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Abstract. The problem of predicting links has gained much attention in recent years due to
its vast application in various domains such as sociology, network analysis, information science,
etc. Many methods have been proposed for link prediction such as RA, AA, CCLP, etc. These
methods required hand-crafted structural features to calculate the similarity scores between a pair
of nodes in a network. Some methods use local structural information while others use global
information of a graph. These methods do not tell which properties are better than others. With
an in-depth analysis of these methods, we understand that one way to overcome this problem
is to consider network structure and node attribute information to capture the discriminative
features for link prediction tasks. We proposed a deep learning Autoencoder based Link Prediction
(ALP) architecture for the latent representation of a graph, unified with non-negative matrix
factorization to automatically determine the underlying roles in a network, after that assigning a
mixed-membership of these roles to each node in the network. The idea is to transfer these roles
as a feature vector for the link prediction task in the network. Further, cosine similarity is applied
after getting the required features to compute the pairwise similarity score between the nodes. We
present the performance of the algorithm on the real-world datasets, where it gives the competitive
result compared to other algorithms.

Keywords: Link Prediction, Deep Learning, Autoencoder, Latent Representation, Non-Negative
Matrix Factorization.

1 Introduction

With the surge of the Internet, everyone is almost interconnected via social me-
dia platforms (e.g., Facebook, Twitter, Instagram, etc.), professional blogs, and
websites. Networks are tools to represent these interconnections in their respective
scenarios. For example, an individual profile on Facebook is represented by a node
in the network, and relationships between two profiles are represented by the links
(edges) between two nodes. Thus, a network can be used to model the communica-
tion of a system. Everyday, relationships are changing among individuals, i.e., some
new links are formed, and some of them are vanished due to several reasons. This
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behavior makes the scenarios quite complex and dynamic, and dealing with them
becomes more challenging. The above scenarios can be modeled using a social or a
complex network. Lots of issues exist when dealing with these networks. “Finding
missing links or future links in an observed network” is one of the interesting prob-
lems which is known as link prediction (LP). Nowell and Kleinberg [1] formally
defined the link prediction as follows. Suppose a graph Gt0–t1(V,E) represents a
snapshot of a network during time interval [t0, t1] and Et0–t1 , a set of edges present
in that snapshot. The task of link prediction is to find set of edges E

t
′
0–t
′
1

during the

time interval [t
′
0, t
′
1] where [t0, t1] ≤ [t

′
0, t
′
1]. Link prediction has been applied in sev-

eral domain of applications like friendship prediction in Facebook, recommendation
system in e-commerce [2], protein-protein interactions (PPI) in bioinformatics [3]
etc.

Several authors have presented seminal works on classical methods (indices) of link
prediction in networks that are broadly classified into structural similarity-based
and maximum likelihood-based methods, which are presented in the reviews [1, 4].
Structural similarity is computed based on the properties of the structure of the net-
works. These properties are easy to compute, and no need to extract extra informa-
tion like attribute and other side information. Works on these structural properties
are grouped into three categories viz., local, global, and quasi-local. Most classical
similarity indexes are based on these three categories. Local indices extract local
information (like degree, common neighbors, clustering coefficients, etc.) to com-
pute the similarity between two nodes. Common neighbor [1], Adamic-Adar [5],
Resource allocation [6], Preferential attachment [7],etc. are the most well known
local indices which are heuristics and used in both supervised and unsupervised
settings to show the relevance of other methods. Global indices focus on extracting
global properties or information where the whole network is taken into account.
These indices are more complex and time-consuming that limits its application for
large networks. Most path based indices e.g., Katz [8], shortest path [1], average
commute time [9], PageRank [10], Leicht-Holme-Newman Index [11], Random walk
with restart [12] etc., comes under global indices. Local similarity indices are simple
and efficient in computation, whereas the global are complex and computationally
inefficient. A trade-off between them is quasi-local indices, which are as efficient
as local indices and not limited to neighborhood information. Sometimes, these
methods (indices) take the whole network in computation [13]. Local path index
(LP) [14], Local random walk (LRW) [15], Superposed random walk (SRW) [9] etc.,
are such indices.

