
David C. Wyld et al. (Eds): ACITY, DPPR, VLSI, WeST, DSA, CNDC, IoTE, AIAA, NLPTA - 2020

pp. 13-25, 2020. CS & IT - CSCP 2020 DOI: 10.5121/csit.2020.101502

AN OPTIMIZED CLEANING ROBOT

PATH GENERATION AND EXECUTION
SYSTEM USING CELLULAR

REPRESENTATION OF WORKSPACE

Qile He1 and Yu Sun2

1Webber Academy, Calgary, Alberta, Canada

2California State Polytechnic University, Pomona, USA

ABSTRACT

Many robot applications depend on solving the Complete Coverage Path Problem (CCPP).

Specifically, robot vacuum cleaners have seen increased use in recent years, and some models

offer room mapping capability using sensors such as LiDAR. With the addition of room

mapping, applied robotic cleaning has begun to transition from random walk and heuristic path

planning into an environment-aware approach. In this paper, a novel solution for pathfinding

and navigation of indoor robot cleaners is proposed. The proposed solution plans a path from a

priori cellular decomposition of the work environment. The planned path achieves complete

coverage on the map and reduces duplicate coverage. The solution is implemented inside the

ROS framework, and is validated with Gazebo simulation. Metrics to evaluate the performance

of the proposed algorithm seek to evaluate the efficiency by speed, duplicate coverage and

distance travelled.

KEYWORDS

Complete Coverage Path Planning, Mobile Robots, Graph Theory.

1. INTRODUCTION

As the robot vacuum cleaner technology [1] makes its way into the homes of millions, a need

arises to further increase their efficiency. Current robot cleaners often adopt a random walk

approach to area coverage [2]. Indeed, given enough time the monte-carlo approach will

eventually achieve full coverage of the cleaning area, but it is certainly suboptimal in terms of

coverage duplication, coverage speed and coverage completeness. With the recent emergence of

cleaning robots equipped with Lidar, it is now possible for the robot to map its environment and

plan its path accordingly, to optimize for certain performance metrics. For the application of

robotic vacuum cleaners specifically, reasonable metrics to optimize along include speed, and

coverage completeness [3].

In order to attack the complete coverage path problem, a representation of the robot’s

environment is required. Usually, the working space of the robot is divided into small square

cells, each assigned a value that indicates how likely, or in our case, whether, an obstacle is

present [4]. This approach, termed the occupancy grid, allows a graph representation of the

workspace, and correspondingly, path finding and search algorithms can be applied. However,

the occupancy grid model as-is is deeply flawed for tasks such as cleaning. The occupancy grid

method is discrete, when in reality the set of possible robot positions is continuous. This

http://airccse.org/cscp.html
http://airccse.org/csit/V10N15.html
https://doi.org/10.5121/csit.2020.101502

14 Computer Science & Information Technology (CS & IT)

discretization is likely to produce variation in performance between a map with orthogonal
features and one with features not aligned to the occupancy grid orthogonally. Most existing

research avoids this issue because they use mostly orthogonal features in their performance

evaluation [5][6]. In addition to lack of consideration for non-orthogonal features, the robot’s

footprint is not considered at the path generation level. Existing research adopts the method of

obstacle inflation, as in marking the neighbouring areas of an obstacle as obstacles also [7][8].

This method addresses robot footprint potentially overlapping with obstacles in real life, but does

not address potential duplicate coverage caused by the robot being larger than the occupancy grid

cell size. On the evaluation stage, many existing explorations evaluate their algorithms within the

occupancy grid model. These papers focus on whether creating the shortest path as represented

by the occupancy grid. However, the shortest path approach does not guarantee optimized

traversal time. For example, two paths that have identical length in the occupancy grid can have

very different traversal time in real life, due to one requiring frequent acceleration and

deceleration.

While existing solutions focus on a shortest distance complete coverage path, this paper proposes

a more complete solution that addresses various problems that arise when paths represented in the

occupancy grid are applied to real-life environments. The effectiveness of this approach is

evaluated in lifelike computer simulation of a robot cleaning task scenario. The first problem is

that paths on the occupancy grid representation are an ordered collection of poses. In many

existing explorations, the robot’s footprint is not considered. However, for tasks like room

cleaning, the footprint of the robot is crucial to create a path that not only visits all the points on

the occupancy grid, but also one that visits all the points in the physical working space with as

little duplication as possible. In many cases the occupancy grid cells are smaller than the robot

footprint, and the generated path may cause duplicate coverage if it visits all the cells in the

occupancy grid. This path planning algorithm accounts for the footprint of the robot. The

algorithm is a modified version of Depth First Search (DFS) [15]. Instead of marking each

traversed node in the graph representation as visited, the algorithm marks all nodes within the

robot’s footprint on the occupancy grid as visited. The center node of the footprint is the midpoint

of the wheel axis in a differential drive robot. The algorithm will only write the center node’s

position at each step of the traversal into the path. The proposed algorithm can then recursively

visit cells neighboring the center cell and mark the entire robot footprint surrounding that cell as

visited, as long as the robot’s footprint is clear from visited points or obstacles. When the

modified DFS visits a cell that has no available neighbors, it finds the nearest unvisited cell and

uses Dijkstra [16] to find a path to that block. Thus, the occupancy grid’s resolution does not

have to match the robot’s size, and can be smaller by the robot’s diameter by an arbitrary (ideally

integer) positive number of times. With the robot footprint accounted for at the path-generation

level, the proposed algorithm significantly reduces duplicate coverage caused by occupancy grid

resolution being incompatible with actual robot size, saving time and energy. In addition to

optimizations to reduce duplicated coverage, the proposed algorithm also takes into account the

effects of target pose distancing on navigation. Given that unit error in heading leads to error in

position proportional to distance, and that embedded controllers often have limited memory space

and processing capacity to handle a high density of target poses, the target poses generated from

the algorithm requires post processing. By pruning points in a straight line, the proposed

algorithm increases smoothness of motion and reduces computational load.

