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ABSTRACT 
 
Many robot applications depend on solving the Complete Coverage Path Problem (CCPP). 

Specifically, robot vacuum cleaners have seen increased use in recent years, and some models 

offer room mapping capability using sensors such as LiDAR. With the addition of room 

mapping, applied robotic cleaning has begun to transition from random walk and heuristic path 

planning into an environment-aware approach. In this paper, a novel solution for pathfinding 

and navigation of indoor robot cleaners is proposed. The proposed solution plans a path from a 

priori cellular decomposition of the work environment. The planned path achieves complete 

coverage on the map and reduces duplicate coverage. The solution is implemented inside the 

ROS framework, and is validated with Gazebo simulation. Metrics to evaluate the performance 

of the proposed algorithm seek to evaluate the efficiency by speed, duplicate coverage and 

distance travelled. 
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1. INTRODUCTION 
 

As the robot vacuum cleaner technology [1] makes its way into the homes of millions, a need 

arises to further increase their efficiency. Current robot cleaners often adopt a random walk 

approach to area coverage [2]. Indeed, given enough time the monte-carlo approach will 

eventually achieve full coverage of the cleaning area, but it is certainly suboptimal in terms of 

coverage duplication, coverage speed and coverage completeness. With the recent emergence of 

cleaning robots equipped with Lidar, it is now possible for the robot to map its environment and 

plan its path accordingly, to optimize for certain performance metrics. For the application of 

robotic vacuum cleaners specifically, reasonable metrics to optimize along include speed, and 

coverage completeness [3]. 

 

In order to attack the complete coverage path problem, a representation of the robot’s 

environment is required. Usually, the working space of the robot is divided into small square 

cells, each assigned a value that indicates how likely, or in our case, whether, an obstacle is 

present [4]. This approach, termed the occupancy grid, allows a graph representation of the 

workspace, and correspondingly, path finding and search algorithms can be applied. However, 

the occupancy grid model as-is is deeply flawed for tasks such as cleaning. The occupancy grid 

method is discrete, when in reality the set of possible robot positions is continuous. This 
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discretization is likely to produce variation in performance between a map with orthogonal 
features and one with features not aligned to the occupancy grid orthogonally. Most existing 

research avoids this issue because they use mostly orthogonal features in their performance 

evaluation [5][6]. In addition to lack of consideration for non-orthogonal features, the robot’s 

footprint is not considered at the path generation level. Existing research adopts the method of 

obstacle inflation, as in marking the neighbouring areas of an obstacle as obstacles also [7][8]. 

This method addresses robot footprint potentially overlapping with obstacles in real life, but does 

not address potential duplicate coverage caused by the robot being larger than the occupancy grid 

cell size. On the evaluation stage, many existing explorations evaluate their algorithms within the 

occupancy grid model. These papers focus on whether creating the shortest path as represented 

by the occupancy grid. However, the shortest path approach does not guarantee optimized 

traversal time. For example, two paths that have identical length in the occupancy grid can have 

very different traversal time in real life, due to one requiring frequent acceleration and 

deceleration.  

 

While existing solutions focus on a shortest distance complete coverage path, this paper proposes 

a more complete solution that addresses various problems that arise when paths represented in the 

occupancy grid are applied to real-life environments. The effectiveness of this approach is 

evaluated in lifelike computer simulation of a robot cleaning task scenario. The first problem is 

that paths on the occupancy grid representation are an ordered collection of poses. In many 

existing explorations, the robot’s footprint is not considered. However, for tasks like room 

cleaning, the footprint of the robot is crucial to create a path that not only visits all the points on 

the occupancy grid, but also one that visits all the points in the physical working space with as 

little duplication as possible. In many cases the occupancy grid cells are smaller than the robot 

footprint, and the generated path may cause duplicate coverage if it visits all the cells in the 

occupancy grid. This path planning algorithm accounts for the footprint of the robot. The 

algorithm is a modified version of Depth First Search (DFS) [15]. Instead of marking each 

