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ABSTRACT 
 
The aim of multi-focus image fusion is to integrate images with different objects in focus so that 

we obtained a single image with all objects in focus. In this paper, we present a novel multi-

focus image fusion method based on neighbour local variability (NLV). This method takes into 

consideration the information in the surrounding region of pixels. Indeed, at each pixel, the 

method exploits the local variability calculated from quadratic difference between the value of 

pixel and the value of all pixels that belong to its neighbourhood. It expresses the behaviour of 

pixel relative to all pixels belonging to its neighbourhood. The variability preserves edge 

feature because it detects the abrupt image intensity. The fusion of each pixel is performed by 

weighting each pixel by the exponential of the local variability. The precision of this fusion 

depends on the largenumberof the neighbourhood where the largenumber depends on the 

blurring characterized by the variance and its size of blurring filter. We constructed a model 
that gives the value of the large….. from the variance and the size of blurring filter. Comparing 

our method with other methods, it shows the best result. 
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1. INTRODUCTION 
 

Due to the limited depth-of-focus of optical lenses, it is often difficult to capture an image that 

contains all relevant objects in focus. Only the objects within the depth-of-field are in focus, 

while other objects are blurred. Multi-focus image fusion is developed to solve this problem. 
There are various approaches that have been performed in literature. These approaches can be 

divided into two types: the spatial domain method and the multi-scale fusion method. The spatial 

domain fusion method is performed directly on the source images. In spatial domain techniques, 
we directly deal with the image pixels. The pixel values are manipulated to achieve the desired 

result. The fusion methods such as averaging, Principal Component Analysis (PCA) [1], 

maximum selection rule, bilateral gradient-based methods [2] and Guided Image Filter (GIF)-
based method [3] and maximum selection rule fall under spatial domain approaches. The 

disadvantage of spatial domain approaches is that they produce spatial distortion in the fused 

image. Spatial distortion can be very well- handled by multi-scale approaches on image fusion. In 

multi-scale fusion methods, the fusion process is performed on the source images after 
decomposing them into multiple-scales. The discrete wavelet transform (DWT) [4]-[9], Laplacian 

pyramid image fusion [10]-[17], Discrete cosine transform with variance calculation (DCT+var) 

[18], saliency detection based method (SD)[19] are examples of image fusion techniques under 
transformdomain.  

http://airccse.org/cscp.html
http://airccse.org/csit/V10N12.html
https://doi.org/10.5121/csit.2020.101220
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In this paper, we propose pixel level multi-focus image fusion based on the neighbour local 
variability (NLV). This method takes into consideration the information of the surrounding 

region of pixels. Indeed, at each pixel, the method exploits the local variability calculated from 

quadratic difference between the value of pixel and the value of all pixels that belong to its 

neighbourhood. It expresses the behaviour of pixel relative to all pixels belonging to its 
neighbourhood. The variability preserves edge feature because it detects the abrupt image 

intensity. The fusion of each pixel is performed by weighting each pixel by the exponential of the 

local variability. The precision of this fusion is depending on the width of region of pixels 
considered in the neighbourhood. Firstly, we studied the optimal width of region for having the 

minimum error. Hence, we showed that the width of region depends on the blurring characterized 

by the variance and its size of blurring filter. We constructed a model that gives the value of the 
large from the variance and the size of the blurring filter. 

 

While comparing our method with other methods existed in literature (DWT and LP-DWT), it 

was shown that our method gave the best result by using Root Mean Square Error (RMSE). In 
this work, the experimental for fusion image and compare to other methods. 

 

This paper is organized as follows: The first section reveals the steps of the fusion process of the 
proposed method and a model giving the size of neighbourhood. In section 3, we studied the 

experimental resultsand compared our method to some recent methods. Section 4 gives 

conclusion of this work.  In section 5, we give mathematical details for showing a propriety of the 
local variability. 

