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ABSTRACT 
 
In this paper, the stability analysis of quaternion-valued neural networks (QVNNs) with both 

leakage delay and additive time-varying delays is proposed. By employing the Lyapunov-

Krasovskii functional method and fully considering the relationship between time-varying 

delays and upper bounds of delays, some sufficient criteria are derived based on reciprocally 

convex method and several inequality techniques. The stability criteria are established in two 

forms: quaternion-valued linear matrix inequalities (QVLMIs) and complex-valued linear 

matrix inequalities (CVLMIs),in which CVLMIs can be directly resolved by the Yalmip toolbox 

in MATLAB. Finally, an illustrative example is presented to demonstrate the validity of the 
theoretical results. 
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1. INTRODUCTION 
 

In the past decades, real-valued neural networks (RVNNs) have been successfully appliedin 
secure communication, information processing, engineer optimization, automatic control 
engineering and other areas. Correspondingly, numerous meaningful results have been reported 

[1-6]. However, RVNNs have its own limitations, such as the detection of symmetry problem 
cannot be resolved by a real-valued neuron, while it can be well solved by a complex-valued 
neuron [7]. In addition, the problem involving with ultrasonic wave, electromagnetic processing, 
quantum wave can be also well resolved by the complex number. Therefore, the performance of 
complex-valued neural networks (CVNNs) is more preferable than that of RVNN sin practical 
application with complex signals, and CVNNs have captured plenty of attentions from different 
areas [8-9]. In the past few years, it has drawn considerable attention to the dynamics of 

complex-valued neural networks and there have been lots of significant results associated with 
such kind of topics, see [10-11] and the references cited therein. 
 
The quaternions are members of a noncommutative division algebra invented independently 
by William Rowan Hamilton in 1843. Some operation laws such as the commutativtiy of 
multiplication are not yet applicable for quaternions, which is quite different from the real or 
complex numbers. Owing to this difficulty, the research of quaternion had almost remained 
stagnant for a long period of time in the past. Recently, the resurgence of the study for quaternion 

systems is underway and an increasing spectrum of applications based on quaternions are found 
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in various fields, such as quantum mechanics, attitude control, computergraphics and signal 
processing [12-13]. It has been proven that neural networks along with quaternion possess better 
performances and wider applications than both RVNNs and CVNNs. Actually, the three-
dimensional and four-dimensional data can be expressed as an entirety, which is more authentic 

and reliable in modeling of practical application, and quaternion-valued neural networks 
(QVNNs) emerge at the right moment. Nowadays, increasing scholars are dedicated to 
investigating the dynamical behaviors of QVNNs. For instance, some sufficient criteria were 

proposed in the form of LMIs to guarantee the μ-stability of QVNNs with unbounded and non-

differentiable time-varying delays in [14] and [15], respectively. In [16], by employing matrix 
measure and Halanay inequality technique, the problem of global exponential stability for 
delayed QVNNs was addressed successfully. Chen and Song [17] concentrated on the robust  
stability issue for delayed QVNNs based on homeomorphism mapping theorem and inequality 
techniques. Furthermore, the stability issue for both continuous-time and discrete-time QVNNs 
was investigated in [18]. Besides, some algebraic conditions were established to guarantee the 

global dissipativity for delayed QVNNs [19]. 
 
Time delays are inevitable in neural system owing to the limited propagation velocity between 
different neurons. Dynamical behaviors of neural networks could become more complicated 
owing to the existence of time delays, and it may result in performance degradation, such as 
instability, oscillation, bifurcation and so forth. Usually, the time delay in the state is supposed to 
appear in a singular form. Nevertheless, Zhao et al. [20] demonstrated that signals transmissions 

may experience a few segments of networks in several practical situations and different 
conditions of network transmission probably result in successive delays with different properties. 
By applying the convex polyhedron method, a less conservative delay-dependent stability 
criterion was proposed in [21]. Tian and Zhong [22] conducted further investigation on this issue 
by constructing augmented Lyapunov-Krasovskii functional and employing the reciprocally 
convex method, which is initially proposed by Park et al. [23]. Liang et al. generalized the 
reciprocally convex method to the complex domain and investigated the state estimation problem 

for complex-valued neural networks with two additive time-varying delays [24]. To the best ofthe 
authors’ knowledge, up to now, few scholars have taken the stability problem of quaternion-
valued neural networks with additive time-varying delays into consideration. 
 
Enlightened by the aforementioned discussions, the aim of this paper is to conduct the stability 
analysis for quaternion-valued neural networks with both leakage delay and two additive time-
varying delays. The remainder of this paper is organized as follows. In Section 2, the model 
description, several necessary hypotheses and lemmas are given. In Section 3, some sufficient 

criteria for the global asymptotical stability of QVNNs are derived based on reciprocally convex 
method and several inequality techniques. In Section 4, an illustrative example is presented to 
validate the effectiveness of the obtained results. Finally, conclusions are drawn in Section 5. 
 

