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Abstract. Meta-Learning, the ability of learning to learn, helps to train a model to learn very
quickly on a variety of learning tasks; adapting to any new environment with a minimal number of
examples allows us to speed up the performance and training of the model. It solves the traditional
machine learning paradigm problem, where it needed a vast dataset to learn any task to train
the model from scratch. Much work has already been done on meta-learning in various learning
environments, including reinforcement learning, regression task, classification task with image,
and other datasets, but it is yet to be explored with the time-series domain. In this work, we
aimed to understand the effectiveness of meta-learning algorithms in time series classification task
with multivariate time-series datasets. We present the algorithm’s performance on the time series
archive, where the result shows that using meta-learning algorithms leads to faster convergence
with fewer iteration over the non-meta-learning equivalent.
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1 Introduction

Computers have always been an immense source of fascination for human beings.
Be it the computers beginning large computations, forecasting, accounting, it has
always fascinated human beings. Furthermore, with the origin of the field of Arti-
ficial Intelligence, humans have been eluded to it never than before. The concept
of an artificial agent learning to make decisions and perform tasks like humans is
very much intriguing in itself. Learning (also referred to as Machine Learning due
to the involvement of computers) has been studied in three significant categories
Supervised Learning, Unsupervised Learning, and Reinforcement Learning. Besides
all these advances in supervised, unsupervised, and reinforcement learning, learning
real-life tasks, learning algorithms, and carrying out simple instructions, learning
from a few examples, is still regarded as a challenging problem. These are the class
of problems that came to highlight in recent years; however, they have been known
since the early 70’s, known as Meta-Learning. Meta-Learning can be found as early
as in the works of Donald B. Maudsley, where he referred to it as “the process by
which learners become aware of and increasingly in control of habits of perception,
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inquiry, learning, and growth that they have internalized”. John Biggs redefined the
same in a significantly more straightforward language as “being aware of and taking
control of one’s learning”. In the context of computer science, meta-learning can
be defined as simple as knowledge adaptability. It can be as simple as learning to
identify previously seen objects with significantly fewer examples (few-shots learn-
ing), learning a task from some demonstrations (learning from demonstrations), or
even following simple instructions.

Humans and animals adapt to any environment much faster and more efficiently.
Whenever they try to learn any new skills or concepts, they hardly start from
scratch. They start from the skills learned in the experience related to the new task,
based on the knowledge they already have, that worked well before. For example,
A child who has seen a dog, flower, bird only a few times can easily distinguish
between them. A person who speaks one language can quickly learn to speak other
languages with little practice, or a person who knows how to ride a bike can ride
a motorbike with little practice. With every learned skill related to the given task
domain, they can learn a new skill with a few examples and training. They simply
learn how to learn across different tasks. Machine learning systems have surpassed
humans at many tasks; it still requires training with a large number of samples on
a specific task, and generally, models are trained from scratch using these samples
to reach the same. So, it is not entirely fair for an AI algorithm to compare with
humans as humans have prior knowledge and experience in their brain and DNA.
Is it possible to imbue an AI system model with similar properties as a human with
the ability to learn from experience and knowledge to learn new concepts and skills
quickly with a few training examples rather than learning for scratch.

Much of the work has been proposed over the past few years. The earlier works ad-
dress the problem of meta-learning as Few-Shot learning. The concept behind this
is to design a deep neural network that can learn by simulating the datasets with
very few instances, just like the babies learn to identify objects by seeing only a pic-
ture or two. In [1], the author proposed a method using the convolutional siamese
neural network to do a few-shot image classification. Consecutively next year, an
embedding method called Full Contextual Embeddings (FCE) [2], which uses bidi-
rectional LSTM to encode the input vector to do the K-shot classification. With
the recent success of optimization-based techniques, MAML [3], a model-agnostic
algorithm for meta-learning, has been proposed, which has the ability to combined
with any other trained gradient descent model, applicable to a variety of machine
learning task. They looked at the learning process as maximizing the sensitivity
of the loss functions of new tasks with respect to the model parameters such that
small changes in the parameters will produce significant improvements on the loss
function of any task. Training the model with a small number of gradient steps
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with a few samples of a task gives good generalization performance on that task.

In this work, we have focused on the optimization-based approach of meta-learning
for time series classification tasks. Reptile [4], a meta-learning algorithm, is used as
a framework for the experiment combined with a baseline architecture of a convolu-
tional neural network, where the convolutional layer acts as a feature extractor for
our classification model. We demonstrate the experiments on the UCR time-series
datasets [6]. For the evaluation purpose, we have compared the loss function curve
of algorithms showing that the meta-learning approach favors time-series tasks
over non-meta-learning counterparts resulting in faster convergence over a sample
of tasks with fewer iteration. We successfully demonstrate that reusing knowledge
from past tasks and combining them with deep neural networks may provide a
better result. To the simplest of our knowledge, this is the first successful attempt
in adapting meta-learning for a time series classification task.

