
David C. Wyld et al. (Eds): NLP, JSE, MLTEC, DMS, NeTIOT, ITCS, SIP, CST, ARIA - 2020

pp. 299-306, 2020. CS & IT - CSCP 2020 DOI: 10.5121/csit.2020.101422

RESOLVING CODE SMELLS IN SOFTWARE

PRODUCT LINE USING REFACTORING AND

REVERSE ENGINEERING

Sami Ouali

College of Applied Sciences, Ibri, Oman

ABSTRACT

Software Product Lines (SPL) are recognized as a successful approach to reuse in software

development. Its purpose is to reduce production costs. This approach allows products to be

different with respect of particular characteristics and constraints in order to cover different

markets. Software Product Line engineering is the production process in product lines. It

exploits the commonalities between software products, but also to preserve the ability to vary

the functionality between these products. Sometimes, an inappropriate implementation of SPL

during this process can conduct to code smells or code anomalies. Code smells are considered

as problems in source code which can have an impact on the quality of the derived products of

an SPL. The same problem can be present in many derived products from an SPL due to reuse.

A possible solution to this problem can be the refactoring which can improve the internal

structure of source code without altering external behavior. This paper proposes an approach
for building SPL from source code. Its purpose is to reduce code smells in the obtained SPL

using refactoring source code. Another part of the approach consists on obtained SPL’s design

based on reverse engineering.

KEYWORDS

Software Product Line, Code smells, Refactoring, Reverse Engineering.

1. INTRODUCTION

Software Product Line (SPL) is a family of related software systems with common and variable

functions whose first goal is reusability [1]. The SPL approach intends at upgrading software

productivity and quality by relying on the similarity that exists among software systems, and by
managing a family of software systems in a reuse-based way. SPL aims to minimize effort and

cost of development and maintenance, to reduce time-to-market and to ameliorate quality of

software [2], [3], [4]. Unsuitable development of a SPLs may give rise to bad programming

practices, called code anomalies, also referred in the literature as "code smells" [5].

Code smell is often considered as key indicator of something wrong in the system code [5] or

undesired code source property. Like all software systems, artifacts of a SPL may contains
several code anomalies [6]. Therefore, if these code smells are not systematically removed, the

SPL’s quality may degrade due to evolution. Code Smells are very-known in classic and single

software systems [7]. However, in the context of SPL, Code Smell is a young topic. [8] proposed
a specific SPL’s smell, called “Variability Smells”. [9] discussed two types of bad smells related

on SPL: Architectural Bad Smells and Code Bad Smells. [6] and [10] proposed detection

strategies for anomalies in SPL.

http://airccse.org/cscp.html
http://airccse.org/csit/V10N14.html
https://doi.org/10.5121/csit.2020.101422

300 Computer Science & Information Technology (CS & IT)

The main goal of this work is to propose a solution to reduce code smells in SPL. Unsuitable
development of a SPLs may give rise to bad practices such as architectural smells and code

smells. Our work tries to reduce development problems through the source code analyze of

product variants to detect and correct code smells, identify the variability and build the variability

model of SPL. Detecting and refactoring code anomalies in source code from the start give us a
chance to develop a SPL with a high quality. Thus, the reverse engineering is a preliminary

strategy for a clean SPL and to obtain the variability model of SPL.

This paper is organized as follow. Section 2 provides background on code smells, SPL and

reverse engineering. Section 3 presents the related work. Section 4 shows the proposed approach.

The last section concludes and presents future work.

2. BACKGROUND

2.1. Software Product Lines

The evolution of software development and the growth of product numbers have motivated the

emergence of many reuse concepts. Software development communities recognize SPL as a

successful approach for reuse [11], [12]. This success results from the reduction of production
costs and time to market. SPL is a software development paradigm that share common feature to

satisfy the specific needs of particular market segment [13].