Notations: Let ℝ, ℂ and ℚ stand for the real field, the complex field and the skew field of 

quaternions, respectively. Let ℝ𝑚×𝑛, ℂ𝑚×𝑛 and ℚ𝑚×𝑛 separately denote  𝑚 × 𝑛 matrices with 

entries from ℝ, ℂ and ℚ. The notations 𝐴𝑇,𝐴̅ and 𝐴∗ represent the transpose, the conjugate and 
the conjugate transpose matrix of 𝐴, respectively. A is referred to as Hermitian if 𝐴 = 𝐴∗. The 

notation 𝑋 ≥ 𝑌(𝑋 > 𝑌) means that 𝑋 − 𝑌 is positive semidefinite (positive definite, respectively). 

Moreover, the notation ∗ denotes the conjugate transpose of an appropriate block in a Hermitian 

matrix, while the notation ∎ denotes the negative transpose of an appropriate block in a skew-
symmetric matrix. 
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2. PRELIMINARIES 
 

2.1. Quaternion Algebra 
 

The quaternion is an extension of the complex number, and a quaternion 𝑚 ∈ ℚ can be described 
in the following form: 

𝑚 = 𝑚0 + 𝑚1𝑖 + 𝑚2𝑗 + 𝑚3𝑘, 
 

where 𝑚0, 𝑚1, 𝑚2, 𝑚3 ∈ ℝ. The quaternion imaginary units 𝑖, 𝑗, 𝑘 obey the following rules: 
 

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1, 
 

𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑖𝑘 = −𝑘𝑖 = 𝑗, 𝑗𝑘 = −𝑘𝑗 = 𝑖. 
 
From which one can note that the quaternion multiplication is not commutative. 

We proceed to introduce some basic operations of quaternion algebra. For two quaternions 𝑚 =
𝑚0 + 𝑚1𝑖 + 𝑚2𝑗 + 𝑚3𝑘 and 𝑛 = 𝑛0 + 𝑛1𝑖 + 𝑛2𝑗 + 𝑛3𝑘, the sum and product of 𝑚and𝑛are 
defined as: 
 

𝑚 + 𝑛 = (𝑚0 + 𝑛0) + (𝑚1 + 𝑛1)𝑖 + (𝑚2 + 𝑛2)𝑗 + (𝑚3 + 𝑛3)𝑘, 
 
And 
 

𝑚𝑛 = (𝑚0𝑛0 − 𝑚1𝑛1 − 𝑚2𝑛2 − 𝑚3𝑛3) + (𝑚0𝑛1 + 𝑚1𝑛0 + 𝑚2𝑛3 − 𝑚3𝑛2)
+ (𝑚0𝑛2 + 𝑚2𝑛0 − 𝑚1𝑛3 + 𝑚3𝑛1)𝑗 + (𝑚0𝑛3 + 𝑚3𝑛0 + 𝑚1𝑛2 − 𝑚2𝑛1)𝑘. 

 

In addition, the conjugate transpose of 𝑚 is defined as 𝑚∗ = 𝑚0 − 𝑚1𝑖 − 𝑚2𝑗 − 𝑚3𝑘. The 

modulus of 𝑚is denoted by |𝑚| and denoted as  
 

|𝑚| = √𝑚𝑚∗ = √(𝑚0)2 + (𝑚1)2 + (𝑚2)2 + (𝑚3)2. 

 

2.2. Model Formulation and Basic Lemmas 
 

Consider the following quaternion-valued neural networks with both leakage delay and additive 
time-varying delays: 
 

𝑦̇(𝑡) = −𝐶𝑦(𝑡 − 𝛿) + 𝐴𝑔(𝑦(𝑡)) + 𝐵𝑔 (𝑦(𝑡 − 𝑑1(𝑡) − 𝑑2(𝑡))) + ℎ(𝑡),     (1) 

 

where 𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡))𝑇 ∈ ℚ𝑛 denotes the state vector, 𝐶 = 𝑑𝑖𝑎𝑔 {𝑐1, 𝑐2, … , 𝑐𝑛} ∈
ℝ𝑛×𝑛 with 𝑐𝑖 > 0 is the self-feedback connection weight matrix for 𝑖 ∈ {1,2, … , 𝑛}.𝐴, 𝐵 ∈
ℚ𝑛×𝑛 are the interconnection matrices which stand for the weight coefficients of the neurons. 

𝑔(𝑥(𝑡)) = (𝑔1(𝑦1(𝑡)), 𝑔2(𝑦2(𝑡)), … , 𝑔𝑛(𝑦𝑛(𝑡)))𝑇 ∈ ℚ𝑛 represents the neuron activation 

function at time 𝑡; ℎ(𝑡) ∈ ℚ𝑛 denotes the external input vector; 𝛿 is referred to as the leakage 
delay which satisfies 𝛿 ≥ 0; 𝑑1(𝑡)and 𝑑2(𝑡) represent the two delay components in the state. 
 

In order to simplify the model, we assume that𝑦∗ is an equilibrium point for (1). By applying the 

transformation 𝑥(𝑡) = 𝑦(𝑡) − 𝑦∗, system (1) is further converted to: 
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𝑥̇(𝑡) = −𝐶𝑥(𝑡 − 𝛿) + 𝐴𝑓(𝑥(𝑡)) + 𝐵𝑓 (𝑥(𝑡 − 𝑑1(𝑡) − 𝑑2(𝑡))),       (2) 

where  
 

𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡))𝑇,𝑓(𝑥(∙)) = (𝑓1(𝑥1(∙)), 𝑓2(𝑥2(∙)), … , 𝑓𝑛(𝑥𝑛(∙)))𝑇,𝑓𝑖(𝑥𝑖(∙)) =

𝑔𝑖(𝑥𝑖(∙) + 𝑦𝑖
∗) − 𝑔𝑖(𝑦𝑖

∗) (𝑖 = 1,2, … , 𝑛). 