 

2. THE PROPOSED METHOD 
 

Consider the fusion of two images, I1 and I2 that have respectively blurred parts B1 and B2. These 
images have the same size:N1 x N2. We study the case where B1 and B2 are disjoint.  The idea of 

the NLV fusion method consists of summing the pixel values of the two images weighted by 

local variability in each picture. This local variability at (x, y) is calculated from the exponential 
of average of the square difference between the value of the pixel (x, y) and the value of its 

neighbors. The NLV at   is defined as follows: 

 

𝑣𝑎,𝑘(𝑥, 𝑦) = √
1

𝑅
∑ ∑ |𝐼𝑘(𝑥, 𝑦) − 𝐼𝑘

′ (𝑥 + 𝑚, 𝑦 + 𝑛)|
2

𝑎

𝑛=−𝑎

𝑎

𝑚=−𝑎

   (1) 

 

where k is the index of  kth  source image (k = 1, 2), a is the size of neighborhood 
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In the annex 1,it is shown that this local variability is small enoughwherethe location is on 

theblurred area (B1 or B2).  

 

( , )x y
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In this paper, we develop a novel fusion method that consists of weighting each pixel of each 
image by exponential of neighbour local variability. This neighbour local variability  is calculated 

from the quadratic difference between the value of the pixel and the all pixel values of its 

neighbours.  The idea came from the fact that the variation of the value in blurred region is 

smaller than the variation of the value in focused region. We used the neighbour, with the size 
"a", of a pixel defined as follows:  

 

( , )x i y j 
 where 

, 1, , 1,i a a a a    
 and 

, 1, , 1,j a a a a    
. 

For example, the neighbor with the small size ("a" = 1) contains:
( 1, 1)x y 

, 
( 1, )x y

, 

( 1, 1)x y 
, 

( , 1)x y 
, 

( , 1)x y 
, 

( 1, 1)x y 
, 

( 1, )x y
, ( 1, 1)x y  . 

 

     

 

(x-1, y-1) (x-1,y) (x-1,y+1) 

 

 

(x,y-1) (x,y) (x,y+1) 

 

 

(x+1,y-1) (x+1,y) (x+1,y+1) 

 

     

      
Fig. 2. Pixel at (x,y) within its neighborhood, a = 1. 

 

Then, the steps of image fusion with size "a" are as follows: 

 
Suppose there are M original source images, I1, ..., IM, with different focus to be fused.  The 

images here have the same size(𝑁1x𝑁2). The general principle of making fusion rules are: 

 
Step 1:For each pixel of each image, we calculated the neighbor local variability (NLV) of every 

source image, va,k(x,y) defined in (1). 

 

Step 2: The fused image proposed, F is calculated in the following model: 
 

𝐹(𝑥, 𝑦) =
∑ exp(𝑣𝑎,𝑘(𝑥,𝑦))𝐼𝑘(𝑥,𝑦)

𝑀

𝑘=1

∑ exp(𝑣𝑎,𝑘(𝑥,𝑦))
𝑀

𝑖=1

(17) 

 

Obviously, this method depends on the size "a". First, we tried with a small size (a = 1). Hence, 
the NLV method is better than DWT method. To improve this method and to compare it with all 

other methods, we optimized the value of "a"for having the minimum Root Mean Square Error 

(RMSE), where RMSE is defined in section 4. For that, we showed that the value of "a" depends 

on the blurred area. 
 

The choice of the size of the neighborhood "a" used in NLV method depends on variance (v) and 

the size(s) of the blurring filter. Our problem is to have a model that gives the value of the "a" 
according to the "v" and "s"; we take a sample of 1000 images that we blurred using Gaussian 

filter with different values of v and s (v=1,2,3,...,35 and s=1,2,3,...,20). 
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After that, for each image we blurred with parameters "v" and "s", we applied our fusion method 
with different values of "a"("a=1,2,...,17")and determined the value of "a" that gives the 

minimum RMSE, denoted by 
 ,Ia v s

. Then, we took the mean of the
 ,Ia v s

for 1000 images, 

denoted
 ,a v s

, because the coefficient of variation is smaller than 0.1.  
 

To propose a model, firstly, we have studied the variation of "a" in according to variance "v" for 

each fixed size of blurring filter "s".  We noted that this variation is logarithmic.For example, 

"s=8" on Fig. 4.By using nonlinear regression, we obtained the model:  
 

a= 2.1096ln 2.8689v . 

