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Abstract. Electroencephalogram (EEG) records electrical activity at different locations in the
brain. It is used to identify abnormalities and support the diagnoses of different disease condi-
tions. The accessibility of low-cost EEG devices has seen the analysis of this data become more
common in other research domains. In this work, we assess the performance of using Approximate
entropy, Sample entropy, and Reyni entropy as features in the classification of fatigue from EEG
data captured by a MUSE 2 headset. We test 5 classifiers: Naive Bayes, Radial Basis Function
Network, Support Vector Machine, K-Nearest Neighbor, and Best First Decision Tree. We achieved
the highest accuracy of 77.5% using the Support Vector Machine classifier and present possible
enhancements to improve this.

Keywords: EEG, Electroencephalogram, Approximate entropy, Sample entropy, Reyni entropy,
Fatigue detection, Automatic classification, MUSE 2

1 Introduction

Fatigue has become a prominent issue in our society and more people are starting
to suffer from ‘burnout’. It is defined as a physiological state of reduced mental
or physical capability [1]. When a person experiences a fatigue condition and is
operating at a reduced capability, this can lead to accidents and mistakes which
can have very real consequences. This is apparent in fatigue-related traffic accidents,
where research has shown that 24 hours of prolonged wakefulness has similar adverse
effects on cognitive performance to a blood alcohol level of 100 mg per 100 ml of
blood [2]. This exceeds the legal limit in British Columbia, Canada by 25%.

Hospitals are known to be stressful and demanding work environments. Staff
often work long shifts, which can sometimes be back-to-back. The effects of re-
duced cognitive and physical performance in such a workplace, can have serious
consequences for patient health, especially as workers experiencing constant acute
fatigue will likely exhibit more residual fatigue over time.

Yet with all of the adverse effects, fatigue is not monitored, diagnosed, or treated
in the same way as other health risks such as obesity or diabetes. Part of the
reason for this could be determining and monitoring it is not straightforward. For
diabetics, test strips provide a fast and convenient way to measure blood sugar
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levels, allowing for effective management. For patients experiencing obesity, there
are numerous ways of measurement, and well researched practices for weight loss.

For fatigue, there is no simple device that one can go out and buy, and no
straightforward method that can be used at home to help manage it. In order for
such a device to be effective, it would be critical that it not be invasive, be able
to accurately detect fatigue levels, track trends, and perhaps be adaptable for a
treatment plan.

This work looks at addressing the detection component. The first step is to cre-
ate a computerized and automated process that can consume EEG data and provide
a binary classification of whether the condition is fatigued or normal. If successful,
this methodology may be adaptable to determine not only the current condition,
but also the level of fatigue accumulation. A reduction in cognitive performance
would likely alter the electrical activity in the brain, making EEG signals ideal for
this analysis. In addition, non-clinical devices such as the MUSE 2 headset used to
collect the data used in this work, are becoming more common and cost-effective
to acquire.

The approach taken adapts a method used in [3] to determine focal and non
focal EEG signals for identification of epileptic disease conditions using entropies.

This paper is organized as follows: Section 2 provides references to related work
that were consulted, Section 3 provides a detailed description of the data used,
a brief overview of the entropies used as features, as well as some information
about the classifiers used in the training process. Section 4 presents the results
that were obtained through this process. Section 5 provides a discussion on the
performance, as well as possibilities for improving the classification process. Finally,
the conclusion is given in Section 6.

2 Related Work

To determine an effective approach in detection of fatigue in EEG signals, a number
of works aimed at producing features from EEG signals and classifying them were
consulted. In [3], three entropy features, Approximate entropy, Sample entropy,
and Reyni entropy, were extracted from the Bern Barcelona EEG dataset, and 5
classifiers were trained using a subset of the input data to detect focal and non-
focal EEG nodes to detect underlying epileptic conditions. The performance of the
classifiers was then tested with novel data and determined to be over 90%, with the
best performance of 98% being for a Non-Nested Generalized Exemplars (NNGE)
classifier. The dataset used in [3] is described in detail in [4]. Srinivasan et al. have
also proposed using Approximate entropy, but in conjunction with artificial neural
networks to classify epileptic conditions in EEG data [5]. Other methods using
neural networks [6] as well as signal decomposition techniques [7] have also been
used in epilepsy detection.
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Further examples of detecting epileptic conditions in EEG are also available.
In [8], Acharya et al. perform analysis on EEG data using Approximate entropy,
Sample entropy, and Phase entropies (S1 and S2) as features. Additional classifiers
are used in this work, with the highest performance in accuracy of 98.1% being
attributed to the Fuzzy Sugeno Classifier. Research has also been conducted on
quantifying depth of anesthesia [9] as well as coma [10] and unresponsive [11] states,
using a combination of EEG data and extracted entropy features.