Several machine learning [15, 16], and deep learning frameworks [17, 18] also have
been explored for the link prediction task. Both supervised and unsupervised mod-
els have been used to find missing links in the literature. An unsupervised deep
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learning model aims at finding hidden structures or patterns in the data and learns
suitable representation that is useful input for several tasks. One of the critical issues
with these models is the data representation that extracts useful information from
the data. Unsupervised models detect and eliminate irrelevant variability present in
the input data. Simultaneously, it preserves the information that is useful to several
tasks like detection, prediction, visualization, etc. Some of these models are based
on reconstructing the input from the suitable representation (or code) with some
desired properties like sparsity, low dimensionality, etc. The autoencoder is one of
the unsupervised deep learning models using which we predict missing links in the
paper. An autoencoder consists of two parts encoder and decoder. The encoder
maps the input data to latent representation or code or feature vector, and this
code can further be used in downside the prediction task. Autoencoder can be ex-
pressed in another way as consisting of one input layer, one or more hidden layers,
and an output layer, as shown in Figure 1. A deep autoencoder consists of more
hidden layers. Reasons for the use of the deep autoencoder are two folds first, once
the training is complete, computing code (latent representation) takes less time;
the relevancy of the extracted information can be checked through the decoder by
reconstructing the input. In contrast, link prediction task in social networks can
also be treated as grouping the nodes based on the similar structural properties and
behaviour. Given a network, we have defined the node-roles relationship between
them, with the intuition that two nodes belong to the same role, or we could say
they are well connected to each other if they have similar structural behavior or
function. Node-Roles relationships help in understanding the underlying behavior
in a network and also exploring the interesting data analysis tasks such as sense-
making, node-similarity, and prediction tasks [63].

In this paper, we transfer the effects of roles in a network to link prediction tasks,
where node-roles relationship act as additional features to find the similarity be-
tween the nodes in a network. Without any other information except the network
structure, the key problem with the link prediction task is identifying and deciding
what structural features are needed that can be derived from the network, which
will lead to predicting links in the network. Once we get the desired features, the
link prediction task can be well-formulated as finding similarity between the nodes
based on these extracted features. Given a dataset, we define the link prediction
problem as

– finding the features matrix and node-roles relationship (where the features ma-
trix is obtained by using the latent representation of autoencoder architecture,
and the node-roles matrix is determined by applying the non-negative matrix
factorization on these extracted feature matrix).

– determining the similarity score between the nodes using both feature matrix
and node-roles matrix by applying the Cosine similarity function.
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We summarize the main contributions of this paper are determining a set of struc-
tural features using the autoencoder architecture and transferring the effect of node-
roles relationship to perform the link prediction task.

Organization. Section 2 talks on some literature work on link prediction. The
proposed work is presented in section 3. Section 4 discusses an experimental study
consisting of an evaluation strategy and the results of several methods against real
network datasets followed by a statistical test. Finally, section 5 concludes our work.

2 Related Work

Newman presented a paper on link prediction on collaboration networks in Physics
and Biology [19]. In such networks, two authors are considered to be connected if
they have at least one paper co-authored by them simultaneously. In the empirical
study, the author demonstrated that the likelihood of a pair of researchers teaming
up increments with the numbers of different colleagues they have in mutual rela-
tion, and the likelihood of a specific researcher acquiring new partners increments
with the number of his past teammates. The outcomes give experimental proof in
favor of formerly guessed mechanisms for clustering and power-law degree distribu-
tions in networks. Later, Nowell and Kleinberg [1] proposed a link prediction model
explicitly for a social network. Each node in the network corresponds to a person
or an entity, and a link between two nodes shows the interaction between them.
The learning paradigm in this environment can be used to extract the similarities
between two nodes by several similarity metrics. Ranks are assigned to each pair
of nodes based on these similarities, then higher ranked node pairs are designated
as predicted links. Further, Hasan et al. [15] expanded this work and demonstrated
that there is a significant increase in prediction results when additional topologi-
cal information about the network is available. They considered different similarity
measures as features and performed a binary classification task using a supervised
learning approach, which is similar to link prediction in their framework.

The graph embedding is considered as a dimensionality reduction technique in
which higher D dimensional nodes in the graphs are mapped to a lower d (d� D)
dimensional representation space by preserving the graph properties as much as
possible [20]. These graph properties can be node pair similarity, node neighbor-
hood similarity, substructure similarity, etc. Recently, some graph embedding tech-
niques [21]- [25] have been proposed and applied successfully in link prediction and
node classification problems. Deep learning models of graph embedding have also
recently been introduced that can be classified in with and without random walk
strategies [20]. In the first case, the graph is represented as paths sampled from
it, which are inputs to an embedding model and the whole graph as input for a
later case. The deep learning model is then applied to these sampled paths in the
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framework and encodes to preserve the graph properties (i.e., path properties here).
Lots of seminal works based on the first category (i.e., with random walk strategy)
are available in the literature like DeepWalk [24], Node2vec [22], HARP [26]. These
models are mainly shallow in nature, moreover deep model are based on without
random walk strategies like SDNE [27], DNGR [28], VAGE [29], SEAL [30].