 

 
 

Fig. 4. Graph between "a" and variance of blurring filter where "s"=8. 

 
In general, the model is:  

 

1 2( ) ln ( )a c s v c s    (18) 

 

where the 1c  and 2c  are functions that depend on "s". The graphs that describe 1c  and 2c , 

respectively, are revealed in  Fig. 5. and Fig. 6. 

 

 
 

Fig. 5. graph of 1( )c s Fig. 6. graph of 2 ( )c s . 

 

By giving a model of 1c  and a model of 2c  and introducing these models in (19), we get the 

general following model: 

 

 

 
2

log 2.6555513.0348761 75.062269
( , ) ln( ) 0.434 exp 0.5

1 29.0909139exp 0.5324955 1.225175 1.225175

s
a v s v

s s

          
       

   (19) 
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As "a" is integer, we have two choices of a. It is either the floor of  ,a v s , denoted by ( , )a v s  

or the ceiling of a(v,s) , denoted by ( , )a v s    where  min |x n n x     and

 max |x m m x     . Since the RMSE values of both "a" are very slightlydifferent, then 

we can choose any "a" of them. We use "a" = ( , )a v s    in the remaining part of this paper. 

 

We validated our model by applying it to 100 images (we generated 100 pairs multi-focus images 
with various values of variance and size of blurring filter) and the result is as good as it was 

expected. Thus, our method is better than DWT and LP-DWT methods. To use this NLV method, 

we must firstly estimate the variance and the size of blurring filter. For that,there exists some 
papers giving the methods to estimate variance of blurring filter and the blur detection as in [23]-

[27].We also proposed another method wherein we combined Laplacian pyramid method and 

NLV method. Indeed, we used Laplacian pyramid with NLV as a selection rule, denoted by LP-

NLV. 
 

3. EXPERIMENTAL RESULT 
 

The NLV method is performed on a datasets of images [26] using Matlab2013a. We blur these 
images using Gaussian filter with many values of variance and size. To lighten the reading of the 

paper, we presented only two examples with the size 256x256 (N1 = N2 = 256). The first, image 

'bird' Fig.1 and the second image 'bottle' Fig.2, all images consist of two images with different 

focus and one reference image.  
 

For comparison purposes, we performed fusion using methods: PCA method [1], Discrete 

Wavelet Transform (DWT) method [6], Laplacian Pyramid LP_PCA [15], LP_DWT [17] and 
Bilateral gradient (BG) [2]. 

 

 In order to compare these methods, we used the following four evaluation criteria frequently 
used: 

 

 Root Mean Square Error (RMSE)  

 
RMSE finds out the difference between the reference image R and the fused image F. It gives the 

information how the pixel values of fused image deviate from the reference image. RMSE 

between the reference image and the fused image is computed as: 
 

 
2

1 1

1
( , ) ( , )

c c

i j

RMSE R x y F x y
rc  

                                              (20) 

 

whereR is a reference image, F is a fused image,rx c is the size of the input image, and x, y 
represents to the pixel locations. A smaller value of RMSE shows a good fusion result. If the 

value of RMSE is 0 then it means the fused image is as exactly the same as the reference image. 

 

For two images that are presented in this paper and blurred with variance = 10 and size of 
blurring filter = 5, the model (20) gives the neighbour size "a" = 5 and "a" = 6. Here, we use "a" = 

6 because it results the smaller RMSE compared to "a" = 5 however the RMSE values of "a" = 5 

and "a" = 6 are very slightly different. 
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      Blurred image 1                             Blurred image 2 

  

 
 

Figure1. Fusion by proposed method NLV 

 

We have found that the NLV method better fusion compared to other methods, see Fig.1.  
 