 
Throughout this paper, several assumptions play a crucial role and thus are presents as: 
 

Assumption 1: 𝑑1(𝑡) and  𝑑2(𝑡)are continuous functions and satisfy 
 

0 ≤ 𝑑1(𝑡) ≤ 𝑑1,    0 ≤ 𝑑2(𝑡) ≤ 𝑑2, 

𝑑̇1(𝑡) ≤ 𝜇1,   𝑑̇2(𝑡) ≤ 𝜇2,  
 

where 𝑑𝑖and 𝜇𝑖  (𝑖 = 1,2)are positive constants. 
 

Assumption 2: For any 𝑗 ∈ {1,2, … , 𝑛}, there exists a positive constant 𝛾𝑗 such that 

 

|𝑓𝑗(𝑢1) − 𝑓𝑗(𝑢2)| ≤  𝛾𝑗|𝑢1 − 𝑢2| 

 

for all 𝑢1, 𝑢2 ∈ ℚ. 
 

Subsequently, we denote 𝑑(𝑡) = 𝑑1(𝑡) + 𝑑2(𝑡),𝑑 = 𝑑1 + 𝑑2,𝜇 = 𝜇1 + 𝜇2 and Γ =
𝑑𝑖𝑎𝑔{𝛾1, 𝛾2, … , 𝛾𝑛} for simplicity. Before deriving the main results, the following lemmas are 
instrumental. 
 

Lemma 2.1. Let  𝑢, 𝑣 ∈ ℚ,𝐴, 𝐵 ∈ ℚ𝑛×𝑛,𝐶 ∈ ℂ𝑛×𝑛. Then 
 

(i) |𝑢 + 𝑣| ≤ |𝑢| + |𝑣|, and |𝑢𝑣| ≤ |𝑢||𝑣|; 
(ii) (𝐴𝐵)∗ = 𝐵∗𝐴∗; 

(iii) (𝐴𝐵)−1 = 𝐵−1𝐴−1, 𝑖𝑓 𝐴, 𝐵 𝑎𝑟𝑒 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒; 

(iv) (𝐴∗)−1=(𝐴−1)∗, 𝑖𝑓 𝐴 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒; 

(v) 𝑢 𝑐𝑎𝑛 𝑏𝑒 𝑢𝑛𝑖𝑞𝑢𝑒𝑙𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑠 𝑢 = 𝑢1 + 𝑢2𝑗, 𝑤ℎ𝑒𝑟𝑒  𝑢1, 𝑢2 ∈ ℂ; 

(vi) 𝑗𝐶 = 𝐶̅𝑗 𝑎𝑛𝑑 𝑗𝐶𝑗 = −𝐶̅. 
 

Remark 2.1. According to property (5) in Lemma 2.1, any quaternion matrix 𝐴 ∈ ℚ𝑛×𝑛 can be 

uniquely expressed as 𝐴 = 𝐴1 + 𝐴2𝑗, where 𝐴1, 𝐴2 ∈ ℂ𝑛×𝑛. 
 

Lemma 2.2. Let 𝐴 = 𝐴1 + 𝐴2𝑗, 𝐵 = 𝐵1 + 𝐵2𝑗,where 𝐴, 𝐵 ∈ ℚ𝑛×𝑛 and 𝐴1, 𝐴2, 𝐵1, 𝐵2 ∈ ℂ𝑛×𝑛 . 
Then 
 

(i) 𝐴∗ = 𝐴1
∗ − 𝐴2

𝑇𝑗; 
(ii) 𝐴𝐵 = (𝐴1𝐵1 − 𝐴2𝐵̅2) + (𝐴1𝐵2 + 𝐴2𝐵̅1)𝑗. 
 

Lemma 2.3. Let 𝐴 ∈ ℚ𝑛×𝑛be a Hermitian matrix and 𝐴 = 𝐴1 + 𝐴2𝑗, where 𝐴1, 𝐴2 ∈ ℂ𝑛×𝑛. Then 

𝐴 < 0is equivalent to  

(
𝐴1 −𝐴2

𝐴̅2 𝐴̅1
) < 0. 

 

Remark 2.2. Lemma 2.3 reveals the equivalence between the negative definiteness of a 𝑛 ×
𝑛quaternion matrix and the negative definiteness of a 2𝑛 × 2𝑛complex matrix. 
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Lemma 2.4. Suppose 𝑀 ∈ ℚ𝑛×𝑛 is a positive definite Hermitian matrix and 𝜔(𝑠): [𝑎, 𝑏] → ℚ𝑛is 
a vector valued function. If the integrations concerned are well-defined, then 
 

(∫ 𝜔(𝑠)𝑑𝑠
𝑏

𝑎

)

∗

𝑀 (∫ 𝜔(𝑠)𝑑𝑠
𝑏

𝑎

) ≤ (𝑏 − 𝑎) ∫ 𝜔∗(𝑠)𝑀𝜔(𝑠)𝑑𝑠.
𝑏

𝑎

 

 

Lemma 2.5. For any vector 𝜉 ∈ ℚ𝑚,𝛼 ∈ (0,1), a positive Hermitian matrix 𝑃 ∈ ℚ𝑛×𝑛, and 

matrices 𝑊1 , 𝑊2 ∈ ℚ𝑛×𝑚, define the function Ξ(𝛼, 𝑃)as 
 

Ξ(𝛼, 𝑃) =
1

𝛼
𝜉∗𝑊1

∗𝑃𝑊1𝜉 +
1

1 − 𝛼
𝜉∗𝑊2

∗𝑃𝑊2𝜉. 