traversed node in the graph representation as visited, the algorithm marks all nodes within the 

robot’s footprint on the occupancy grid as visited. The center node of the footprint is the midpoint 

of the wheel axis in a differential drive robot. The algorithm will only write the center node’s 

position at each step of the traversal into the path. The proposed algorithm can then recursively 

visit cells neighboring the center cell and mark the entire robot footprint surrounding that cell as 

visited, as long as the robot’s footprint is clear from visited points or obstacles. When the 

modified DFS visits a cell that has no available neighbors, it finds the nearest unvisited cell and 

uses Dijkstra [16] to find a path to that block. Thus, the occupancy grid’s resolution does not 

have to match the robot’s size, and can be smaller by the robot’s diameter by an arbitrary (ideally 

integer) positive number of times. With the robot footprint accounted for at the path-generation 

level, the proposed algorithm significantly reduces duplicate coverage caused by occupancy grid 

resolution being incompatible with actual robot size, saving time and energy. In addition to 

optimizations to reduce duplicated coverage, the proposed algorithm also takes into account the 

effects of target pose distancing on navigation. Given that unit error in heading leads to error in 

position proportional to distance, and that embedded controllers often have limited memory space 

and processing capacity to handle a high density of target poses, the target poses generated from 

the algorithm requires post processing. By pruning points in a straight line, the proposed 

algorithm increases smoothness of motion and reduces computational load.  

 

Using Gazebo with a cleaning application scenario with complex geometries such as oblique 

walls, small pillars and acute angle corners, the path generation algorithm’s performance is 

evaluated. A simulated Turtlebot3 Burger completes the planned path in this evaluation. After the 

path generation algorithm is run, the sum of the number of times nodes are repeated is calculated. 
The duplication rate can then be calculated by dividing the number of instances of duplicated 

visits by the total number of points in the path. This happens before the post-processing, and is 
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therefore a relatively fine-grained measure of duplicated coverage. During the robot run, 

performance metrics are collected. Total distance traveled is measured by summing the Euclidean 

distance between the current ground truth pose and the last ground truth pose.  Time is also 

measured. With these two metrics speeds can be calculated. Speed reduction rate measures the 

extent to which the robot is slowed down by having to decelerate and accelerate, as opposed to 

operating near the top speed most of the time. This is calculated by dividing the empirical 

average speed by the maximum speed parameter of Turtlebot3 Burger. These factors are crucial 

to the effectiveness and satisfaction of robot cleaning products.  

  

The rest of the paper is organized as follows: Section 2 gives the details on the challenges that we 

met during the design, implementation and evaluation of the algorithm; Section 3 focuses on the 

details of our solutions corresponding to the challenges that we mentioned in Section 2; Section 4 

presents the relevant details about the evaluation of the path planner following by presenting 

related works in Section 5. Finally, Section 6 summarizes the results of this paper, as well as 

providing some insights on future works that could further enrich this paper. 

 

2. CHALLENGES 
 

To obtain a path generation and execution solution that is optimized for speed and coverage, a 

few challenges have been identified as follows. 

 

2.1. Challenge 1: The Need of Optimized Path Post-Processing 

 

DFS generates path points that are equally spaced apart. This creates many superfluous path 

points that lie on the same straight line. Removing these superfluous points creates significant 

savings in computation resources. 

 

2.2. Challenge 2: The Complexity of Navigation Control 

 

Traditional closed loop control creates curved trajectories for differential drive robots. This is 

problematic because the robot can run into obstacles unexpectedly. For maximum conformity to 

generate paths, the trajectory between any pair of path points needs to be a straight line. For equal 

angular speed, increased linear speed leads to increased disturbance in position. Therefore, the 

angular position control loop is scaled inverse to linear speed, such that deviation from the ideal 

trajectory is minimized. 