            Table 1. Performance evaluation of image 'bird'  
 

  PCA DWT LP-
DWT 

LP-
PCA 

DCT+var Bilateral 
gradient 

GIF SD NLV LP-
NLV 

RMSE 6.9205 3.5678 1.5190 1.4681 2.6860 8.8378 2.2792 10.4547 0.5466 0.8431 

 

From the value of RMSE calculated for ten methods on Table 1, for image'bird': the smallest is 

NLV method, the second smallest is LP-NLV, the third is LP-PCA, as we can see on the Table 1. 
NLV method is the best method among the above methods and LP-NLV is better than LP-PCA 

and LP-DWT. 
 

 
 

Blurred image 1                            Blurred image 2       
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Figure2. Fusion by proposed method (NLV) 

 

We have found that the NLV method performs better compared to other methods, see Fig.2.  
To confirm our visually result, we calculated the evaluation metrics: RMSEsee Table 2. From the 

value of RMSE calculated for ten methods in Table 2, we can classify these methods from the 

smaller value of RMSE. The smallest value is NLV, the second smallest is LP-NLV, the third 

smallest is LP-PCA. 
 

Table 2. Performance evaluation of images of ‘the bottle' 

 
 

  
PCA DWT LP-

DWT 
LP-
PCA 

DCT+var Bilateral 
gradient 

GIF SD NLV LP-NLV 

RMSE 15.00

5 

5.384 2.528 2.485 2.642 20.380 3.6

81 

16.91

9 
0.902 1.584 

 

According to the evaluation measure RMSE, the Table 3 gives the mean and standard deviation 

of RMSE for the considered methods applied on 150 images.  

 
Table 3. Statistic parameters of the sample (150 images) 

 
Methods PC

A 

DWT LP_DW

T 

LP_PCA DCT_va

r 

BG NLV  LP_NLV 

Mean 8,71

3 

4,194 2,049 1,995 2,839 11,044 0,591 1,344 

Standard 

deviation 

3,86

6 

1,381 0,756 0,743 1,308 4,859 0,204 0,697 

Time of 

execution 

by image 

7s 5s 7s 7s 6s 6s 5s 7s 

 

The results show that the proposed method (NLV) has a smaller mean of the RMSE. The 

histograms of RMSE for 150 images by different methods (Figures 3, 4, 5, 6, 7, 8 and 9) show for 
almost all methods that the values of RMSE are almost symmetrically centred around the mean 

value. 
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Figure 3. Histogram of PCA method                         Figure 4. Histogram of LP_PCA method 

 

 
 

Figure 5. The Histogram of DWT method              Figure 6. Histogram of LP_DWT method 

 

 
 

Figure 7. Histogram of Bilateral gradient method    Figure 8. Histogram of NLV method 

 

 
 

Figure 9. Histogram of LP_NLV method 

 

To compare analytically the proposed method to other methods, we used the Analysis of variance 

(ANOVA) with dependent samples (dependence by image). The software R gives the following 

Anova table: 
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Table 4. Anova table with one factor: method 

 

Df      Sum Sq      Mean Sq    F value Pr(>F) 

Method       9       25467          2829.6      742 <2e-16 *** 

Residuals  1341     5114           3.8 

 

As Pr(>F) is smaller than 1% , in table 4., the methods are significantly different. We used 

thenthe Newman Keuls test to compare the methods two-by-two and made groups having 

significantly the same mean. The software R shows the results of the test as follows: 

 

Table 5. Test of Newman Keuls 

 

$groups 

RMSE              groups 

SD               12.6072900           a 

BG               11.0447767           b 

PCA             8.7139600             c 

DWT            4.1941660            d 

DCT_var       2.8395233           e 

GIF                2.5146353           e 

LP_DWT       2.0496413           f 

LP_PCA        1.9954953           f 

LP_NLV        1.3446913           g 

NLV               0.5921593h 
 

From table 5., we have the means of RMSE of methods which are significantly different except 

the methods DCT_var and GIF form the group “e” and the methods LP_DWT and LP_PCA form 

the group “f”. 
 

The proposed method NLV has a smaller mean and significantly different of the all methods. We 

conclude that the proposed method is better than other methods. 