In the domain of sleep stage classification, Rodŕıguez-Sotelo et al. [12] show
that unsupervised learning techniques to automatically classify sleep stages using
Shannon entropy, Approximate entropy, Sample entropy, and Multiscale entropy
(in addition to a number of features that draw from the complexity of a signal)
work well. A comparison of classification accuracy on the features showed that
Approximate and Sample entropy performed at 74% and 73% respectively.

Driver fatigue detection and correction is also a common application of fatigue
detection in EEG data. Huang et al. [13] go a step beyond the detection of fatigue in
simulated driving conditions, and at the onset of detected fatigue, provide a warn-
ing signal to the driver. This has the effect of improved behavioural performance
following the signal, but a reduction in efficacy is also shown with repeated signals.
To detect the onset of fatigue, the authors analyze the EEG power (alpha band)
and a high value exceeding a pre-determined threshold signifies that the driver is
approaching a fatigue state. The threshold was determined experimentally through
baseline measurements for each participant.

Application of wireless headsets for detecting and providing real-time feedback
on high-speed train driver fatigue are shown in [14]. The method presented uses a
Fast Fourier Transform (FFT) feature extraction combined with a Support Vector
Machine (SVM) classifier to feed the detection model. Alerts are then presented if
the onset of fatigue is detected. Classification accuracy is shown to achieve between
77% and 96% accuracy. FFT features are widely used in the literature to extract
features from signals for classification models.

Much of the literature showcases examples of classification using different tech-
niques/features but with the use of medical grade EEG devices. In this work, we
evaluate the use of entropy as features in automatically detecting a fatigue condi-
tion using a device that has limited nodes and configuration options, but is more
suitable for general at-home use. Our goal is to evaluate whether reliable enough
performance can be achieved, that make the MUSE 2 headset a viable fatigue
tracking tool.

3 Proposed Approach

This section describes the dataset used for this work, the features extracted, as well
as a brief overview of the classifiers used.
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3.1 Data

The data used for this work was obtained from Krigolson Labs at the University
of Victoria [15]. The data was captured using a MUSE 2 headset from participants
before and after working a 12 hour shift in a hospital environment. The data col-
lection was performed in 2018 for 15 participants, and in 2019 for 33 participants
(2 observations are missing in the dataset for the fatigue condition for this year).
EEG recordings taken with the headset before the shift are ground truth labeled
as ‘normal’ condition, and recordings after the shift was complete were classified as
‘fatigue’ condition. The recordings all vary in length from 41,988 - 129,132 samples.
At the sampling frequency of 256 Hz, these recordings fall between approximately
2.7 - 8.4 minutes of signal data. The MUSE 2 headset has 4 electrodes and, since
these are fixed in the device with no options for different device sizes, the locations
of readings are likely non-standard [16].

The raw data was contained in .csv format and an example signal for normal
condition is shown in Figure 1. Preprocessing was required before data was appro-
priately usable, including header corrections, fixing junk values, format transfor-
mations, and mean removal. No noise removal or filtering techniques were applied
to the data.

An additional step of data preparation was necessary before the feature ex-
traction process. This involved converting each 4 channel signal into 4 individual
signals. In related literature, readings from the electrode of an EEG device are often
taken as individual signals for classification purposes. An example of this is shown
in [3]. Segmentation was also applied to the data to transform the signals into a
fixed length of 10,240 samples, or 40 seconds at the sampling frequency. Each signal
that was divided into the subsets also had the same ground truth label applied. The
effect of this preparation step greatly increased the dataset size to 1,244 signals of
fatigue condition and 1,360 signals of normal condition.

3.2 Feature Extraction

In machine learning, pattern recognition, and image processing tasks, feature ex-
traction is a key component to training a system well so that it is able to recognize
and classify novel data accurately. Features are mathematical descriptors of the
data that lend well to the application of classifier networks that use statistical
techniques, or in the more complex case, deep learning.

Some simpler features that can be extracted from signals include mean, standard
deviation, minimums, and maximums. The frequency information of a signal can
also be used to extract quality features. It is often the case that raw data values are
simply too large to process. For example, in the case of each signal used here there
would be 10,240 features, so through careful feature extraction and selection the
number of features describing our data is reduced down to just three. In this work,
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Fig. 1. Normal condition raw signal data

we will use three entropies as features of the data: Approximate entropy, Sample
entropy, and Reyni entropy. Entropy have been used extensively in the literature
to perform classification of signals in various domains.