 

If there exists a matrix 𝑋 ∈ ℚ𝑛×𝑛satisfying 
 

(
𝑃 𝑋
∗ 𝑃

) ≥ 0, 

 
then 

min
𝛼∈(0,1)

Ξ(𝛼, 𝑃) ≥ (
𝑊1𝜉

𝑊2𝜉
)

∗

(
𝑃 𝑋
∗ 𝑃

) (
𝑊1𝜉

𝑊2𝜉
). 

 
Remark 2.3. Lemma 2.5 is the alleged reciprocally convex inequality in the quaternion domain. 
 

3. MAIN RESULTS 
 

Theorem 3.1. Suppose Assumptions 1 and 2 hold. If there exist positive diagonal 

matrices𝑀1 , 𝑀2 , 𝑀3 ∈ ℝ𝑛×𝑛, positive definite matrices 𝑃𝜄(𝜄 = 1,2,3), 𝑄𝜍 (𝜍 = 1,2, … ,6), 𝑅1 , 𝑅2 ∈

ℚ𝑛×𝑛 and appropriate matrices 𝑈, 𝑉, 𝑆1, 𝑆2 ∈ ℚ𝑛×𝑛such that the following quaternion-valued 
LMIs hold: 
 

(
𝑅1 𝑈
∗ 𝑅1

) > 0,         (3) 

 

(
𝑅2 𝑉
∗ 𝑅2

) > 0,         (4) 

 
Ω = (Ω𝑖𝑗)11×11 < 0,         (5) 

 
where  

 

Ω𝑗𝑖 = Ω𝑖𝑗
∗ (𝑖 ≠ 𝑗), Ω11 = −𝑃1𝐶 − 𝐶𝑃1 + 𝑃2 + 𝛿2𝑃3 + 𝑄1 + 𝑄3 + 𝑄5 + 𝑄6 − 𝑅1 + Γ𝑀1Γ, Ω14

= 𝑅1 − 𝑈∗, Ω16 = 𝑈∗, Ω18 = 𝑃1𝐴, Ω1,10 = 𝑃1𝐵, Ω1,11 = 𝐶𝑃1𝐶, Ω22

= 𝑑1
2𝑅1 + 𝑑2

2𝑅2 − 𝑆1 − 𝑆1
∗, Ω23 = −𝑆1

∗𝐶 − 𝑆2, Ω28 = 𝑆1
∗𝐴, Ω2,10 = 𝑆1

∗𝐵, Ω33

= −𝑃2 − 𝐶𝑆2 − 𝑆2
∗𝐶, Ω38 = 𝑆2

∗𝐴, Ω3,10 = 𝑆2
∗𝐵, Ω44

= −(1 − 𝜇1)𝑄1 − 𝑅1 − 𝑅1
∗ + 𝑈 + 𝑈∗ + Γ𝑀2Γ, Ω46 = 𝑅1 − 𝑈∗, Ω55

= −(1 − 𝜇)𝑄3 − 𝑅2 − 𝑅2
∗ + 𝑉 + 𝑉∗ + Γ𝑀3Γ, Ω56 = 𝑅2

∗ − 𝑉, Ω57

= 𝑅2 − 𝑉∗, Ω66 = −𝑄5 − 𝑅1 − 𝑅2, Ω67 = 𝑉∗, Ω77 = −𝑄6 − 𝑅2, Ω88

= 𝑄2 + 𝑄4 − 𝑀1, Ω8,11 = −𝐴∗𝑃1𝐶, Ω99 = −(1 − 𝜇1)𝑄2 − 𝑀2, Ω10,10

= −(1 − 𝜇)𝑄4 − 𝑀3, Ω10,11 = −𝐵∗𝑃1𝐶, Ω11,11 = −𝑃3. 
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Then the quaternion-valued neural networks is globally asymptotically stable. 
 