Fig. 1: A Meta-learning model optimizes the model parameters θ that can quickly
adopt for a new task with parameters θ

′
i. The model updates the initialization

parameter θ.

Organization. The rest of the paper is organized as follows. Section 2 reviews
the existing research work is done in the field of Meta-Learning and Time-Series
Classification and builds the base for our main objective. The proposed work to scale
the Meta-Learning algorithm to time-series classification tasks and demonstrate its
performance on some dataset from the UCR time-series achieve. Section 4 gives
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the details of the experiment conducted using the explained methods, discusses an
experimental study consisting of an evaluation strategy—finally, section 5, where
we conclude with our observations in the chapter.

2 Literature Review

2.1 Time Series Classification

TSC has gained much attention in recent years due to its vast application in various
domains such as financial services, human activity recognition, healthcare, weather
forecasting [11]. Time series is nothing but just a measurement of statistical data
taken several discrete times in chronological order. Mathematically, it can be written
as,

h = f(t) (1)

where h is the phenomena (function) at any given time.

Formally, TSC problem can be defined as follows: for a given set of classes Y ,
a training dataset T = {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)} is a collection of pairs
(Xi, Yi) where Xi = [X1

i , X
2
i , · · · , Xm

i ] consists of M different univariate time se-
ries with Yi as it is their corresponding class label Yi ⊂ Y . The goal is to learn a
classifier or model on a dataset T which, when fed with unseen time-series data
points, the classifier is expected to predict its class correctly i.e., finding a function
F such that F (Xj) = Yj , and Yi ⊂ Y .

As the earliest baseline, Lines and Bagnall [14] first demonstrate the effectiveness
of distance-based methods such as Euclidean distance or Dynamic time warping
(DTW) coupled with the nearest neighbor (NN) classifier to work directly on raw
time series data. In the paper [15], the author proposed a feature-based approach ex-
tracting a set of features representing the global/local patterns of time series. These
sets of features are combined to form Bag-of-words (BoW) or Bag-of-features and
feed to the classifier [19] [20]. Several ensemble-based approaches have been explored
Elastic Ensemble (PROP) [14], transform-based ensembles (COTE) [21] combining
different classifiers over different time series representations. All these approaches
need heavy preprocessing; feature extraction has higher time complexity. Earlier,
the researchers neglected the fact of pure feature learning. With the success of
deep learning models after 2012 [8], researchers began to exploit the idea of feature
learning instead of handcrafted features.
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2.2 Meta Learning

Meta-Learning is one of the most exciting areas of research in Artificial Intelli-
gence and has been tackled for a long time. It has been tackled through different
researchers as meta learner [16], few shots learning [17], meta reinforcement learn-
ing [18]. However, the latest mega boom in meta-learning began with the inception
of Deep Learning with meta-learning. Much of the work has been proposed over the
past few years. The earlier works address the problem of meta-learning as Few-Shot
learning. The concept behind this is to design a deep neural network that can learn
by simulating the datasets with very few instances, just like the babies learn to
identify objects by seeing only a picture or two.

Over the recent year, many of the work has been published related to meta-learning,
which classified into three approaches:- metric-based, model-based, and optimiza-
tion based [10]. In a metric-based approach, the core idea is to learn embedding
vectors of input data explicitly and use them to learn the best kernel functions. In
the model-based approach, the idea is to design a model that updates its param-
eters rapidly with a few training steps, learning from the knowledge stored in the
memory from the past training to learn a new task. Santoro et al. [12] built upon
Differentiable Neural Computer and propose a new model, Memory-Augmented
Neural Network (MANN). They described a few-shot learning specific data feed-
ing pipeline wherein the answer (output label) of a previous input image is sent
concatenated along with the current input. The idea is to encode new informa-
tion in external memory and using this memory to updates its model parameters
rapidly with a few training steps. Thus, the model, with external memory, through
its controller had to learn to store the input Santoro et al. [12] representation in
the external memory, associate the label provided with the current input with the
previous input and retrieve the content of the relevant memory locations to produce
the answer for the current query. Another approach is optimization-based, the core
idea of learning a way to adjust the optimization parameters of the algorithm so
that model converges within a small number of optimization steps learning with a
few examples. Andrychowicz et al. [13] put forward a revolutionary idea of learn-
ing the optimizing function instead of hand designing it. The logic being, since we
usually are learning a classifier “function” from our training data. Therefore we
can also learn an optimizer function that performs the optimization process better.
The idea seems simple but is very much revolutionary. This model puts forward
meta-learning as well as transfer learning, wherein we can transfer the learned op-
timizer to other tasks. This meta learner can be scaled to thousands of parameters.
The learned LSTM optimizer performed significantly well as compared to the state
of the art models such as Stochastic Gradient Descent (SGD), Root Mean Square
Propagation (RMSProp), Adam Optimizer (ADAM), etc.
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Finn et al. [3] introduced the concept of model agnostic meta-learning (MAML).
Here, there is a meta learner and a learner. The meta learner trains the learner on a
training set that contains a different number of tasks. Through the meta learner, the
model will acquire prior experience from training and will learn the common feature
representations of the task. Thus, whenever there is a new task, the model will use
its prior experience and will be fine-tuned to the new task on a small number of
training data. MAML provides a good initialization of model parameters to achieve
optimal fast learning.