Machine learning and deep learning for link prediction. In the literature,
most of the well-known link prediction approaches focus on heuristics, which are
domain-specific and ignore the evolutionary behavior of the networks. They mainly
work on static networks. From the last decade, several machine learning approaches
have been applied to improve link prediction performance. In such approaches, the
challenging task is to represent features in a format suitable for the application,
which vastly affects the performance results. M. A. Hasan et al. [15] proposed a
seminal work on link prediction using supervised learning in which three types of
features of graph viz., proximity features, aggregated features, and topological fea-
tures are employed with several classifiers. Likewise, Doppa et al. [16] put forward
works based on a supervised approach on link prediction where k-means classifier
employed on feature vectors. Recently, deep learning, a new direction in machine
learning have been proposed in the literature. The seminal works based on deep
models, for examples, stacked denoising autoencoders (SDAE) [17] and convolu-
tional neural networks (CNN) [18] have shown their great potential of representing
and learning features in computer vision and natural language processing. One
problem of conventional deep learning models is the independent and identically
distribution of the input, which cannot model relational data. To overcome this
issue, H. Wang et al. [31] employed a Bayesian deep learning framework that learns
relational data (network data) effectively. They jointly model high-dimensional node
attributes and link structures in their framework and product of Gaussian as an in-
ference approach. Xiaoyi Li et al. [32] introduced a novel deep learning framework,
namely Conditional Temporal Restricted Boltzmann Machine (ctRBM), that cap-
tures the evolutionary patterns of networks (i.e., dynamic networks). Their frame-
work is based on the joint inferential effects of seed nodes and their local neighbor’s
influences. [33] proposes a supervised framework of deep learning where two differ-
ent architectures show their competitive results with the state-of-the-art.

Graph convolutional neural networks (GCNs) [34] are the recent class of deep net-
work approaches used in network embedding, node classification, and link predic-
tion. The model learns representation from a localized first-order approximation of
spectral convolutions. Thomas N. Kipf et al. [29] introduced a framework based on
GCN that uses a simple inner product decoder and learns node features of struc-
tured graph data. In this paper [65], the author considers the link prediction task as
a collaborative filtering problem, where they treated the nodes as items and edges
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like the rating in the recommendation system and proposed a non-negative matrix
factorization approach combined with a bagging technique to predict which nodes
are expected to connect. Similarly [64], a unified framework has been proposed
for link prediction tasks based on non-negative matrix factorization with coupling
multivariate information where they have used both the internal latent feature
information and external node attribute information of the network. Different ap-
proaches have been used for role extraction in the network. In [63], RolX an unsu-
pervised learning approach has been proposed where it automatically determines
the underlying structural roles in a network. It also assigns a mixed-membership
of these extracted roles to each node in the network. The author has analyzed dif-
ferent methodologies, research issues, and characteristics that should be considered
during the role analysis.

3 Proposed Work

3.1 Network Architecture

The proposed architecture is an unsupervised framework of deep learning model
which maps the adjacency matrix of the given graph into the node-features matrix.
The architecture does not need any hand-crafted (manual selection) features; rather,
it extracts important features automatically. The overall architecture has been di-
vided into two stages. The first stage consists of the autoencoder neural network,
which is an unsupervised framework of deep learning that uses backpropagation to
update synaptic weights. It mainly consists of two parts encoder and decoder. The
encoding layer compresses its input to a lower-dimensional code, known as latent
representation. The objective of the decoding layer is to reconstruct the input using
this compressed code. Clearly, an autoencoder can be considered as a dimensional
reduction technique. The encoder maps the input data to latent representation or
feature vector, and this vector can further be used in downside the prediction task.
Through this model, we get only the important features that are needed to repre-
sent the graph by filtering out the unnecessary details from the graph. We have used
this feature vector as a subset of our final node-feature matrix. The second stage
uses the given latent representation from the neural network to find out the roles in
the graph. Using these roles, we have assigned a mixed-membership of roles to each
node in the graph network, giving a node-role matrix, which acts as an additional
feature set for our node-feature matrix. In summary, to get the final Node-feature
matrix, we have concatenated the feature vector, which we get after the encoder
layer from the autoencoder neural network with the node-role matrix. In the pro-
posed architecture, the first hidden layer consists of 16 neurons and the second
hidden layer (or latent representation) contains 8 neurons (called latent variables).
The learning rate is set to a low value of 0.01 in descent gradient optimization
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during the learning process. The workflow of our proposed architecture has been
shown in Figure 1.
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Fig. 1: The Deep Autoencoder Framework.

