare, G. Neven. Identity-based multi-signatures from RSA. In CT-RSA,
2007.

[5] E. Brickell, J. Camenisch, L. Chen. Direct Anonymous Attestation. In ACM
Conference on Computer and Communications Security, pp. 132-145, 2004.

[6] A. Brown, J. S. Chase . Trusted Platform-as-a-Service : A Foundation for Trust-

worthy Cloud-Hosted Applications. In : Proc. of CCSW. pp. 15-20 (2011).

[7] A. Boldyreva Threshold Signatures, Multisignatures and Blind Signatures Based

on the Gap-Di�e-Hellman-Group Signature Scheme. in International Workshop on
Theory and Practice in Public Key Cryptography (PKC) 2003 Proceedings, LNCS
Vol. 2567, pp. 31-46.

[8] D. Boneh, B. Lynn and H. Shacham signatures from the Weil pairing. In Asia-
crypt 01, 2001.

[9] Common Criteria.Trusted Computing Group (TCG) Personal Computer (PC) Spe-
ci�c Trusted Building Block (TBB) Protection Pro�le and TCG PC Speci�c TBB
With Maintenance Protection Pro�le, July 2004.

[10] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra :

A Virtual Machine-Based Platform for Trusted Computing. In Proc. of SOSP 03,
2003.

[11] M. Hedabou. Cryptography for Addressing Cloud Computing Security, Privacy,

and Trust Issues. In Computer and Cyber Security : Principles, Algorithm, Applica-
tions, and Perspectives, CRC Press, 2018.

Computer Science & Information Technology (CS & IT) 225

[12] K. Itakura and K. Nakamura,. A public-key cryptosystem suitable for digital

multisignatures. In NEC Res. Development 71 (1983), pp. 1-8.

[13] C. Nie. Dynamic root of trust in trusted computing. In TKK T1105290 Seminar
on Network Security, 2007.

[14] T. Okamoto. A digital multisignature scheme using bijective public-key crypto-

systems. Commun. ACM Trans. Computer Systems 6, 8 (1988), 432-441.

[15] SaaS Security and privacy. http ://www.progress.com/en-
gb/docs/whitepapers/public/SaaS/SaaS-Security.pdf.

[16] N. Santos, K. P. Gummadi, and R. Rodrigues. Towards trusted cloud com-

puting. In Proceedings of the Workshop on Hot Topics in Cloud Computing, Hot-
Cloud'09. USENIX Association, 2009.

[17] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S. Berger, J. L.
Griffin, and L. v. Doorn. Building a MAC-Based Security Architecture for the

Xen Open-Source Hypervisor. In Proc. of ACSAC'05, Washington, DC, USA, 2005.

[18] Trusted platform module. http ://www.trustedcomputinggroup.org/developers/trusted
platformmodule.

[19] Ron Zalkind. Protecting Your Data In Google Docs Compliance In The Cloud.

http ://www.cloudlock.com/pdf/Protecting-Your-Data-In-Google-Docs.pdf.

Computer Science & Information Technology (CS & IT)226