 

2.3. Challenge 3: The Automation of the Occupancy Grid Transformation 

 

The occupancy map model allows a high level of abstraction of the real-life environment such 

that existing algorithms can easily apply. However, translating the results of these abstracted 

algorithms into practice presents a set of problems. Firstly, gapping as implemented in ROS [12] 

has faulty coordinate transformation parameters. Therefore, manual calculation is required to set 

the parameters with which a transform between map coordinates and simulation world 

coordinates is conducted. Secondly, occupancy grid’s limited resolution and poor representation 

of oblique lines and curves meant that it cannot be relied on for closely tracing the edges of 

obstacles. Instead, the obstacles as represented on occupancy grid must be inflated by the radius 

of the robot. 
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2.4. Challenge4: The Difference between Algorithm-Based Coverage and the Real 

Coverage  
 

If coverage were to be measured by whether the robot has indeed visited all the points, as 

represented by the occupancy grid, it would almost always be 100%, by definition of a full 

coverage path. Therefore. measurements beyond the precision of the occupancy grid is required 

for a meaningful evaluation of robot performance. By approximating the robot trajectory as a 

series of short straight lines, the coverage area can be approximated as a series of quadrilaterals, 

with the four corners being the position of the left and right ends of the robot cleaning tool, at the 

beginning and the end of the straight line. As the sample rate of robot position increases, the 

accuracy of this approach increases. The four edges of each quadrilateral is represented by a 

linear inequality. This representation can then be operated on to calculate if an area has duplicate 

coverage. 

 

3. SOLUTION 
 

3.1. Overview 
 

The proposed algorithm in this paper is implemented with Python. Before post-processing to 

reduce density of points in the path, the duplication rate of the path is measured. After a path is 

generated and pose-processed, it is stored in a YAML file. A Turtlebot3 Burger is simulated in 

Gazebo, integrated with ROS [13]. A ROS node serves as the navigation stack, by reading the 

path file and issuing velocity commands that take the robot to the current target pose by the 

shortest straight line before repeating the same process for the next. 

 

3.2. Path Finding in Action 
 

The simulations are carried out with a model of the Turtlebot3 Burger, a differential drive robot 

equipped with a laser ranger. Given that differential drive is commonly used in indoor cleaning 

robots, Turtlebot3 Burger is a good approximation of real-life hardware that relies on full 

coverage path planning. 

 
 

Figure 1: Turtlebot3 Burger 

 

Robot Operation System, or ROS for short, is a framework that facilitates code reuse in robotics 

by packaging robot subsystem information in a distributed network. The network, or “ROS 
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runtime graph”, consists of nodes broadcasting information, or “messages” about the robot, 

organized under different topics: heading, speed, sensor data, control commands, etc. Messages 

are shared through a subscription model, where a node broadcasts its messages independent of 

receivers. With ROS runtime network, robot subsystem code can be encapsulated, abstracted and 

reused. Within the ROS framework, a navigation node is written to carry out the planned paths. 

 

 
 

Figure 2: Robot workspace in Gazebo, Rviz LiDAR data view and occupancy grid view 

 

While ROS provides a general framework of a robot system, Gazebo integrates with ROS to 

provide realistic simulations of real-life robot use cases. With realistic rigid-body dynamics, 3D 

graphics, and sensor noise generation, Gazebo is a reliable tool for evaluating robot software 

performance. Using Gazebo, Turtlebot3 Burger, and an example room, is simulated. 

Additionally, Gazebo messages provide a ground truth for robot position, with which many 

performance metrics, such as coverage completeness, coverage overlap or coverage time can be 

calculated. 

 

Rviz is a ROS tool that visualizes ROS topics. Using Rviz, the actual path traveled by Turtlebot3 

Burger is visualized. 