3.2 Problem characterization for deep autoencoder framework.

Considering a simple undirected network (also applicable to directed and weighted
networks), G(V,E), where V is the set of vertices (or nodes) and E is the set of
edges. The given graph network can be represented as an adjacency matrix A ∈
R|V |×|V |. Inputs to the neural network is a matrix, which is the adjacency matrix
A. Aim of the deep autoencoder is to learn low dimensional latent representation
Z ∈ R|V |×F2 for the nodes with the constraint of minimization of the reconstruction
error (loss). Other half of the architecture aims to find the node-role matrix of
dimension R ∈ R|V |×r with the help of feature vector Z. The main focus of the
overall architecture is to find the node-feature matrix of dimension F ∈ R|V |×F .

3.3 Preprocessing.

Input to the proposed model is a normalized adjacency matrix (ANorm), which is
the output of the preprocessing step. Normally, neural architectures use the original
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adjacency matrix in a layer-wise propagation function that causes a change in
the scale of feature vectors. That is, larger degree nodes have more contribution
(i.e., feature value), and smaller degree nodes have lower feature values in the
feature representation. The different scales of input feature values are problematic in
training those networks that use stochastic gradient descent algorithms. To mitigate
this problem, the original adjacency matrix is normalized by taking the average
of corresponding neighboring nodes features as described in the paper [34]. The
symmetric version of this normalization is expressed as follows

ANorm = D̃
−1
2 ÃD̃

−1
2 (1)

where Ã (i.e. A + I,that enforces to include own features also) is the adjacency
matrix of the network and D̃ is the node degree matrix of Ã.

3.4 Roles Extraction.

After getting a latent representation of the graph from the neural network, we have
a feature matrix Z ∈ R|V |×F2 , the next step of our algorithm is to generate a rank
r approximation PQ ≈ Z, where P ∈ R|V |×r represents the node-roles relationship
and Q ∈ Rr×F2 define how each identified roles contributes to estimated feature
values. To do this, we have used Non-negative Matrix Factorization as it aims
to find two non-negative factor matrices which simplify the interpretation of the
node-roles relationship. Since we have not defined the number of roles required, we
decided to use the Minimum Description Length criterion [37], to find the optimal
number on roles r as described in the paper that results in the best compression.
Mathematically, it can be written as,

minimize‖Z − PQ‖2F w.r.t. P,Q s.t. P,Q ≥ 0 (2)

In the last step, we have added both the feature matrix Z and node-roles matrix P
such that F = Z + P , where F ∈ R|V |×(F2+r) is overall features set that is derived
from the dataset. Finally, for each node pair, cosine similarity [35] index is used to
find similarity between them. Once the score of non-observed links is available in the
sorted order, we can compute the Area under the Operating receiver characteristics
(AUROC) and average precision to evaluate the accuracy of our approach.

4 Experimental Study

4.1 Evaluation metrics

Consider a simple undirected graph/network G(V,E) where V characterizes a
vertex-set and E, the edge-set. Although a simple graph is considered so, paral-
lel edges and self-loops are not permitted. In a simple graph, a universal set U
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contains a total |V |(|V |−1)2 edges, where |V | represents the size of the vertex-set in
the graph. (U −E) number of edges is termed as the set of nonexistent links, some
of which may be missing that may appear in the future. Finding out such missing
links is the aim of link prediction [14]. The accuracy of an algorithm can be tested
by partitioning the set of observed links E into two sets. ET , a training set about
which we know at all, and a test set (or validation set), EP in which there are edges
which is not present in the training set. Therefore, ET ∪EP = E and ET ∩EP = φ
with this strategy, it may be possible that some edges may not ever be chosen in
the test set or others could be repeated, which results in statistical bias. This prob-
lem is overcome by a procedure of sampling known as K-fold cross-validation. To
calculate the accuracy of algorithm, generally, two metrics are used: AUROC [40],
and precision [41], [42]. Based on the above definitions, the following observations
can be made in a graph:
Total possible links in the graph = U ,
Existent links = E,
Non-existent links = U − E,
Observed links = ET = Training set,
Non-Observed links = U − ET ,
Missing links = EP = Test set.