Software product line’s approach focus on the sharing of a reference architecture between

products. These products can differ and the approach allows this variation with respect of

particular characteristics and constraints. This difference is the variability present in SPL, which
is the ability of a core asset to adapt to usages in the different product contexts that are within the

product line scope [14]. Variability must be anticipated and continuously maintained to obtain

wished results. The production process of product lines is well known as software product line

engineering (SPLE) which tries to maximize the commonalities and reduce the cost of variations
[15]. The SPLE process focuses on two levels of engineering [14]: Domain Engineering (DE) and

Application Engineering (AE). DE focuses on developing reusable artifacts which are used in AE

to construct a specific product. Fig. 1 presents the SPLE process.

Figure 1. Domain Engineering and Application Engineering [14]

Computer Science & Information Technology (CS & IT) 301

2.2. Code smells

A software system evolves over time. Its evolution is one of the critical phases of the process of

its development. Moreover, the software system changes, moreover the structure of the program
deteriorates. So, complexity increases until it becomes more profitable to rewrite it from the

scratch. Which can involve threats on the software quality.

Software system’s bad quality is a key indicator of existing bad programming practices, also

known in the literature as source code flaw, code smells or code anomalies [5].

Code smells are usually symptoms of low-level problems such as anti-patterns. They are
indicators of something wrong that structures in the source code [5], their presence can affect in

maintenance and slow down software development.

In literature, different Code Smells have been defined. For instance, in Fowler’s book [5], Beck

define a list of 22 code smells, for example “Long Method” is a method that is too long and has

too many responsibilities, so it makes code hard to maintain, understand, change, extend, debug
and reuse. “Large Class” is a class contains many fields, methods or lines of code, means that a

class is trying to do too much. “Duplicated Code” has negative impacts on software development

and maintenance. For example, they increase bug occurrences: if an instance of duplicate code is

changed in one part of the code for fixing bugs or adding new features, code may require various
changes in other parts all over the source code simultaneously; if the correspondents are not

changed inadvertently, bugs are newly introduced to them [16].

2.3. Reverse Engineering

Reverse Engineering is the process of analyzing a system. The purpose is to identify system
structure, its components and the relationships between them [17].

Reverse Engineering can create representations of the system through transformations between or
within different abstraction levels. It can also extract design information from source code [17]

and may be used to re-implement the system.

The reverse engineering process can be done through automated analysis or manual annotations.
The next steps concern the identification of program structure and the establishment of

traceability matrix.

2.4. Refactoring

Refactoring’s purpose is to improve the quality of an existing code [5]. This process tries through
the software system changing to improve its internal structure without having an impact on the

external behavior of the code.

Refactoring can be a solution for code smells. This process takes as input a source code with

problems and outputs good ones. The resulting code can be reused. The refactoring allows the

code smells identification. Also, it offers the possibility to change the original code containing
these code smells by code restructuration to get an output code without code smells.

302 Computer Science & Information Technology (CS & IT)

3. RELATED WORK

Common industrial practices lead to the development of similar software products, then they are

usually managed to each other using simple techniques, e.g., copy-paste-modify. This is bad

practice leading a low software quality, as we mentioned above the “Duplicated Code” code

smell. During the past few years, several studies have investigated two things: how to detect code
smells [18], [19], [20], [21], [22], [23] and how to correct [5], [18], [24] them in a single

software. To the best of our knowledge we found few studies [6], [8], [9], [10], [25], [26] that can

be considered related to our research.

[9] performed a Systematic Literature Review (SLR) to find and classify published work about

bad smells in the context of SPL and their respective refactoring methods. They classified 70

different bad smells divided in three groups: (i) Code Smells; that are symptoms of something
wrong in the source code, (ii) Architectural Smells; that are an indication of problem in higher

levels of abstraction and (iii) hybrid Smells; that are a combination between architectural smell

and code smells. [26] proposed a method to derive metric thresholds for software product lines.
The goal is to define thresholds values that each metric can take in order to identify potential

problems in the implementation of features. They use 4 software metrics: Lines of Code (LOC)

counts the number of uncommented lines of code per class. The value of this metric indicates the
size of a class. Coupling between Objects (CBO) counts the number of classes called by a given

class. CBO measures the degree of coupling among classes. Weight Method per Class (WMC)

counts the number of methods in a class. This metric can be used to estimate the complexity of a

class. Number of Constant Refinements (NCR) counts the number of refinements that a constant
has. Its value indicates how complex the relationship between a constant and its features is. Their

study is based on 33 SPLs which are divided into three benchmarks according to their size in

terms of Lines of Code (LOC).