 

In order to create a path, a priori knowledge of the robot’s environment is required. Turtlebot3 

Burger’s laser rangefinder is used to carry out this task. When mapping the room, Turtlebot3 

Burger travels in straight lines, and makes a turn at a random angle when its bumper sensors 

detect an obstacle. Given sufficient time, Turtlebot3 Burger can obtain a perspective on all areas 

in the room to provide a complete map. Meanwhile, odometry provides the relative position of 

the robot. With this relative position, as well as laser range sensor data, an occupancy grid is 

created using Gmapping from OpenSLAM. The occupancy grid is a 2D list of occupancy states 

(occupied, free or indeterminate), indexed by their positions. 

 

3.3. Path Generation 
 

Path planning algorithm is implemented in a python [14] script using Dijkstar library. Before 

generating the path, the script inflates obstacles and walls by a safety margin of 5 cells. After the 

inflation, the occupancy grid bmp file is read, and occupancy status of each tile stored in a 2-

dimensional list. The robot is represented by a square block of tiles approximating its footprint. 

The center of this square block is the rotation axis of the differential drive chassis. A modified 

DFS is implemented, with the aim of having the center cell traverse the occupancy grid. At each 

move, the entire block of cells is checked for obstacles, such that every movement of the center 

cell is clear for the entire robot. The center cell’s coordinates are then stored in a list, which 

would be the list of goal points. Meanwhile, the script marks the surrounding area of the visited 

center cell that is a radius of the block back in the goal points list as visited. Thus, each move of 

the center cell would not cause the robot footprint to intersect with a section already covered. 

When DFS runs into a block where no neighbors of the center cell may be added without running 
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into a visited cell, Dijkstra is used to find the nearest cell by Manhattan distance and generate a 

path to that cell. After a list of path points is generated, a function iterates through the list to 

check for collinear sections of goal points and returns a new goal points list that trims the excess 

points, while maintaining an arbitrary minimum density of goal points to prevent open loop 

behavior in the navigation stack. As the new goal points list is generated, the heading angle 

between each point in the path and the next point is calculated, and appended to the current point 

in the iteration. This list of goal poses is then formatted into YAML and stored. 

 

 
 

Figure 3: An Excerpt of the Path Generation and Cleaning Algorithm    
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3.4. Navigation 
 

In order to determine how planned paths, perform despite imperfections induced by real-world 

physics, a navigation node is written to execute the planned paths in Gazebo. The navigation 

node reads the list of goal poses from the aforementioned YAML file. The node then calls a 

function that carries out the navigation between the robot’s actual pose and the desired pose. 

When the robot reaches the vicinity of the goal pose, the navigation function exits and is called 

again with the next goal pose. Similar to real-life cleaning robots, absolute localization is carried 

out with odometry with the knowledge of robot initial pose. For each target the navigation node 

performs two operations. The first is to drive the robot from the initial position to the target, and 

the second is to rotate the robot to align with the orientation of the target pose. For the first step, 

the algorithm uses a proportional control loop to minimize two variables: heading error and 

position error. The target heading during this step is the angle between the initial position and the 

target position. When this parameter is minimized, only straight movement is required to reach 

the target. The angular speed in this step is proportional to heading error, and furthermore, to the 

inverse of linear speed. Because displacement for a given angular speed is proportional to linear 

speed, the heading adjustment angular speed is proportional to its inverse such that the heading 

adjustment behavior is consistent for varying distances between target and initial position. The 

linear speed is proportional to distance error raised to a power of larger than one, such that when 

the distance is below 1, the robot slows down and eventually stops.                          
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Figure 4: An Excerpt of the Navigation Algorithm 

 

4. EXPERIMENT 

 
The robot carries out the generated path within the Gazebo/ROS simulation environment. The 

navigation node takes in a desired pose and publishes commands to take the robot to the pose in a 

straight line maintained by closed loop control of heading. During the run, several pieces of data 

are calculated: area covered, area duplicated, distance travelled time taken, and poses not 

reached. 
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4.1. Occupancy Grid Efficiency 
 

The most straightforward approach to measure the efficiency of the generated path is to utilize 

the generated points in path with the map dimensions. This shows a very accurate calculation on 

the coverage, as well as the duplicated points in the path. Even though the grid does not fully 

represent the actual coverage situation in reality, the efficiency result provides the evaluation 

from the algorithm foundation.  