Proof. Construct the following Lyapunov-Krasovskii functional 

𝑉(𝑡) = ∑ 𝑉𝑖(𝑡)

4

𝑖=1

 (6) 

 

Where 
 

𝑉1(𝑡) = (𝑥(𝑡) − 𝐶 ∫ 𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝛿

)

∗

𝑃1 (𝑥(𝑡) − 𝐶 ∫ 𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝛿

) , (7) 

 

𝑉2(𝑡) = ∫ 𝑥∗(𝑠)𝑃2

𝑡

𝑡−𝛿

𝑥(𝑠)𝑑𝑠 + 𝛿 ∫ ∫ 𝑥∗(𝑠)𝑃3𝑥(𝑠)𝑑𝑠𝑑𝜃
𝑡

𝑡+𝜃

0

−𝛿

, (8) 

 

𝑉3(𝑡) = ∫ (𝑥∗(𝑠)𝑄1𝑥(𝑠) + 𝑓∗(𝑥(𝑠))𝑄2𝑓(𝑥(𝑠)))𝑑𝑠
𝑡

𝑡−𝑑1(𝑡)

+ ∫ (𝑥∗(𝑠)𝑄3𝑥(𝑠) + 𝑓∗(𝑥(𝑠))𝑄4𝑓(𝑥(𝑠)))𝑑𝑠
𝑡

𝑡−𝑑(𝑡)

+ ∫ 𝑥∗(𝑠)𝑄5𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝑑1

+ ∫ 𝑥∗(𝑠)𝑄6𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝑑

, (9) 

 

𝑉4(𝑡) = 𝑑1 ∫ ∫ 𝑥̇∗(𝑠)𝑅1𝑥̇(𝑠)𝑑𝑠𝑑𝜃
𝑡

𝑡+𝜃

0

−𝑑1

+ 𝑑2 ∫ ∫ 𝑥̇∗(𝑠)𝑅2𝑥̇(𝑠)𝑑𝑠𝑑𝜃
𝑡

𝑡+𝜃

.  (10)
−𝑑1

−𝑑

 

 

Then the derivatives of𝑉𝑖  (𝑖 = 1,2,3,4) can be calculated and estimated straightforwardly: 
 

𝑉̇1(𝑡) = −𝑥∗(𝑡)(𝑃1𝐶 + 𝐶𝑃1)𝑥(𝑡) + 𝑥∗(𝑡)𝑃1𝐴𝑓(𝑥(𝑡)) + 𝑓∗(𝑥(𝑡))𝐴∗𝑃1𝑥(𝑡)

+ 𝑥∗(𝑡)𝑃1𝐵𝑓 (𝑥(𝑡 − 𝑑(𝑡))) + 𝑓∗ (𝑥(𝑡 − 𝑑(𝑡))) 𝐵∗𝑃1𝑥(𝑡)

+ (∫ 𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝛿

)

∗

𝐶𝑃1𝐶𝑥(𝑡) + 𝑥∗(𝑡)𝐶𝑃1𝐶 (∫ 𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝛿

)

− (∫ 𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝛿

)

∗

𝐶𝑃1𝐴𝑓(𝑥(𝑡)) − 𝑓∗(𝑥(𝑡))𝐴∗𝑃1𝐶 (∫ 𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝛿

)

− (∫ 𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝛿

)

∗

𝐶𝑃1𝐵𝑓 (𝑥(𝑡 − 𝑑(𝑡)))

− 𝑓∗ (𝑥(𝑡 − 𝑑(𝑡))) 𝐵∗𝑃1𝐶 (∫ 𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝛿

) , (11) 

 

𝑉̇2(𝑡) ≤ 𝑥∗(𝑡)(𝑃2 + 𝛿2𝑃3)𝑥(𝑡) − 𝑥∗(𝑡 − 𝛿)𝑃2𝑥(𝑡 − 𝛿)

+ (∫ 𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝛿

)

∗

𝑃3 (∫ 𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝛿

), (12) 
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𝑉̇3(𝑡) ≤ 𝑥∗(𝑡)(𝑄1 + 𝑄3 + 𝑄5 + 𝑄6)𝑥(𝑡) − 𝑥∗(𝑡 − 𝑑1)𝑄5𝑥(𝑡 − 𝑑1) − 𝑥∗(𝑡 − 𝑑)𝑄6𝑥(𝑡 − 𝑑)

− (1 − 𝜇1)𝑥∗(𝑡 − 𝑑1(𝑡))𝑄1𝑥(𝑡 − 𝑑1(𝑡)) − (1 − 𝜇)𝑥∗(𝑡 − 𝑑(𝑡))𝑄3𝑥(𝑡 − 𝑑(𝑡))

+ 𝑓∗(𝑥(𝑡))(𝑄2 + 𝑄4)𝑓(𝑥(𝑡))

− (1 − 𝜇1)𝑓∗ (𝑥(𝑡 − 𝑑1(𝑡))) 𝑄2𝑓 (𝑥(𝑡 − 𝑑1(𝑡)))

− (1 − 𝜇)𝑓∗ (𝑥(𝑡 − 𝑑(𝑡))) 𝑄2𝑓 (𝑥(𝑡 − 𝑑(𝑡))) , (13) 

𝑉̇4(𝑡) = 𝑥̇∗(𝑡)(𝑑1
2𝑅1 + 𝑑2

2𝑅2)𝑥̇(𝑡) − 𝑑1 ∫ 𝑥̇∗(𝑠)
𝑡

𝑡−𝑑1

𝑅1𝑥̇(𝑠)𝑑𝑠 − 𝑑2 ∫ 𝑥̇∗(𝑠)
𝑡−𝑑1

𝑡−𝑑

𝑅2𝑥̇(𝑠)𝑑𝑠, (14) 

 

where Lemma 2.4 has been applied in the estimate of 𝑉̇2(𝑡)in (12). Based on Lemma 2.5, we 

further estimate two integration terms in𝑉̇4(𝑡) as 
 

−𝑑1 ∫ 𝑥̇∗(𝑠)
𝑡

𝑡−𝑑1

𝑅1𝑥̇(𝑠)𝑑𝑠 = −𝑑1 ∫ 𝑥̇∗(𝑠)
𝑡

𝑡−𝑑1(𝑡)