3.3 Approximate entropy

Approximate entropy is a statistical technique that is used to measure the regularity
of a signal. Low Approximate entropy is a reflection of the persistent, repetitive,
and predictive nature of a series with apparent patterns that repeat themselves
[17]. The value of using this entropy is that it can distinguish between series that
have the same moment statistics (mean, standard deviation, etc.) but may be more
different in random probability. A completely random and unpredictable signal will
produce a high value of Approximate entropy, i.e. it is chaotic. A more regular
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and predictable series will yield a low value. To calculate this value, an integer m
defines the length of the window size and r specifies the comparison filtering level.
The algorithm to determine the approximate entropy for a given time series is as
follows:

Step 1: Form a time series of data with length N:

u(t) = u(1), u(2), u(3), ..., u(N) (1)

Step 2: From the time series, form a sequence of vectors each of length m:

~x(1), ~x(2), ~x(3), ..., ~x(N −m+ 1)

where

~x(1) =


u(1)
u(2)
...

u(m)

 , ~x(2) =


u(2)
u(3)
...

u(m+ 1)

 , ~x(3) =


u(3)
u(4)
...

u(m+ 2)

 ...
and generally

~x(i) =


u(i)

u(i+ 1)
...

u(i+m− 1)

 (2)

Step 3: Calculate the maximum distance between a vector ~x(i) and all other ~x(j)
in the set to create a distance value vector:

~d(i) =


max(dist| ~x(i), ~x(1)|)
max(dist| ~(x(i), ~x(2)|)

...

max(dist| ~x(i), ~(x(N −m+ 1)|)

 (3)

Step 4: Calculate the number of values in each distance vector that are within the
filtering criterion m to get a ratio C for each:

Cmi (r) =

∑
( ~d(i) ≤ m)

N −m+ 1
(4)

Step 5: Define φ as the negative logarithmic sum of ratio values:

φm(r) =

∑N−m+1
i=1 logCmi (r)

N −m+ 1
(5)
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Step 6: Increase m by 1 and repeat the process to get:

φm+1(r)

Step 7: Approximate entropy (AE) is defined as the difference of these two:

AE(m, r) = φm(r)− φm+1(r) (6)

Typically, the initial value of m is taken as 2 or 3, and the value of r greatly
depends on the data and application domain. In this work, we set m equal to 2,
and the filtering parameter r equal to 3. A full detailed description and analysis of
Approximate entropy is provided in [17].

There are two important implications to using Approximate entropy: the first
is that relative consistency is not guaranteed as a different filtering parameter of
r may yield entirely different results. The second is that this entropy calculation
depends heavily on the length of the series. Approximate entropy is also biased
towards suggesting more regularity than there actually is in the signal.

3.4 Sample entropy

Sample entropy is a modification of Approximate entropy that addresses the issues
mentioned above with Approximate entropy. This statistical technique excludes self-
counting, maintains relative consistency and is mostly independent of the length of
the series [17].

The Sample entropy algorithm requires as input a window size m and filtering
parameter r. It is calculated through the following steps:

Step 1: Form a time series of data with length N:

u(t) = u(1), u(2), u(3), ..., u(N) (7)

Step 2: Form two sets of vectors as follows:

~xm(i) =

 u(1) ... u(N −m)
... ... ...

u(m) ... u(N −m+ 1)


~xm(j) =

 u(1) ... u(N −m+ 1)
... ... ...

u(m) ... u(N)


Step 3: Calculate the number of vector pairs at a distance less than r as:

B = [
N−m∑

1

count(dist| ~xm(i), ~xm(j)|) < r]− 1 (8)
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Step 4: Increase m by 1, and repeat the process to get:

A = [

N−m+1∑
1

count(dist| ~xm+1(i), ~xm+1(j)|) < r]− 1 (9)

Step 5: The sample entropy (SE) is then defined as:

SE(m, r) = − log
A

B
(10)

Both A and B represent probabilities that two sequences are similar. Detailed
analysis and comparison of Approximate and Sample entropy is provided in [17].

3.5 Reyni entropy

Reyni entropy (RE) is a generalization on a number of other entropies, specifically
the Hartley entropy, Shannon entropy, the collision entropy, and the min-entropy.
It is given by:

RE(α) = − α

1− α
∑

log pαk (11)

where
α ≥ 0, α 6= 0

With specific values of α, Reyni entropy simplifies to one of the above mentioned
types.