 

4. CONCLUSION 
 

This paper presents the image fusion method based on neighbour local variability (NLV). The 

principal method of fusion is described in details. The result of the experiment shows that the 
NLV method gives a significant improvement result in both visual and quantitative image fusion 

comparing to other fusion methods which are respectively DWT and LP-DWT. Laplacian 

pyramid with NLV as a selection rule was also applied, LP-NLV. Based on the experiment result, 

LP-NLV is better than LP-DWT and DWT. 
 

The advantage of the proposed method lies in the fact that it takes into account the variability 

between each pixel and its neighbours. This gives a power to the coefficient of the pixel located 
in the focus part.This method can be extended to multimodal images used in particular in 

medicine (scanner, echography, X-ray, etc.) to give the presence of certain cancer cells seen in 

one image and not visible in another image. 
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The method proposed can be used inmany applications such as: 

 

1) Drone: it is a new technology in digital imaging, it hasopened up unlimited possibilities for 

enhancingphotography. Drone can capture images on the samescene that zooms in on 
different objects, and at variousaltitudes. It produces several images on the samescene but 

with different objects in-focus. 

 
2) For quality control of food industry: cameras areused to take pictures. Each camera targets 

one ofseveral objects to detect an anomaly. The objects are on atreadmill. To have a photo 

containing all the objectsclearly, we can use the proposed method of fusion whichgives 
more details. 

 

The perspectives of this work: 

 

 As many work on image fusion, implementing grayscale images, all proposedmethods in 
this paper are performed on the grayscale image.However, these proposed methods can be 

extendedto color images as color conveys significantinformation. 

 

 We are also encouraged to fuse more than twoimages by taking into account the local 
variabilityin each image (intra-variability) and variabilitybetween image (inter-variability). 

Inter-variability can detect the ’abnormal pixels’ amongthe images. 
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5. ANNEX 1 
 

Consider, without loss the generality that we have a focus pixel (x, y) in image I1 and blurred 
in image I2 as in Fig. 1. 

 

 
Fig. 1. Two multi-focus images, the yellow part is blurred area and the white part is clear (focus) area. 

 

The neighbor local variability of images I1 and I2, respectively is defined in (1) by: 
 

𝑣𝑎,1(𝑥, 𝑦)   =  exp (√
1

𝑅
𝑟1(𝑥, 𝑦))and 𝑣𝑎,2(𝑥, 𝑦)  =  exp (√

1

𝑅
𝑟2(𝑥, 𝑦)) where𝑟1(𝑥, 𝑦)and 𝑟2(𝑥, 𝑦) 

 
can be written as follows: 
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𝑟1(𝑥, 𝑦) = ∑ ∑ |𝐼1(𝑥, 𝑦) − 𝐼1(𝑥 + (𝑚 − 𝑎), 𝑦 + (𝑛 − 𝑎))|
2

2𝑎

𝑛=0

2𝑎

𝑚=0

                                    (2) 

 

𝑟2(𝑥, 𝑦) = ∑ ∑ |𝐼2(𝑥, 𝑦) − 𝐼2(𝑥 + (𝑚 − 𝑎), 𝑦 + (𝑛 − 𝑎))|
2

2𝑎

𝑛=0

2𝑎

𝑚=0

                                    (3) 

 

Let IR is the reference image of multi-focus images I1 and I2. Moreover, it is shown in [20] and 
[21] that the blurred image can be seen as the product convolution between the reference image 

and Gaussian filter: 

1 1

1

1

* ( , ),   ( , )
( , )

( , ),          ( , )

R

R

w I x y x y B
I x y

I x y x y B


 



2 2

2

2

* ( , ),   ( , )
( , )

( , ),          ( , )

R

R

w I x y x y B
I x y

I x y x y B


 

 ,               (4) 

 

where w1 and w2 are Gaussian filter defined by: 

 

𝑤1(𝑘, 𝑙) = 𝑤1(𝑘, 𝑙) =
exp (−

𝑘2+𝑙2

2𝜎1
2
)

∑ ∑ exp (−
𝑘2+𝑙2

2𝜎1
2
)

𝑠1

𝑙=−𝑠1

𝑠1

𝑘=−𝑠1

,  (k ,l) ∈ [−𝑠1, 𝑠1]2, 

 