𝑅1𝑥̇(𝑠)𝑑𝑠 − 𝑑1 ∫ 𝑥̇∗(𝑠)
𝑡−𝑑1(𝑡)

𝑡−𝑑1

𝑅1𝑥̇(𝑠)𝑑𝑠

≤ −
𝑑1

𝑑1(𝑡)
(∫ 𝑥̇(𝑠)𝑑𝑠

𝑡

𝑡−𝑑1(𝑡)

)

∗

𝑅1 (∫ 𝑥̇(𝑠)𝑑𝑠
𝑡

𝑡−𝑑1(𝑡)

)

−
𝑑1

𝑑1 − 𝑑1(𝑡)
(∫ 𝑥̇(𝑠)𝑑𝑠

𝑡−𝑑1(𝑡)

𝑡−𝑑1

)

∗

𝑅1 (∫ 𝑥̇(𝑠)𝑑𝑠
𝑡−𝑑1(𝑡)

𝑡−𝑑1

)

≤ − (
𝑥(𝑡) − 𝑥(𝑡 − 𝑑1(𝑡))

𝑥(𝑡 − 𝑑1(𝑡)) − 𝑥(𝑡 − 𝑑1)
)

∗

(
𝑅1 𝑈
∗ 𝑅1

) (
𝑥(𝑡) − 𝑥(𝑡 − 𝑑1(𝑡))

𝑥(𝑡 − 𝑑1(𝑡)) − 𝑥(𝑡 − 𝑑1)
)

= − (

𝑥(𝑡)

𝑥(𝑡 − 𝑑1)

𝑥(𝑡 − 𝑑1(𝑡))
)

∗

(
𝑅1 −𝑈∗ −𝑅1 + 𝑈∗

−𝑈 𝑅1 −𝑅1 + 𝑈
−𝑅1 + 𝑈 −𝑅1 + 𝑈∗ 2𝑅1 − 𝑈 − 𝑈∗

) (

𝑥(𝑡)

𝑥(𝑡 − 𝑑1)

𝑥(𝑡 − 𝑑1(𝑡))
) . (15) 

 
Analogously, one can obtain that 

 

−𝑑2 ∫ 𝑥̇∗(𝑠)
𝑡−𝑑1

𝑡−𝑑

𝑅2𝑥̇(𝑠)𝑑𝑠 = −𝑑2 ∫ 𝑥̇∗(𝑠)
𝑡−𝑑1

𝑡−𝑑(𝑡)

𝑅2𝑥̇(𝑠)𝑑𝑠 − 𝑑2 ∫ 𝑥̇∗(𝑠)
𝑡−𝑑(𝑡)

𝑡−𝑑

𝑅2𝑥̇(𝑠)𝑑𝑠

≤ − (

𝑥(𝑡 − 𝑑1)

𝑥(𝑡 − 𝑑)

𝑥(𝑡 − 𝑑(𝑡))
)

∗

(
𝑅2 −𝑉∗ −𝑅2 + 𝑉∗

−𝑉 𝑅2 −𝑅2 + 𝑉
−𝑅2 + 𝑉 −𝑅2 + 𝑉∗ 2𝑅2 − 𝑉 − 𝑉∗

) (

𝑥(𝑡 − 𝑑1)

𝑥(𝑡 − 𝑑)

𝑥(𝑡 − 𝑑(𝑡))
) . (16) 

 
In addition, it follows from Assumption 1 that 

 

0 ≤ 𝑥∗(𝑡)Γ𝑀1Γ𝑥(𝑡) − 𝑓∗(𝑥(𝑡))𝑀1𝑓(𝑥(𝑡)), (17) 

 

0 ≤ 𝑥∗(𝑡 − 𝑑1(𝑡))Γ𝑀2Γ𝑥(𝑡 − 𝑑1(𝑡)) − 𝑓∗(𝑥(𝑡 − 𝑑1(𝑡)))𝑀1𝑓(𝑥(𝑡 − 𝑑1(𝑡))), (18) 

 

0 ≤ 𝑥∗(𝑡 − 𝑑(𝑡))Γ𝑀3Γ𝑥(𝑡 − 𝑑(𝑡)) − 𝑓∗ (𝑥(𝑡 − 𝑑(𝑡))) 𝑀3𝑓 (𝑥(𝑡 − 𝑑(𝑡))) . (19) 

 
By applying the free weighting matrix method, we gather from (3) that 
 

0 = [𝑆1𝑥̇(𝑡) + 𝑆2𝑥(𝑡 − 𝛿)]∗𝐻 + 𝐻∗[𝑆1𝑥̇(𝑡) + 𝑆2𝑥(𝑡 − 𝛿)], (20) 
Where 
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𝐻 = −𝑥̇(𝑡) − 𝐶𝑥(𝑡 − 𝛿) + 𝐴𝑓(𝑥(𝑡)) + 𝐵𝑓 (𝑥(𝑡 − 𝑑(𝑡))) . (21) 