3.6 Classification

Once features have been extracted from the data, we use a subset to train 5 different
classifiers. This training process yields a parameter-based model for each that can
be used to predict values on novel data. The remaining unused data is then fed into
each of the classifiers, and the predicted output labels are matched to ground truth
labels to determine performance. A brief overview of the classifiers used is provided
in this section.

3.7 Naive Bayes (NB)

The Naive Bayes family of classifiers works by assuming that each of the input
features are independent variables: that is, that each input feature is not dependent
on any other feature. While this is generally a poor assumption to make since
features often have some relationship or dependence describing the problem, these
classifiers work surprisingly well in practice. The Bayes model works on conditional
probability, determining an outcome class based on some number of independent
variables (the input features) [18].
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3.8 Radial Basis Function Network (RBF)

A Radial Basis Function is a function whose value depends only on the distance
between the input and some fixed point. The RBF network is a simple single-layer
artificial neural network where the RBF is used as the activation function. As RBF’s
operate on distance approximation, the data was modified to represent the fatigue
and normal states as absolute distance values. Since the output of this network
produces a real-valued distance approximation, results of the classified test data
had to be converted back to labels.

3.9 K-Nearest Neighbour (KNN)

This classifier works on grouping incoming data points into the member group of
the nearest neighbour. The computation uses distance values to determine which
nearest neighbour to group to. Different types of distances can be used, but exper-
imentally we determined Euclidean distance to perform optimally.

3.10 Support Vector Machines (SVM)

Support Vector Machine classifiers work by attempting to draw an optimal hyper-
plane that separates clusters of data points belonging to the same member groups
(classification types). Support vectors are then drawn around the plane. The per-
formance of this classifier is highly dependent on if the drawn hyper-plane can
effectively separate points representing different classifications, and by the width
of the support vectors around this plane. A larger width means that the data is
effectively separable.

3.11 Best First Decision Tree (BFDT)

A decision tree is a set of conditional control statements where each node represents
a ”test” on an attribute. The branch from each node represents the outcome of the
node. The paths from root to leaf (end node) represent the classification rules used
in this classifier [19].

3.12 Performance Measures

Performance on novel test data for each of the classifiers is determined by 6 different
measures. These measures are calculated from Type I and II errors (false positive
(FP) and negative(FN)) as well as true positive (TP) and negative (TN) predicted
outcomes. Here, positive refers to the fatigue condition and negative refers to the
normal condition. The measures are:
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Accuracy (ACC):
TP + TN

TP + TN + FP + FN
(12)

Sensitivity (SEN):
TP

TP + FN
(13)

Specificity (SPF):
TN

TN + FP
(14)

Positive Predictive Value (PPV):

TP

TP + FP
(15)

Negative Predictive Value (NPV):

TN

TN + FN
(16)

Matthews Correlation Coefficient (MCC):

(TP ∗ TN)− (FN ∗ FP )√
(TP + FN)(TP + FP )

√
(TN + FN)(TN + FP )

(17)

4 Experimental Results

Calculations of Approximate, Sample, and Reyni entropy values were obtained
directly from the prepared 2,604 signals each of length 10,240 samples. Each of
resulting 3 x 1 feature vectors per signal had a corresponding ground truth label of
’Normal’ or ’Fatigue’ condition attached. This was the final state of the data before
the training process. To train the classifiers, the input data rows were randomized,
and separated into a training set comprising 80% of the data, and a test set which
had the remaining 20%.

Each of the classifiers was given the same set of randomly prepared training
data, and hyper-parameter optimization was used to determine the best performing
parameter settings. This process yielded a trained model for each classifier. Finally,
each of the classifiers was given the 3 x 1 feature vectors from the earlier prepared
test data, yielding predicted labels for each. These predicated labels were compared
to the ground truth values for that data to determine the level of performance.
Resulting performance of each classifier is shown in Table 1.
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Table 1
Results of classifiers in detecting ’Fatigue’ condition

Classifier ACC SEN SPF PPV NPV MCC

Naive Bayes 72.6 46 99.6 99.1 64.4 0.54
Radial Basis Network 70.1 76.7 64.4 64.8 76.4 0.41
Support Vector Machine 77.4 47.5 99.7 99.1 71.7 0.58
K-Nearest Neighbor 77.5 63 90.1 86.3 72.9 0.56
Best First Decision Tree 68.9 53.9 82.5 73.5 66.5 0.38

The results show that the classification accuracy is highest for the SVM and
KNN classifiers at about 77%. Values for the other measures are mixed, and show
that the classifiers are achieving lower than expected performance.