3 Proposed Work

Frequently, tasks in meta-learning can be expressed as the problem of optimizing
an objective function of a model f(θ) defined across the distribution of task over
some domain θ ∈ Θ. So, the goal, in this case, is the meta-learning model should
be able to find an optimal initialization for parameters of a randomly sampled task
where each task is associated with dataset Ti (each dataset is considered as one
data sample). Mathematically, it can be expressed as

θ∗ = argminθETi∼p(T )[LTif(θ)] (2)

Our work is built on the recently proposed model Reptile, an optimization-based
approach somewhat similar to MAML as they are both trained with gradient de-
scent and model-agnostic, but much simpler in implementation and training. Reptile
works repeatedly sampling a task, training on it through multiple gradient descent
steps, therefore, shifting the model weights towards the new parameters of the un-
seen task. The algorithm updates the model into two stages: First, it considers the
model as function f(θ) with parameter θ, then the classifier is trained on a given
task Ti, changing the model parameter θ to θ

′
i.

θ
′
i = θ − α∇θLTif(θ) (3)

Generally, a task contains a training set having few or limited examples for each
of the classes with one or more test examples (few-shot learning) [7]. The reptile
objective is to learn the optimal initialization for the parameters of the neural
network model such that the classifier learns faster while optimizing at test time,
leads to generalizing the model with fewer examples from the test task. In the final
optimization step, it simply updates θ to (θ

′
i− θ) as a reptile gradient applied with

stochastic gradient descent (SGD).

θ = θ + β
1

n

∞∑
i=1

(θ
′
i − θ) (4)

In this work, we have used the same architecture proposed in the paper [6] as
the baseline architecture for our classifier. The author proposed a straightforward
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deep neural network-based architecture for TSC, which gives remarkable results
with 44 UCR time-series datasets. They have tested on three deep neural network
architectures, Multilayer Perceptrons (MLP), Fully Convolutional Networks (FCN),
Residual Network, to provide a fully comprehensive baseline. For our experiment,
we have used only FCN architecture, which can be applied to the dataset without
any feature crafting and heavy data preprocessing. An intuition behind using an
FCN network is that applying several convolutional layers on time series would be
more helpful in learning a discriminative feature for the classification task.

3.1 Network Architecture

Deep convolutional neural network (CNN) has gained much attention in many
different domains like regression, classification task, natural language processing
(NLP), information retrieval, etc. after the AlexNet [8], won the 2012 ImageNet
competition. With the increasing success of this architecture in different research
fields, researchers started exploring the success of convolutional network architec-
ture for time-series analysis. As we have seen applying the convolution on the image
by sliding the filters in two dimensions (height and width), similarly, we could ap-
ply the convolution over time-series by sliding the filter to exhibit in one dimension
(time).

Fig. 2: The baseline architecture of fully convolutional neural network used for train-
ing the meta-learning algorithm.

In our problem setting, applying FCN over time-series helps extract multiple
discriminative features for the classification task. The softmax layer finally outputs
a probability distribution over the class variables in a task. The basic block of
FCN mainly consists of three components viz., convolutional layer, followed by
batch normalization (BN), and a final non-linearity function Rectified Linear Unit
(ReLU). ⊗ is the convolution operator, applied with a filter W on a time series
data x, and a bias parameter b.

C = ReLU[BN(W ⊗ x + b)] (5)
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The architecture is built up by stacking three convolutional blocks. The final
extracted features from the convolutional block are fed to the global average polling
layer reducing the number of weights in a model, thus preventing the risk of overfit-
ting. Batch normalization has been performed after each convolutional layer helping
the network to converge quickly and improve generalization. In the end, the softmax
layer is applied for classification.

3.2 Preprocessing

Normalization of the dataset has been performed across each channel (attribute);
missing values are filled with zeros. Many of the preprocessing steps have been
applied for generating the task to fed FCN. To generate the distribution of tasks of
the same domain, we hide some of the channels with zeros padding in the dataset
and also shuffle the order of the dataset across the channels. We have divided the
dataset into the training set and test set such that samples in the train set have
classes that are not present in the test set, making a more significant number of
task distribution for training the model. The initialization of hyper-parameters,
kernel size, and others have been followed the same as given in the paper. *The
implementation was done purely in Python and Tensorflow.