 
By substituting (21) into (20), we proceed to obtain that 
 

0 = −𝑥̇∗(𝑡)(𝑆1 + 𝑆1
∗)𝑥̇(𝑡) − 𝑥̇∗(𝑡)(𝑆1

∗𝐶 + 𝑆2)𝑥(𝑡 − 𝛿) − 𝑥∗(𝑡 − 𝛿)(𝐶𝑆1 + 𝑆2
∗)𝑥̇(𝑡)

+ 𝑥̇∗(𝑡)𝑆1
∗𝐴𝑓(𝑥(𝑡)) + 𝑓∗(𝑥(𝑡))𝐴∗𝑆1𝑥̇(𝑡) + 𝑥̇∗(𝑡)𝑆1

∗𝐵𝑓 (𝑥(𝑡 − 𝑑(𝑡)))

+ 𝑓∗ (𝑥(𝑡 − 𝑑(𝑡))) 𝐵∗𝑆1𝑥̇(𝑡) − 𝑥∗(𝑡 − 𝛿)(𝐶𝑆2 + 𝑆2
∗𝐶)𝑥(𝑡 − 𝛿)

+ 𝑥∗(𝑡 − 𝛿)𝑆2
∗𝐴𝑓(𝑥(𝑡)) + 𝑓∗(𝑥(𝑡))𝐴∗𝑆2𝑥(𝑡 − 𝛿)

+ 𝑥∗(𝑡 − 𝛿)𝑆2
∗𝐵𝑓 (𝑥(𝑡 − 𝑑(𝑡))) + 𝑓∗ (𝑥(𝑡 − 𝑑(𝑡))) 𝐵∗𝑆2𝑥(𝑡 − 𝛿). (22) 

 
Therefore, it follows from (11)-(19) and (22) that 
 

𝑉̇(𝑡) ≤ 𝜂∗(𝑡)Ω𝜂(𝑡), (23) 
 
Where 

 

 𝜂(𝑡) = (𝑥∗(𝑡), 𝑥̇∗(𝑡), 𝑥∗(𝑡 − 𝛿), 𝑥∗(𝑡 − 𝑑1(𝑡)), 𝑥∗(𝑡 − 𝑑(𝑡)), 𝑥∗(𝑡 − 𝑑1), 𝑥∗(𝑡 − 𝑑),

𝑓∗(𝑥(𝑡)), 𝑓∗ (𝑥(𝑡 − 𝑑1(𝑡))) , 𝑓∗ (𝑥(𝑡 − 𝑑(𝑡))) , (∫ 𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝛿
)∗)

∗
. 

 

Then it follows from (5) and (23) that𝑉̇(𝑡) < 0, which together with the radial unboundedness 

of𝑉(𝑡) guarantee the global asymptotical stability of the QVNNs (2). The proof is completed. 
 
Remark 3.1. Since the QVLMIs (3)-(5) cannot be straightforwardly resolved via the Matlab LMI 
toolbox, it is necessary to convert QVLMIs into CVLMIs to acquire a set of feasible solutions 
with the assistance of Lemmas 2.2 and 2.3. Based on Lemma 2.2, we first conduct plural 

decomposition on the quaternion matrix appeared in Theorem 3.1: 𝑃𝜄 = 𝑃𝜄1 + 𝑃𝜄2𝑗 (𝜄 =
1,2,3), 𝑄𝜍 = 𝑄𝜍1 + 𝑄𝜍2𝑗 (𝜍 = 1,2, … ,6), 𝑅1 = 𝑅11 + 𝑅12𝑗, 𝑅2 = 𝑅21 + 𝑅22𝑗, 𝑈 = 𝑈1 + 𝑈2𝑗, 𝑉 =

𝑉1+𝑉2𝑗, 𝑆1 = 𝑆11 + 𝑆12𝑗, 𝑆2 = 𝑆21 + 𝑆22𝑗. Then the following corollary can be immediately 
obtained by resorting to Lemma 2.3. 
 
Corollary 3.1. Suppose Assumptions 1 and 2 hold. The equilibrium of system (2) is globally 
asymptotically stable if there exist positive diagonal matrices, Hermitian matrices, skew 

symmetric matrices and matrices such that the following complex-valued LMIs hold: 
 

(
𝑃𝑖1 −𝑃𝑖2

𝑃𝑖2 𝑃𝑖1
) > 0, (

𝑄𝑗1 −𝑄𝑗2

𝑄̅𝑗2 𝑄̅𝑗1
) > 0,                                           (24) 

 

(
𝑋1 −𝑋2

𝑋2 𝑋1
) > 0, (

𝑌1 −𝑌2

𝑌̅2 𝑌̅1
) > 0, (

Ω1 −Ω2

Ω̅2 Ω̅1
) < 0, (25) 

 
Where 
 

𝑋1 = (
𝑅11 𝑈1

∗ 𝑅11
) , 𝑋2 = (

𝑅12 𝑈2

∎ 𝑅12
) , 𝑌1 = (

𝑅21 𝑉1

∗ 𝑅21
) , 𝑌2 = (

𝑅22 𝑉2

∎ 𝑅22
) 

 

and Ω1 = (Ω𝑖𝑗
(1)

)11×11, Ω2 = (Ω𝑖𝑗
(2)

)11×11with Ω𝑖𝑗
(1)

, Ω𝑖𝑗
(2)

omitted here due to the limited space. 
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4. A NUMERICAL EXAMPLE 
 