 

As shown in Table 1, the generated path only produces a 7.8% duplicated path while covering the 

100% space. 

 
Table 1: The Experiment Result of the Occupancy Grid Efficiency 

 

Map Total Pixels in Path Duplication Instances Duplication Rate 

Indoor 1 9740 755 7.8% 

  

          
 
Figure 5: Generated path with duplicated blocks in gray (left) and target points after post-processing (right) 

 

4.2. Simulation-Based Completeness 
 

The area swept over subtracted by area duplicated yields the real covered area. The real covered 

area compared to the total free area on the map yields the real completeness of the coverage 

algorithm. This piece of data is obtained by a polygonal approximation of the area covered by the 

robot, and approaches a high accuracy as the robot position sample rate increases. 

  

4.3. Simulation-Based Efficiency 
 

The average speed of the robot is obtained by calculating the Euclidean distance over a traversal 

of points in the path sequence and dividing this distance by time taken. The average speed of the 

robot can be used to determine the amount of acceleration, deceleration and turns the robot goes 

through. The average speed as a percentage of the maximum speed represents how efficient the 

planned path is optimized for robot kinematics. 
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Table 2: The Experiment Result of the Simulation-based Efficiency 

 

Map Total Distance 

Traveled (m) 

Total Time (s) Average Speed 

(m/s) 

Speed Reduction Rate 

Indoor 1 241 3260 0.074 74% 

 

 
 

Figure 6: Robot trajectory during execution of generated path 

 

5. DISCUSSION 
 

5.1. Experimental Analysis 
 

The generated path displays occupancy grid completeness by making sure that all points in the 

inflated occupancy grid are visited. It is also able to do this efficiently, with a duplication rate of 

7.8%. It is worth noting that in real application, completeness can sometimes be sacrificed in 

favor of speed. Much of the duplicated coverage is caused by the robot travelling a long distance 

to visit one isolated cell. Given that it is difficult for humans to perceive the difference in 

cleaning results caused by the robot missing a number of small, isolated areas, coverage speed of 

this algorithm can be further improved by trimming points that are too costly to reach at little 

expense of completeness. The generated path follows a zig-zag scanning pattern at most places. 

The zig-zag pattern can be horizontal or vertical in orientation. More importantly, the proposed 

algorithm does not enforce scanning one row/column at a time, and is able to efficiently fill one 

local area bounded by obstacles for the most part and backtracking to another divided area. Given 

that our implementation of DFS weighs neighboring blocks on Manhattan distance, and selects 

the first unvisited block in the nearest equidistant set of neighbors, the zig-zag pattern is 

expected. If neighboring blocks during the search are weighted by other preferences, DFS may 

produce different patterns. For example, a wall- following spiral pattern can be encouraged by 

decreasing the cost of blocks that are near an obstacle. 

 

The experimental validation shows that the proposed algorithm achieves complete coverage of 

the inflated occupancy grid even in environments that have a large number of oblique features. 

Using proportional control, the robot was able to follow the generated path to a precision such 

that there are no collisions throughout the test. Figure 6 shows the robot’s trajectory in a full run. 

During this run, the robot averages a speed that is 74% of the maximum speed. While this 

number is subject to influences such as the particular robot’s acceleration and deceleration 

capacity, it is true to Turtlebot3 specifically, due to Gazebo’s ability to handle robot kinematic 

constraints according to manufacturer's specifications. 
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5.2. Related Works 
 

Oh et al. attempts to create smoother movements by using a triangular cellular decomposition of 

the map [9]. We use the more traditional square cellular decomposition in the form of the 

occupancy grid, however, our methods of DFS path generation and duplicate coverage reduction 

does not depend on the shape of the cells, and can be extended to operate on an arbitrary 

connected graph as long as the geometric relationship between each node on the graph is defined 

(in a square cellular decomposition, neighboring cells are in the cardinal directions). 