5 Discussion

In [3], the authors show that using these three entropies as features yields results
of over 90% for all of these classifiers in detecting focal and non-focal EEG. That
is, EEG channel readings where an underlying epileptic condition exists (focal)
and where it does not (non-focal). In theory, this method should apply well to
the analysis done here. There are likely a few issues preventing the classifiers from
performing better.

The data used for this work was of raw EEG data containing 4 channels. With-
out additional preprocessing, especially noise removal, it is likely that the entropy
algorithms were negatively affected. As shown in Figure 1, significant noise and
artefacts appear in the signal which may be removed or suppressed through the
application of signal processing techniques. The dataset used in [8] was obtained
from the Department of Epileptology at the University of Bonn and artefact free,
further providing evidence that EEG data cannot be used in its raw recorded format
effectively for feature extraction.

Table 2
Mean and variance of entropy features

Feature Fatigue Normal

Approximate Entropy 1.223±0.4823 1.079±0.5581
Sample Entropy 1.148±0.5184 0.951±0.5680
Reyni Entropy 10.85±6.477 13.68±5.669

A statistical analysis of mean and variance of the calculated features is shown
in Table 2. As is evident from this, while the mean value is different for each of
the conditions in each of the entropy values, the standard deviation is too large

Computer Science & Information Technology (CS & IT) 23



for an effective linearly separable solution. This is likely a major contributor to the
performance outcomes seen. When calculating the features, the parameters used
can also have significant impact on the outcome value. In the case of Approximate
and Sample entropy, while the dimensional parameter is usually kept the same,
the filtering parameters depend heavily on the application and signal type. It is
possible that the values used during calculations were not appropriate and may
require further research to determine.

Data quality issues are likely also present. The MUSE headset operates differ-
ently than clinical EEG devices. The headset has fixed contact locations, which may
not be ideal for getting optimal readings. The manner in which the headset was
worn by the participant could also have affected the recordings. In [16], the authors
show some of the challenges involved with data collection using a MUSE headset
which can extend to even the amount of hair a participant has affecting readings.
Participants themselves could have started the shift already fatigued at the time of
the normal condition recording. Different participants may have had varying lev-
els of residual fatigue affecting the observation. Research-grade EEG devices often
have many more electrodes available and can be manually adjusted to get optimal
readings. This is not the case with the MUSE headset. The utilization of the 4 EEG
channels differently could also lead to better results as the process of converting 4
channels to 4 signals required a significant assumption to be made: that electrical
activity in the brain should change everywhere under fatigue conditions. This could
be a false assumption, and it is possible that certain locations in the brain may be
better markers of fatigue than others.

Finally, it is possible that these entropy features are not well suited to detecting
fatigue condition from EEG signals. While entropies have been used in the literature
to detect various brain conditions such as epilepsy, adaptations may be required
for the problem of fatigue detection. Further research using other features such as
instantaneous frequency, spectral entropy, and wavelet transformations may yield
better results. In [12], power and complexity analysis techniques such as Fractal
Dimension actually show a better performance in unsupervised classification tasks.
These may also improve the performance of fatigue detection. With the remarkable
performance of deep learning networks, using a 2-dimensional spectrogram of the
signal in conjunction with a convolutional neural network may also yield better re-
sults. Techniques such as this have been performed on audio signals for applications
such as music classification [20].

6 Conclusion

Fatigue is becoming more common in society, and as we become more aware in the
impacts it has on our daily lives, we are also looking for better ways to manage
or reduce it. For non-invasive and easy to use devices that can be used at home,
effective detection and measurement of fatigue is critical. In this work, we used
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entropy features to train classifiers for detecting fatigue conditions in EEG signals
automatically. We achieved the highest performance of 77.5% accuracy using the
Support Vector Machine classifier. This performance can likely be improved through
better signal processing on the raw data to remove noise and artefacts, as well as
by tuning the entropy feature calculations using domain-specific parameters.

Further research on the work presented here may look at binary classification of
fatigue using different devices or by comparing the effectiveness of different features.
Deep learning techniques may also perform well. Following the development of a
binary classification model, the method may be adapted to determine levels of
fatigue, given individual baselines. More extensive data collection and individual
level baselines may also aid in determining the effect of fatigue on EEG data.
Greater accuracy can then be combined with inexpensive devices and connected
apps that help individuals monitor and understand their fatigue levels. This can
also have significant impacts on stressful work environments where long hours can
impact performance.
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