In this section, an illustrative example is provided to validate the effectiveness of the theoretical 
results.  
Consider the two-dimensional QVNNs (2) with parameters given as follows: 
 

𝐶 = 𝑑𝑖𝑎𝑔{8,12}, 𝐴 = (𝑎𝑖𝑗)2×2, 𝐵 = (𝑏𝑖𝑗)2×2, 𝛿 = 0.5, 

 

𝑑1(𝑡) = 0.45 sin(𝑡) + 0.25, 𝑑2(𝑡) = 0.15 cos(𝑡) − 0.05, 𝑓1(𝑠) = 𝑓2(𝑠) = 0.2 tanh(𝑠) , 𝑠 ∈ ℚ 
 
Where 
 

𝑎11 = 1.2 + 3.0𝑖 − 3.6𝑗 + 2.0𝑘, 𝑎12 = 1.8 + 1.6𝑖 − 2.0𝑗 − 1.9𝑘, 
𝑎21 = 3.8 − 3.8𝑖 + 2.0𝑗 − 2.1𝑘, 𝑎22 = 1.5 + 3.2𝑖 − 3.6𝑗 + 3.0𝑘, 
𝑏11 = 1.5 − 3.3𝑖 + 2.6𝑗 + 1.1𝑘, 𝑏12 = 1.5 + 2.6𝑖 + 0.9𝑗 − 2.9𝑘, 
𝑏21 = 2.5 + 3.2𝑖 − 0.7𝑗 − 1.5𝑘, 𝑏22 = 2.9 + 3.5𝑖 + 1.3𝑗 + 1.5𝑘. 

 

In accordance with Remark 2.1, the quaternion-valued matrices 𝐴and𝐵can be uniquely expressed 
as 𝐴 = 𝐴1 + 𝐴2𝑗and 𝐵 = 𝐵1 + 𝐵2𝑗respectively, where 
 

𝐴1 = (
1.2 + 3.0𝑖 1.8 + 1.6𝑖
3.9 − 3.8𝑖 1.5 + 3.2𝑖

) ,   𝐴2 = (
−3.6 + 2.0𝑖 −2.0 − 1.9𝑖
2.0 − 2.1𝑖 −3.6 + 3.0𝑖

), 

 

𝐵1 = (
1.5 − 3.3𝑖 1.5 + 2.6𝑖
2.5 + 3.2𝑖 2.9 + 3.5𝑖

) , 𝐵2 = (
2.6 + 1.1𝑖 0.9 − 2.9𝑖

−0.7 − 1.5𝑖 1.3 + 1.5𝑖
). 

 

In addition, it can be readily verified that Assumptions 1 and 2 are satisfied, and 𝑑1 = 0.7, 𝑑2 =
0.1, 𝑑 = 0.8, 𝜇1 = 0.45, 𝜇2 = 0.15, 𝜇 = 0.6. Therefore, a set of feasible solutions to CVLMIs 
(24)-(25) can be established via the Yalmip toolbox in Matlab (only partial matrices in the 
solutions are listed here due to the limited space): 
 

𝑀1 = 𝑑𝑖𝑎𝑔{0.3635,0.3544}, 𝑀2 = 𝑑𝑖𝑎𝑔{0.1306, 0.1306}, 𝑀3 = 𝑑𝑖𝑎𝑔{0.3254,0.3341}, 
 

𝑃11 = (
0.4610 + 0.0000𝑖 0.0012 − 0.0025𝑖
0.0012 + 0.0025𝑖 0.1332 + 0.0000𝑖

), 

 

𝑄11 = (
−0.2628 + 0.0000𝑖 0.0001 − 0.0001𝑖
0.0001 + 0.0001𝑖 −0.2561 + 0.0000𝑖

), 

 

𝑈1 = (
−0.1404 + 0.0000𝑖 −0.0001 + 0.0002𝑖
−0.0001 − 0.0002𝑖  −0.1423 − 0.0000𝑖

), 

 

𝑉1 = (
−0.1698 + 0.0000𝑖  −0.0000 + 0.0001𝑖
−0.0000 − 0.0001𝑖  −0.1686 − 0.0000𝑖

), 

 

𝑆11 = (
0.3059 − 0.0000𝑖 0.0634 − 0.1002𝑖
0.0634 + 0.1001𝑖  0.2655 + 0.0000𝑖

), 

 

𝑆21 = (
0.2465 + 0.0000𝑖 0.0766 − 0.1211𝑖
0.0511 + 0.0807𝑖  0.3208 + 0.0000𝑖

). 

 
Therefore, the equilibrium of the QVNNs (2) is globally asymptotically stable according to 

Corollary 1. Fig. 1 depicts the transient behavior of the neuron state in (2). 
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Figure 1.  The transient behaviors of neuron states of QVNNs (2). 

 

5. CONCLUSIONS 
 

This paper is concerned with the stability analysis of quaternion-valued neural networks with 
both leakage delay and additive time-varying delays. Based on the Lyapunov functional method 
and inequality technique, some delay-dependent criteria are provided by fully considering the 
relationship between time-varying delays and upper bounds of delays. It is worth mentioning 
that the stability criteria are established in two forms. Finally, a numerical example is proposed 
to demonstrate the validity of theoretical results. 
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