𝑤2(𝑘, 𝑙) =
exp (−

𝑘2+𝑙2

2𝜎2
2
)

∑ ∑ exp (−
𝑘2+𝑙2

2𝜎2
2
)

𝑠2

𝑙=−𝑠2

𝑠2

𝑘=−𝑠2

, (𝑘, 𝑙) ∈ [−𝑠2, 𝑠2]2 

 

The product convolution is defined as follows: 

 
1 1

1 1

1 1* ( , ) ( , ) ( , ),
s s

R R

k s l s

w I x y w k l I x k y l
 

   
2 2

2 2

2 2* ( , ) ( , ) ( , ),
s s

R R

k s l s

w I x y w k l I x k y l
 

   
 

Put 

2 2
2

1

1 ( , )

0 0

( , ) ( , )
a a

m n

m n

r x y D x y
 


 and 

2 2
2

2

2 ( , )

0 0

( , ) ( , )
a a

m n

m n

r x y D x y
 


 (5) 

 

where 
    1

( , ) 1 1( , ) ( , ) ,m nD x y I x y I x m a y n a     
(6) 

 

    2

( , ) 2 2( , ) ( , ) ,m nD x y I x y I x m a y n a     
 (7) 

 

Proposition: 

 
The local variability on blurred part is smaller than the local variability on focused part. Let

2( , )x y B
 (the blurred part of I2) and 1( , )x y B

(focus par of  I1 ), then   2 1( , ) ( , )r x y r x y
. 

 

Proof:   

 
For that, we use Plancherel theorem: 
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∑ ∑ |𝐷(𝑚,𝑛)
1 (𝑥, 𝑦)|

2
2𝑎

𝑛=0

2𝑎

𝑚=0

=
1

(2𝑎+1)2 ∑ ∑ |𝐷̂(𝑛,𝑚)
1 (𝑥, 𝑦)|

2
2𝑎

𝑛=0

2𝑎

𝑚=0

(8) 

 

 

where 𝐷̂(𝑛,𝑚)
1 (𝑥, 𝑦)is Fourier transform of𝐷(𝑚,𝑛)

1 (𝑥, 𝑦). 

 

𝐷̂(𝑛,𝑚)
1 (𝑥, 𝑦) = 𝐹𝑇[𝐷(𝑚,𝑛)

1 (𝑥, 𝑦)]  = 𝐹𝑇[𝐼1(𝑥, 𝑦) − 𝐼1(𝑥 + (𝑚 − 𝑎), 𝑦 + (𝑛 − 𝑎))]
                  (9) 

 

As 2( , )x y B
 therefore 1( , )x y B

, from (4), equation (9) can be written as follows: 

 

𝐷̂(𝑛,𝑚)
1 (𝑥, 𝑦) = 𝐹𝑇[𝐼𝑅(𝑥, 𝑦) − 𝐼𝑅(𝑥 + (𝑚 − 𝑎), 𝑦 + (𝑛 − 𝑎))]                                                  (10) 

 

and                                      

2 2

2 2

2 2( , ) ( , )* ( , )
s s

R

k s l s

I x y w k l I x k y l
 

   
                                      (11) 

 

By using the definition of convolution, equation (11) can be written as: 

 

𝐼2(𝑥, 𝑦) = ∑ ∑ 𝑤2(𝑘, 𝑙)1[−𝑠2,𝑠2]2𝐼𝑅(𝑥 − 𝑘, 𝑦 − 𝑙)
∞

𝑙=−∞

∞

𝑘=−∞

(12) 

 

and  
 

  𝐼2(𝑥, 𝑦) = (𝑤21[−𝑠2,𝑠2]2) ∗ 𝐼𝑅(𝑥, 𝑦)(13) 

 

Where 
 

1[−𝑠2,𝑠2]2(𝑘, 𝑙) = {
1,             𝑖𝑓  (k, l) ∈ [−𝑠2 , 𝑠2]2

0,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

. 