Area under the Operating receiver characteristics (AUROC) Given a
ranking of total non-observed links, the term AUROC is estimated as the likeli-
hood that a chosen missing link is given a higher score than a randomly chosen
non-existent link. Each time two edges are selected randomly one from each set
and compared their scores. Then, AUROC can be calculated using the following
expression:

AUROC =
n1 + 0.5× n2

n
(3)

where, n is total independent comparisons, n1 is number of times the missing link
with a higher score,n2 is number of times they have same score. The standard value
of AUROC should be 0.5 which will be possible under an independent and identical
distribution. A score greater than 0.5 represents improved accuracy.

Precision Given the ranking of non-observed links, precision can be characterized
as the proportion of relevant items to the number of items chosen i.e.,

Precision =
Lr
L

(4)

where, L represents predicted links having top scores, and Lr, the number of pre-
dicted links which are correct.
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4.2 Datasets

The performance of the proposed method has been evaluated on twelve real-world
network datasets collected from diverse areas.

– Karate1 [43]: A friendship network of 34 members of karate club at a US uni-
versity.

– Dolphins1 [44]: A social network of dolphins living in Doubtful Sound in New
Zealand.

– Lesmiserables1 [45]: Co appearance network of characters of the novel LesMis-
erables.

– Adjnoun1 [46]: Adjacency networkof common adjectives and nouns in the novel
David Copperfield by Charles Dickens.

– Football1 [47]: American football games network played between Division IA
colleges during regular season Fall 2000.

– Celegansneural1 [49]: A neural network of C. elegans compiled by D. Watts and
S. Strogatz in which each node refers a neuron and, an edges joining two neurons
either by a synapse or a gap junction.

– Netscience1 [46] is a co-authorship network of scientists working on network
theory and experiment compiled by Newman in 2006.

– Political bolgs1 [5] is a directed network of hyperlinks in political blogs of US
election 2004.

– Jazz2 [48] is the collaboration network of jazz musicians.
– Usair973 is an airline network of US where a node represents an airport and an

edge shows the connectivity between two airports.
– Facebook4 [50] is social network of user profiles and network data extracted

from 10 ego-networks.
– Ca-GrQc4 is collaboration network from the e-print arXiv of General Relativity

and Quantum Cosmology.

Table 1 shows some basic topological properties of the considered networks datasets.|V |
and |E| are the total numbers of nodes and edges of the networks respectively.〈D〉
represents node pairs average shortest distance, 〈K〉 the average degree and 〈C〉
the average clustering coefficient of the network. r and H are the coefficient of
assortativity and degree of heterogeneity respectively.

4.3 Baseline methods

– Common Neighbor(CN). In a given network or graph, the size of common neigh-
bors for a given pair of nodes x and y is calculated as the size of intersection of

1 http://www-personal.umich.edu/ mejn/netdata/
2 http://konect.uni-koblenz.de/networks/
3 http://vlado.fmf.uni-lj.si/pub/networks/data/
4 https://snap.stanford.edu/data/
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Table 1: Topological informations of real-world network datasets

Datasets |V | |E| 〈D〉 〈K〉 〈C〉 r H

Karate 34 78 2.337 4.588 0.570 -0.475 1.693
Dolphins 62 159 3.302 5.129 0.258 -0.043 1.326
Lesmiserables 77 254 2.606 6.597 0.573 -0.165 1.827
Adjnoun 112 425 2.512 7.589 0.172 -0.129 1.814
Football 115 613 2.486 10.661 0.403 0.162 1.006
Jazz 198 2742 2.235 27.697 0.620 0.020 1.395
Celegansneural 297 2148 2.447 14.456 0.308 -0.163 1.800
Usair97 332 2126 2.738 12.807 0.749 -0.207 3.463
Political blogs 1490 16718 2.738 22.440 0.361 -0.221 3.621
Netscience 1589 2742 5.823 3.451 0.878 0.461 2.010
Facebook 4039 88234 3.693 43.691 0.617 0.063 2.439
Ca-GrQc 5242 14496 6.049 5.531 0.687 0.659 3.051

the two nodes neighborhoods.

S(x, y) = |Γ (x) ∩ Γ (y)| (5)

where Γ (x) and Γ (y) are neighbors of the node x and y respectively.The like-
lihood of the existence of a link between x and y increases with the number
of common neighbors between them. In a collaboration network, Newman cal-
culated this quantity and demonstrated that the probability of collaboration
between two nodes depends upon the common neighbors of the selected nodes.
Kossinets [52] and Neal [53] investigated a large social network and recom-
mended that two students are more likely to be friends who are having numer-
ous common friends. It has been observed that the common neighbor approach
performs well on most real-world networks and beats other complex methods.