3.3 Algorithm

Reptile is the first-order gradient-based meta-learning algorithm. Given the FCN
architecture, the adaptation of meta-learning using the Reptile framework can be
summarized in algorithm 1. It looks very similar to the ordinary learning tasks, but
for each training sample, we create a pseudo-task Ti because the algorithm treats
one dataset as one data sample.

Algorithm 1 Reptile with FCN

Require: Training Dataset D = {x(j), y(j)}
Require: α, β step size hyperparameters
Require: Number of task, examples and batch-size
1: Denote p(T ) as distribution over tasks
2: Randomly initialize θ
3: for iteration = 1, 2, . . . do
4: Sample task τ1, τ2, . . . , τn, batch of tasks Ti ∼ p(T )
5: for i = 1, 2, . . . , N do
6: Evaluate Wi = SGD(Lτi , θ, k)
7: Compute updated parameter with gradient descent using (1)
8: end for
9: Update θ ← θ + β 1

n

∑n
i=1(Wi − θ)

10: end for
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4 Experimental Study

In this section, we present the information about the datasets we have used, eval-
uation strategy to compare between meta and non-meta-learning algorithms, and
the experimental result analysis and training setups. We have built the architecture
by stacking two convolution blocks with the filter sizes 128, 128 in each block. After
each convolutional layer we have applied batch-normalization and ReLu activation
layer to improve the generalization capability. Reptile uses 50 examples per task,
so we followed the same sample size for the task. We have used Adam optimizer
with learning rate 0.01 to optimize the loss.

4.1 Dataset

The performance of our model has been evaluated on the UCR time-series repos-
itory, containing more than 40 distinct time-series datasets. The dataset in the
repository has been broken into the different domains (Image Outline, Sensor Read-
ings, Motion Capture, Spectrographs, ECG, Electric Devices, and Simulated Data),
having different characteristics and varying length. We have used four datasets from
the repository and one other dataset (human activity recognition), which we have
collected in our lab. All the chosen dataset is multivariate time series, the prepro-
cessing on the dataset as described in Section 3. The details about the dataset used
in our experiment are given in Table 1.

Table 1: Time Series Dataset

Name
Dataset

Train Size Test Size No. of attributes Length No. of classes

PenDigits 7494 3498 2 8 10

UWaveGestureLibrary 896 3582 3 315 8

CharacterTrajectories 1422 1432 3 182 20

Motion 390 390 3 300 12

PeekDB 1000 1000 20 60 5

4.2 Results

To evaluated our model, we first trained the meta-learning model on tasks gener-
ated from the training dataset. After we got the optimal parameters from training,
we trained two models on the task generated from the test dataset. The first model
with parameters initialization which we get from meta learning one and other model
with randomly initialized parameters. Then we compare the loss function curve of
these models while training. The tasks we generate is used for binary classification
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for each dataset, so that we could generate variety of the tasks from same domain.
Here, we calculated the total cross entropy loss to measures the performance of
a classification model on test task. Cross-entropy loss decreases as the predicted
probability converges to the actual label.

Figure 3. shows the experimental results of our model on the dataset. The graph
represents the training loss function curve on the test tasks with the number of
epoch while training the model. We observe that the meta-learning model con-
verges more quickly with the fewer number of epoch than the model, which are
trained from scratch (non-meta- learning) on every dataset. We believe that the
success of metal learning models is because of the optimal initialization of param-
eters that we obtained from the Reptile algorithm. This experiment confirms that
there is a significant difference between the models which are trained with opti-
mal parameter initialization then random initialization. From the experiment, we
observe that the meta-learning algorithm performs better with the dataset having
more number of attributes (PeekDB) and a larger length of time-series (UWaveGes-
tureLibrary, CharacterTrajectories, Motion). So, using the meta-learning algorithm
with time-series tasks can be very useful.

5 Conclusion

In this work, we incorporate a meta-learning algorithm with a fully convolutional
network for time-series classification tasks. With this, we establish what different
type of learnings are, the emergence of meta-learning, coupling of meta-learning
with deep learning, and the state of the art models in meta-learning (MAML, and
Reptile). Employing this architecture, we find the optimal parameter initialization
for the task. The proposed method is evaluated using a loss function curve, which
shows its superiority over the non-meta-learning counterpart. The test suggests
the using meta-learning algorithms with time series could be quite effective. Meta-
learning helps to learn any new task quickly based on prior experience gained from
other similar tasks. It is better to use meta-learning in real-world tasks, as there
are plenty of opportunities to learn from prior experience.
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Fig. 3: Demonstrate the effectiveness of Meta-Learning over the Non-Meta-learning
model with the help of a loss function curve on a time series dataset.
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