Benchmark 1 includes all 33 SPLs. Benchmark 2 includes 22 SPLs with more than 300 LOC.

Finally, Benchmark 3 is composed of 14 SPLs with more than 1,000 LOC. The goal of creating
three different benchmarks is to analyze the results with varying levels of thresholds. In term of

that they illustrate a detection strategy to detect two types of code smells, God Class and Lazy

Class. Figure 2 presents the way to identify God Class and Lazy Class.

Figure 2. Code Smells identification.

Apel et al. [8] proposed bad smell specific to SPLs called variability smell; that is an indicator of

an existing undesired property in all kinds of artifacts in an SPL, such as feature models.

Fernandes and Figueiredo [6] investigated code anomalies in the context of SPLs, they propose
new detection strategies for well-known anomalies in SPL such as God Class and God Method,

ultimately they propose new anomalies and their detection strategies and they propose supporting

tool for the proposed detection.

Computer Science & Information Technology (CS & IT) 303

De Andrade et al. [25] conducted an exploratory study that aims at characterizing architectural
smells in the context of software product line.

Abilio et al. [10] proposed means to detect three code smells (God Method, God Class, and

Shotgun Surgery) in Feature-Oriented Programming source code, FOP is a specific technique to
deal with the modularization of features in SPL. They performed an exploratory study with eight

SPLs developed with AHEAD; which is an FOP language, to detect code smells in a SPL by

using 16 source code metrics. These metrics corresponds to the detection of three code smells
mentioned above. Table 1 presents some of these metrics.

Table 1. Metrics used to detect code smells [10]

Considering the discussed related work, we propose an approach aiming to develop an SPL with
minimal code smells risks.

4. PROPOSED APPROACH

The main goals in our study are to (i) investigate the state of the art on code smells in the context
of SPLs as we show above, (ii) propose a solution to decrease code smells in developing software

product lines.

Unsuitable development of a SPLs may give rise to bad practices such as architectural smells and

code smells that induce maintenance and development costs problems. Therefore, we propose to

build an SPL from the scratch using reverse engineering methods, which can help us to detect and

correct code smells from the start. Thus, we can guarantee great quality of SPL.

The main challenge in this task is to analyze the source code of product variants in order to (i)

detect and correct code smells, (ii) identify the variability among the products, (iii) associate
them with features and (iiii) regroup the features into a variability model. The proposed approach

is object-oriented language and only uses as input the source code of product variants.

First of all, we use as input source code of product variants then we apply detection strategies for
code anomalies as duplicated code, uncovered code by unit tests and too complex code, after that

we correct them using an automated bad smell correction technique based on the generation of

refactoring concepts. Refactoring is a change made to the internal structure of software to rewrite
the code, to “clean it up”, to make it easier to understand and cheaper to modify without changing

its observable behavior [27]. In step 2 and after having a clean code, we are interested in the

determination of the semantic relations between the names of the classes, the names of the
methods and the attributes of all the source codes of the existing products having different

terminologies and not necessary having the same meaning. In term of that we are interested in the

harmonization of names, and more particularly in unifying fragments of source codes. During

unification, we determine the semantic correspondences between the source code elements based
on semantic knowledge base YAGO [28].