– Jaccard Coefficient(JC). The Jaccard coefficient is defined as the probability
of selection of common neighbors of pairwise vertices from all the neighbors of
either vertex.

S(x, y) =
|Γ (x) ∩ Γ (y)|
|Γ (x) ∪ Γ (y)|

(6)

– Resource Allocation (RA). Consider two non-adjacent vertices x and y. Suppose
node x sends some resources to y through the common nodes of both x and y
then the similarity between the two vertices is computed in terms of resources
sent from x to y. This is expressed mathematically as

S(x, y) =
∑

z∈Γ (x)∩Γ (y)

1

kz
(7)

– Preferential Attachment(PA). The idea of preferential attachment is applied to
generate a growing scale-free network. The term growing represents the incre-
mental nature of nodes over time in the network. The likelihood incrementing
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new connection associated with a node x is proportional to kx, the degree of
the node. Preferential attachment score between two nodes x and y can be
computed as

S(x, y) = kx ∗ ky (8)

– Node Clustering Coefficient(CCLP). This index is also based on the clustering
coefficient property of the network in which the clustering coefficients of all the
common neighbors of a seed node pair are computed and summed to find the
final similarity score of the pair. Mathematically, this index can be expressed
as follows

S(x, y) =
∑

z∈Γ (x)∩Γ (y)

C(z) (9)

where

C(z) =
t(z)

kz(kz − 1)
(10)

and kz is the degree of node z and t(z) is the total triangles passing through
the node z.

– CARIndex. CAR-based indices are presented based on the assumption that
the link existence between two nodes increases if their common neighbors are
members of local community (LCP theory) [56].

S(x, y) = CN(x, y)×
∑

z∈Γ (x)∩Γ (y)

|γ(z)|
2

(11)

where CN(x, y) is common neighbour of (x, y) and γ(z) is the subset of neigh-
bors of node z that are also common neighbors of x and y.

– Katz Index. It directly aggregates over all the paths between x and y and
dumps exponentially for longer paths to penalize them. It can be expressed
mathematically as

S(x, y) =
∞∑
l=1

βl|paths<l>x,y | (12)

where, paths<l>x,y is considered as the set of total l length paths between x and
y, β is a damping factor that controls the path weights.

– Node2vec(N2V). This is a node embedding technique where it learns a low
dimensional continuous representation of nodes in a graph with the objective of
preserving the neighborhood structure.
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Table 2: Avg. Precision

CN JC RA PA CCLP CAR Katz N2V ALP

Karate 0.148878 0.130261 0.069634 0.134948 0.162239 0.017582 0.260558 0.041504 0.653197
Dolphins 0.179974 0.205618 0.050494 0.082726 0.189028 0.007007 0.110008 0.024493 0.610708
Lesmiserables 0.249618 0.366998 0.249818 0.085681 0.256686 0.148050 0.085832 0.146678 0.701639
Adjnoun 0.079462 0.076121 0.018148 0.067761 0.084578 0.008218 0.105588 0.011761 0.242644
Football 0.459779 0.447029 0.111022 0.092703 0.468967 0.061658 0.178761 0.114445 0.681193
Jazz 0.326022 0.367671 0.319647 0.106431 0.328317 0.351645 0.263667 0.086058 0.691399
Celegansneural 0.118607 0.134162 0.036424 0.048702 0.146307 0.011771 0.051729 0.018931 0.743431
Usair97 0.126467 0.271941 0.231041 0.263769 0.141365 0.204706 0.050021 0.029793 0.370255
Political blogs 0.079613 0.146614 0.061253 0.015059 0.088426 0.063305 0.021715 0.008462 0.106545
Netscience 0.392733 0.433671 0.128983 0.002171 0.430501 0.108762 0.204778 0.081755 0.587527
Facebook 0.244687 0.172462 0.440321 0.019037 0.238218 0.235341 0.002152 0.125269 0.314704
Ca-GrQc 0.223600 0.063274 0.133345 0.019163 0.253608 0.217245 0.046797 0.048952 0.381180