  

De Carvalho et. al uses a series of movement templates [10], including straight forward, turn and 

U-turns to carry out their planned paths. They seek to incorporate geometric constraints and 

kinematic characteristics into path planning for optimal speed. We incorporate the geometric 

constraint of the robot at the path planning stage by applying a robot shaped mask that marks its 

vicinity as visited during the path search. Additionally, linear approximation of the path point 

collection in this paper reduces unnecessary turning when covering and smooths out the path, 

thus reducing acceleration and deceleration.  

 

Gonzalez et al. proposes Backtracking Spiral Algorithm, which generates a complete coverage 

path by spiraling from the perimeter of the environment inwards, and backtracking [5] to an 

unvisited region when the robot reaches the center of a local spiral. As DFS is a greedy 

algorithm, each path point is likely to be followed by its immediate neighbors on the occupancy 

grid. As a result, the proposed algorithm tends to continue in a straight line, and thus fills the map 

with zig-zag patterns. Whereas in the open space the spiral filling pattern is ostensibly better at 

reducing unnecessary acceleration, deceleration and turns, the superiority of the spiral filling 

pattern in this regard has not been established for all possible shapes of the workspace.   

 

Khan et al. uses a zig-zag pattern to scan the map [6]. When the zig-zag scan leaves regions 

uncovered, the paper proposes two-way proximity search to backtrack to the border of the 

unscanned region. Whereas the above paper enforces scanning in an arbitrary direction, there is 

no enforced orientation of zig-zag filling in DFS. 

  

Lee et. al improves upon the BSA approach by generating Bezier curves from the BSA path [11]. 

This is done to increase the smoothness of robot movement and reduce physical coverage time. 

This paper smooths out paths by constructing polylines from the collection of points in the path. 

Because DFS favors long straight paths, i.e. zig-zag patterns, the polyline method is more 

appropriate because it requires less angular acceleration for most of the path, whereas a Bezier 

curve would turn a set of points approximating a linear shape into a snaking path. 

 

6. CONCLUSIONS AND FUTURE WORK 
 

This paper proposes a novel path-motion planning solution for complete coverage in indoor 

differential robots. Cellular decomposition is implicitly applied when an occupancy grid is 

generated from SLAM. Using this cellular representation, an algorithm is used to visit all the 

cells in the occupancy grid. Beyond cell completeness, this paper seeks to maximize real 

coverage and reduce duplicate coverage by incorporating the robot’s shape into path generation. 

The algorithm is tested in the ROS/Gazebo environment where the simulated robot carries out the 

path generated with the proposed algorithm. The robot carries out a test run in the test 

environment, during which data such as area covered, duplicate coverage and time are collected 

to validate the feasibility of this paper’s proposal. The source of the completed implementation of 

the algorithm can be found at [17]. 
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Some limitations exist in this paper’s solution as-is. Firstly, this paper assumes complete a priori 

knowledge of the workspace, whereas real life applications may deal with unexpected obstacles. 

However, collisions can still be avoided using data from the cleaning robot’s sensor suite. 

Moreover, real-time re-planning may be implemented simply by deleting inaccessible cells from 

the path sequence. Secondly, the a priori workspace knowledge must be obtained using 

specialized sensors, such as LiDAR or RGB-D stereo camera. Both sensors have seen limited 

application in indoor robots, but high price precludes these sensors from thoroughly penetrating 

the market of home cleaning robots. Thirdly, the current path is represented by a poly-line 

approximated from the cell visit sequence generated by the proposed algorithm. For an accurate 

execution of the poly-line representation, the robot must decelerate at each node in the poly-line 

to perform a real pivot turn. This may lead to extra time consumption. This problem can be 

partially solved by rounding the corners in the poly-line to reduce need for braking.  

 

We would address the current solution’s limited ability in dealing with unexpected obstacles by 

incorporating real-time re-planning capabilities. We would also direct our focus to further post-

processing of the generated path for improved smoothness. 
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