304 Computer Science & Information Technology (CS & IT)

YAGO is a semantic knowledge base derived from many data sources like Wikipedia, WordNet,
WikiData, GeoNames, and other. Aside YAGO, we will base on Machine Learning methods to

get better semantic correspondences between source code elements. In fact, Machine Learning

algorithms can be helpful in the classification of the features. Machine Learning proved his

efficiency in many complex domains like Predictive Analytics [29], image processing [30], and
signal processing… At the end of this step, all names with a semantic relationship would be

harmonized and can be further analyzed in the next step of identifying commonalities and

variability. Thus, we extract features by identification of common block (CB) and variation
blocks (VB). CB groups the elements present in all the products while VB groups the elements

present in certain products and not all of them. The role of these blocks is to group subsets to

implement features. Once the common block and the variation blocks are completed, the
extraction of mandatory elements and variation atomic blocks is supported, we associate them to

features. Once the common properties and variability of product variants are identified, the

feature model(s) will be constructed. Consequently, we can obtain one or more than one SPL.

Our approach is presented in Figure3.

Figure 3. Proposed Approach.

5. CONCLUSIONS

Software reuse is an important challenge in software engineering. Software Product Line is one

of the technique used to ensure the success of this challenge. The obtained products can contain
reused parts or components. These parts can include some problems in their source code more

known as Code Smells. These problems can propagate between the different products.

A solution to avoid the Code smells in source code, is refactoring which can improve the internal

structure of software system by trying to find the problem and avoid it using some restructuration

techniques.

In this paper, we try to present an approach which combines refactoring to eliminate code smells

and reverse engineering to propagate modifications to the design level. Our purpose is to obtain a

software product line model free from code smells.

Our future works will be the refinement of the different parts of the approach. Also, we will

choose the appropriate tools to use in our prototype.

Computer Science & Information Technology (CS & IT) 305

REFERENCES

[1] Lee, S.hyun. & Kim Mi Na, (2008) “This is my paper”, ABC Transactions on ECE, Vol. 10, No. 5,

pp120-122.

[2] Gizem, Aksahya & Ayese, Ozcan (2009) Coomunications & Networks, Network Books, ABC

Publishers.

[1] Rincón, L. F. et al., 2014. An ontological rule-based approach for analyzing dead and false optional

features in feature models. In Electronic Notes in Theoretical Computer Sciences, Vol. 302, pp 111–

132.
[2] Jacobson, I. et al., 1992. Object-oriented software engineering: a use case driven approach. Addison-

Wesley, USA.

[3] Xue, Y., 2011. Reengineering legacy software products into software product line based on automatic

variability analysis. Proceedings of the 33rd International Conference on Software Engineering, New

York, USA, pp. 1114–1117.

[4] Ouali, S. et al., 2012. From Intentions to Software Design using an Intentional Software Product Line

Meta-Model. Proceeding of the 8th International Conference on Innovations in Information

Technology, Al Ain, UAE.

[5] Fowler, M., 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston,

MA, USA.

[6] Fernandes, E. and Figueiredo, E., 2017. Detecting Code Anomalies in Software Product Lines”.

Proceedings of 7th Brazilian Conference on Software: Theory and Practice, Maringa, Brazil, pp. 49–
55.

[7] Zhang, M. et al., 2011. Code Bad Smells: A Review of Current Knowledge. In Journal of Software

Maintenance and Evolution: Research and Practice, Wiley Online Library, pp. 179-202.

[8] Apel, S. et al., 2013. Feature-Oriented Software Product Lines: Concepts and Implementation.

Springer.

[9] Vale, G. et al., 2014. Bad Smells in Software Product Lines: A Systematic Review. Proceedings of

the 8th Brazilian Symposium on Software Components, Architectures and Reuse (SBCARS), Brazil,

pp. 84-94.

[10] Abilio, R. et al., 2015. Detecting Code Smells in Software Product Lines-An Exploratory Study.

Proceeding of the 12th International Conference on Information Technology - New Generations, pp.

433–438.
[11] Ouali, S. et al., 2011. Framework for evolving software product line. In International Journal of

Software Engineering & Applications, Vol. 2, No. 2, pp. 34-51.