Table 3: AUROC

CN JC RA PA CCLP CAR Katz N2V ALP

Karate 0.693750 0.628375 0.757500 0.760375 0.656438 0.550500 0.611500 0.721125 0.897395
Dolphins 0.745418 0.769799 0.822843 0.726425 0.618911 0.357150 0.826348 0.750734 0.882697
Lesmiserables 0.889440 0.871515 0.934390 0.699676 0.888291 0.695770 0.912502 0.854812 0.906194
Adjnoun 0.665667 0.568315 0.647079 0.735380 0.653959 0.450198 0.658491 0.613725 0.743431
Football 0.873762 0.859288 0.854359 0.252409 0.813651 0.585301 0.854977 0.862271 0.879024
Jazz 0.948143 0.959044 0.963302 0.789540 0.955104 0.931445 0.452756 0.873276 0.909838
Celegansneural 0.815419 0.792798 0.848494 0.735148 0.872517 0.450223 0.416356 0.795693 0.720588
Usair97 0.958332 0.914826 0.946785 0.905626 0.957295 0.772429 0.50310 0.884882 0.838057
Political blogs 0.941012 0.907954 0.939749 0.934223 0.938549 0.739912 0.345143 0.866696 0.781857
Netscience 0.944599 0.953620 0.944769 0.639099 0.897433 0.532846 0.939401 0.892410 0.966444
Facebook 0.991824 0.989581 0.995177 0.832809 0.992504 0.944786 0.492362 0.991560 0.894836
Ca-GrQc 0.921563 0.929400 0.913091 0.741728 0.892601 0.605524 0.718201 0.908955 0.849303

4.4 Experiments Result Analysis

Accuracy Analysis: Table 2 shows the average precision results of the proposed
method ALP with the baseline methods. Best accuracy values are shown in bold-
face against each network. We observe that the proposed method gives the best
result on ten out of twelve network datasets, as shown in the table. Our method per-
forms much better on all the datasets except Political blogs and Facebook dataset;
RA is the best performer on Facebook, and JC is best on the Political blogs dataset.
However, ALP shows the second-best result in both the datasets.

The AUROC results of the proposed and baseline methods are shown in Table
3. ALP performs best on karate, dolphins, Adjnoun, Football, and Netscience net-
works. RA best performs on Lesmiserables, Jazz, and Facebook networks, while CN
is the best performer index on Usair97 and Political blogs networks. Jaccard (JC)
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shows the best result on Ca-GrQc that are collaboration networks of scientists in
computer science and general relativity. CCLP is best on Celegansneural network.

Robustness Analysis: Figure 2. shows the robustness measure of the existing
and the proposed ALP method. The figure presents the effects of random noise
(i.e., links are randomly added to the network) and random removal links. This
concept is well explained in the Zhang, P. et al. [58] work on robustness under
noisy environments. The parameter “Ratio′′ on the X-axis defines the fraction of
noisy links that are added or deleted to/from the training data as described in the
above work. Positive values of this parameter represent a fraction of added links
to the training data, and negative values represent a fraction of deleted links from
the training data. Figure 2. shows the dependence of AUROC on these fraction of
added and removal links.

ALP shows the best robustness with higher accuracy compared to the baseline
methods against both added and deleted links on Karate and Dolphin networks
[Fig.2a and 2c]. On Lesmiserables data, ALP shows better AUROC after the CN,
JC, and CCLP; however, it shows the least fluctuation (highly robust) in the AU-
ROC values [Fig. 2b]. It is the average performing method on Adjnoun, Jazz, Us-
air97, and Netscience datasets with AUROC values lower than CN, JC, and CCLP
on Jazz Usair97 and Netscience [Figs. 2d, 2f and 2h], moreover it shows better ro-
bustness for both added and deleted links as shown in the figures. PA and Node2Vec
are the best performing indices on Adjnoun and Netscience data, respectively. ALP
shows the comparable result on the Football dataset [Fig. 2e]. One thing to note
that the fluctuation of the AUROC values for random deleted links is greater than
randomly added links, which is similar to the work [58]. In other words, random
links deletion are more vulnerable to link prediction. Due to computational issues,
robustness results of the remaining datasets are not shown.

Statistical Test: In this experiment, we conduct a statistical test [59] to show
the significant difference between the proposed method (ALP) with the baseline
methods. We perform the Friedman test [60], [61], to analyze whether there is a
significant difference among multiple methods. It is a non-parametric counterpart
of the repeated measures ANOVA. If the test result shows a significant difference,
we further applied post hoc analysis to check the degree of rejection of each hy-
pothesis. For the post hoc analysis, several methods are available in the literature,
and we applied the post hoc counterpart of the Friedman test known as the Post
hoc Friedman Conover method.