The Fourier transform of 
2

( , ) ( , )m nD x y
is 

 

𝐷̂(𝑛,𝑚)
2 (𝑥, 𝑦) = 𝐹𝑇[𝑤21[𝑠2,𝑠2]2 ∗ 𝐼𝑅(𝑥, 𝑦) − 𝑤21[𝑠2,𝑠2]2 ∗ 𝐼𝑅(𝑥 + (𝑚 − 𝑎), 𝑦 + (𝑛 − 𝑎))] 

 

                      =  𝐹𝑇 [𝑤21[𝑠2,𝑠2]2 ∗ (𝐼𝑅(𝑥, 𝑦) − 𝐼𝑅(𝑥 + (𝑚 − 𝑎), 𝑦 + (𝑛 − 𝑎)))] 

 

= 𝐹𝑇[𝑤21[𝑠2,𝑠2]2]𝐹𝑇[𝐼𝑅(𝑥, 𝑦) − 𝐼𝑅(𝑥 + (𝑚 − 𝑎), 𝑦 + (𝑛 − 𝑎))]                                  (14) 

 
Substitute (10) into (14), we get 
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𝐷̂(𝑛,𝑚)
2 (𝑥, 𝑦) = 𝐹𝑇[𝑤21[𝑠2,𝑠2]2]𝐷̂(𝑝,𝑞)

1 (𝑥, 𝑦)

=  (∑ ∑ 𝑤2(𝑘, 𝑙)1[𝑠2,𝑠2]2

∞

𝑙=−∞

(𝑘, 𝑙)𝑒−𝑖2(𝑘𝑝+𝑙𝑞)

∞

𝑘=−∞

) 𝐷̂(𝑛,𝑚)
1 (𝑥, 𝑦)                   (15) 

 

Hence, from equation (15), we can obtain 

|𝐷̂(𝑛,𝑚)
2 (𝑥, 𝑦)| =

|

|
∑ ∑

𝑒
−(

𝑘2+𝑙2

2𝜎2
2)

∑ ∑ 𝑒
−(

𝑘′2+𝑙′2

2𝜎2
2 )

𝑠2

𝑙′=−𝑠2

𝑠2

𝑘′=−𝑠2

𝑒−𝑖2(𝑘𝑛+𝑙𝑚)

𝑠2

𝑙=−𝑠2

𝑠2

𝑘=−𝑠2

𝐷̂(𝑛,𝑚)
1 (𝑥, 𝑦)

|

|

= 

              ≤ ∑ ∑
|

|
𝑒

−(
𝑘2+𝑙2

2𝜎2
2)

∑ ∑ 𝑒
−(

𝑘′2+𝑙′2

2𝜎2
2 )

𝑠2

𝑙′=−𝑠2

𝑠2

𝑘′=−𝑠2

|

|
𝑠2

𝑙=−𝑠2

𝑠2

𝑘=−𝑠2

|𝐷̂(𝑛,𝑚)
1 (𝑥, 𝑦)| ≤ |𝐷̂(𝑛,𝑚)

1 (𝑥, 𝑦)|

                              

(16) 

 
On the other hand, from equation (5) and Plancherel-Parseval's theorem, we have 

 

 

𝑟2(𝑥, 𝑦) = ∑ ∑|𝐷(𝑚,𝑛)
2 (𝑥, 𝑦)|

2
2𝑎

𝑛=0

2𝑎

𝑚=0

=
1

(2𝑎 + 1)2
∑ ∑|𝐷̂(𝑛,𝑚)

2 (𝑥, 𝑦)|
2

2𝑎

𝑛=0

2𝑎

𝑚=0

 

 

From (16), we get 
 

𝑟2(𝑥, 𝑦) ≤
1

(2𝑎 + 1)2
∑ ∑|𝐷̂(𝑝,𝑞)

1 (𝑥, 𝑦)|
2

2𝑎

𝑛=0

2𝑎

𝑚=0

≤ ∑ ∑|𝐷̂(𝑚,𝑛)
1 (𝑥, 𝑦)|

2
2𝑎

𝑛=0

2𝑎

𝑚=0

𝑟2(𝑥, 𝑦) ≤ 𝑟1(𝑥, 𝑦)

 

 

This proves that the local variability in blurred part is smaller than local variability in focused 

part. 
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