[12] Weiss, D. M. and LAI, C. T. R., 1999. Software Product-Line Engineering: A Family-Based Software

Development Process. Addison-Wesley.

[13] Pohl, K. and Metzger, A., 2006. Software Product Line testing. In Communication of the ACM,

pp78-81.

[14] Czarnecki, K. and Eisenecker, W., 2000. Generative Programming: Methods, Tools, and

Applications. Addison-Wesley.

[15] Thiel, S. and Hein, A., 2002. Modeling and Using Product Line Variability in Automotive Systems.

In IEEE Software Vol.19, No.4, pp. 66-72.

[16] Hotta, K. et al., 2012. An Empirical Study on the Impact of Duplicate Code. Advances in Software

Engineering.
[17] Chikofsky, E. J. and Cross, J. H., 1990. Reverse engineering and design recovery: A taxonomy. IN

IEEE Software, Vol.7, pp. 13–17.

[18] Moha, N. et al., 2010. DECOR: A Method for the Specification and Detection of Code and Design

Smells. Transactions on Software Engineering, Vol. 36, No. 1, pp. 20-36.

[19] Sjoberg, D. et al., 2013. Quantifying the effect of code smells on maintenance effort. Software

Engineering IEEE Transactions, Vol. 39, No. 8, pp. 1144–1156.

[20] Van Emden, E. and Moonen, L., 2002. Java quality assurance by detecting code smells. Proceeding

Working Conf. Reverse Engineering, IEEE Computer Society Press, pp. 97—107.

[21] Marinescu, C. et al., 2005. Iplasma: An integrated platform for quality assessment of object-oriented

design. Proceedings of the 21st IEEE International Conference on Software Maintenance, Budapest,

Hungary.
[22] Liu, X. and Zhang, C., 2016. DT: a detection tool to automatically detect code smell in software

project. Proceedings of the 4th Int. Conf. Mach. Mater. Inf. Technol. Appl., vol. 71, pp. 681–684.

306 Computer Science & Information Technology (CS & IT)

[23] Fontana, F. et al., 2012. Automatic Detection of Bad Smells in Code: An Experimental Assessment.

In Journal of Object Technology.

[24] Campbell, D. and Miller, M., 2008. Designing refactoring tools for developers. Proceedings of the

2nd Workshop on Refactoring Tools, New York, NY, USA.

[25] De Andrade, H. S. et al., 2014. Architectural bad smells in software product lines. Proceedings of the
1st International Conference Dependable Secur. Cloud Comput. Archit., pp. 1–6.

[26] Vale, G. and Figueiredo, E., 2015. A Method to Derive Metric Thresholds for Software Product

Lines. Proceedings 29th Brazilian Symposium on Software Engineering, pp. 110–119.

[27] Regulwar, G. B. and Tugnayat, R. M., 2012. Bad Smelling Concept in Software Refactoring.

International Proceedings of Economics Development and Research, Vol.45, pp. 56–61.

[28] Rebele, T. et al., 2016. YAGO: a Multilingual Knowledge Base from Wikipedia, Wordnet, and

Geonames. Proceeding of the 15th International Semantic Web Conference, Kobe, Japan.

[29] Demsar, J. et al., 2004. Orange: From experimental machine learning to interactive data mining.

Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in

Databases, Pisa, Italy.

[30] Ebrahimi, K. S. et al., 2013. Combining modality specific deep neural networks for emotion

recognition in video. Proceedings of the 15th ACM on International conference on multimodal
interaction, Sydney, Australia.

AUTHORS

Sami Ouali is an assistant professor in the College of Applied Sciences of lbri in Oman.

He is a member of the RIADI labs, Tunisia. His research interests lie in the areas of
software engineering and software product line.

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license

http://airccse.org/

	Abstract
	Keywords
	Software Product Line, Code smells, Refactoring, Reverse Engineering.