The Friedman test results for both average precision (Avg. Precision) and area
under the ROC curve (AUROC) are shown in Table 4. The observed test values
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of the Friedman test for both Avg. Precision and AUROC are 60.222 and 35.956
which are greater than the corresponding χ2 value (i.e., χ2(c,Df )). With the con-
fidence interval α =0.05 and degree of freedom Df = 8, χ2 value is 15.51, obtained
from the χ2 table available in the literature. This results in the rejection of the
null hypothesis, as shown in the last column of the table. This test confirms that
there is a significant difference among the methods for both the accuracy measures.
The proposed method ALP is considered as the control algorithm in the post hoc
analysis.

5 Conclusion

In this work, we incorporate an unsupervised framework of deep learning viz., graph
autoencoder for link prediction in networks. Employing this architecture, useful
latent representation of nodes is extracted and using these node embeddings, and
the similarity matrix is computed for all node pairs. Moreover, missing links are
identified based on this similarity matrix. The proposed method (ALP) is evaluated
on average precision and AUROC, which show its superiority over the baseline
methods. Robustness analysis against the noisy links (added or deleted) is shown,
which represents the effectiveness of the proposed method.
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Table 4: The Friedman test on Avg. Precision and area under the ROC Curve
Dataset IS-value Test value State Result

CN JC RA PA CCLP CAR Katz N2V ALP Ff Is Ff > χ2 ?

Avg. Precision Karate 0.148878 0.130261 0.069634 0.134948 0.162239 0.017582 0.260558 0.041504 0.653197 60.222 Null Hypothesis Rejected
Dolphins 0.179974 0.205618 0.050494 0.082726 0.189028 0.007007 0.110008 0.024493 0.610708
Lesmiserables 0.249618 0.366998 0.249818 0.085681 0.256686 0.148050 0.085832 0.146678 0.701639
Adjnoun 0.079462 0.076121 0.018148 0.067761 0.084578 0.008218 0.105588 0.011761 0.242644
Football 0.459779 0.447029 0.111022 0.092703 0.468967 0.061658 0.178761 0.114445 0.681193
Jazz 0.326022 0.367671 0.319647 0.106431 0.328317 0.351645 0.263667 0.086058 0.691399
Celegansneural 0.118607 0.134162 0.036424 0.048702 0.146307 0.011771 0.051729 0.018931 0.743431
Usair97 0.126467 0.271941 0.231041 0.263769 0.141365 0.204706 0.050021 0.029793 0.370255
Political blogs 0.079613 0.146614 0.061253 0.015059 0.088426 0.063305 0.021715 0.008462 0.106545
Netscience 0.392733 0.433671 0.128983 0.002171 0.434501 0.108762 0.204778 0.081755 0.587527
Facebook 0.244687 0.172462 0.440321 0.019037 0.238218 0.235341 0.002152 0.125269 0.314704
Ca-GrQc 0.223600 0.063274 0.133345 0.019163 0.253608 0.217245 0.046797 0.048952 0.381180

AUROC Karate 0.693750 0.628375 0.757500 0.760375 0.656438 0.550500 0.611500 0.721125 0.897395 35.956 Null Hypothesis Rejected
Dolphins 0.745418 0.769799 0.822843 0.726425 0.618911 0.357150 0.826348 0.750734 0.882697
Lesmiserables 0.889440 0.871515 0.934390 0.699676 0.888291 0.695770 0.912502 0.854812 0.906194
Adjnoun 0.665667 0.568315 0.647079 0.735380 0.653959 0.450198 0.658491 0.613725 0.743431
Football 0.873762 0.859288 0.854359 0.252409 0.813651 0.585301 0.854977 0.862271 0.879024
Jazz 0.948143 0.959044 0.963302 0.789540 0.955104 0.931445 0.452756 0.873276 0.909838
Celegansneural 0.815419 0.792798 0.848494 0.735148 0.872517 0.450223 0.416356 0.795693 0.720588
Usair97 0.958332 0.914826 0.946785 0.905626 0.957295 0.772429 0.500310 0.884882 0.838057
Political blogs 0.941012 0.907954 0.939749 0.934223 0.938549 0.739912 0.345143 0.866696 0.781857
Netscience 0.944599 0.95362 0.944769 0.639099 0.897433 0.532846 0.939401 0.892410 0.966444
Facebook 0.991824 0.989581 0.995177 0.832809 0.238218 0.944786 0.492362 0.991560 0.894836
Ca-GrQc 0.921563 0.929400 0.913091 0.741728 0.892601 0.605524 0.718201 0.908955 0.849303

(a) Karate (b) Lesmiserables (c) Dolphin

(d) Adjnoun (e) Football (f) Jazz

(g) Celegansneural (h) Usair97 (i) Netscience

Fig. 2: Robustness
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