Using Gazebo with a cleaning application scenario with complex geometries such as oblique

walls, small pillars and acute angle corners, the path generation algorithm’s performance is

evaluated. A simulated Turtlebot3 Burger completes the planned path in this evaluation. After the

path generation algorithm is run, the sum of the number of times nodes are repeated is calculated.
The duplication rate can then be calculated by dividing the number of instances of duplicated

visits by the total number of points in the path. This happens before the post-processing, and is

Computer Science & Information Technology (CS & IT) 15

therefore a relatively fine-grained measure of duplicated coverage. During the robot run,

performance metrics are collected. Total distance traveled is measured by summing the Euclidean

distance between the current ground truth pose and the last ground truth pose. Time is also

measured. With these two metrics speeds can be calculated. Speed reduction rate measures the

extent to which the robot is slowed down by having to decelerate and accelerate, as opposed to

operating near the top speed most of the time. This is calculated by dividing the empirical

average speed by the maximum speed parameter of Turtlebot3 Burger. These factors are crucial

to the effectiveness and satisfaction of robot cleaning products.

The rest of the paper is organized as follows: Section 2 gives the details on the challenges that we

met during the design, implementation and evaluation of the algorithm; Section 3 focuses on the

details of our solutions corresponding to the challenges that we mentioned in Section 2; Section 4

presents the relevant details about the evaluation of the path planner following by presenting

related works in Section 5. Finally, Section 6 summarizes the results of this paper, as well as

providing some insights on future works that could further enrich this paper.

2. CHALLENGES

To obtain a path generation and execution solution that is optimized for speed and coverage, a

few challenges have been identified as follows.

2.1. Challenge 1: The Need of Optimized Path Post-Processing

DFS generates path points that are equally spaced apart. This creates many superfluous path

points that lie on the same straight line. Removing these superfluous points creates significant

savings in computation resources.

2.2. Challenge 2: The Complexity of Navigation Control

Traditional closed loop control creates curved trajectories for differential drive robots. This is

problematic because the robot can run into obstacles unexpectedly. For maximum conformity to

generate paths, the trajectory between any pair of path points needs to be a straight line. For equal

angular speed, increased linear speed leads to increased disturbance in position. Therefore, the

angular position control loop is scaled inverse to linear speed, such that deviation from the ideal

trajectory is minimized.

2.3. Challenge 3: The Automation of the Occupancy Grid Transformation

The occupancy map model allows a high level of abstraction of the real-life environment such

that existing algorithms can easily apply. However, translating the results of these abstracted

algorithms into practice presents a set of problems. Firstly, gapping as implemented in ROS [12]

has faulty coordinate transformation parameters. Therefore, manual calculation is required to set

the parameters with which a transform between map coordinates and simulation world

coordinates is conducted. Secondly, occupancy grid’s limited resolution and poor representation

of oblique lines and curves meant that it cannot be relied on for closely tracing the edges of

obstacles. Instead, the obstacles as represented on occupancy grid must be inflated by the radius

of the robot.

16 Computer Science & Information Technology (CS & IT)

2.4. Challenge4: The Difference between Algorithm-Based Coverage and the Real

Coverage

If coverage were to be measured by whether the robot has indeed visited all the points, as

represented by the occupancy grid, it would almost always be 100%, by definition of a full

coverage path. Therefore. measurements beyond the precision of the occupancy grid is required

for a meaningful evaluation of robot performance. By approximating the robot trajectory as a

series of short straight lines, the coverage area can be approximated as a series of quadrilaterals,

with the four corners being the position of the left and right ends of the robot cleaning tool, at the

beginning and the end of the straight line. As the sample rate of robot position increases, the

accuracy of this approach increases. The four edges of each quadrilateral is represented by a

linear inequality. This representation can then be operated on to calculate if an area has duplicate

coverage.

3. SOLUTION

3.1. Overview

The proposed algorithm in this paper is implemented with Python. Before post-processing to

reduce density of points in the path, the duplication rate of the path is measured. After a path is

generated and pose-processed, it is stored in a YAML file. A Turtlebot3 Burger is simulated in

Gazebo, integrated with ROS [13]. A ROS node serves as the navigation stack, by reading the

path file and issuing velocity commands that take the robot to the current target pose by the

shortest straight line before repeating the same process for the next.

3.2. Path Finding in Action

The simulations are carried out with a model of the Turtlebot3 Burger, a differential drive robot

equipped with a laser ranger. Given that differential drive is commonly used in indoor cleaning

robots, Turtlebot3 Burger is a good approximation of real-life hardware that relies on full

coverage path planning.

Figure 1: Turtlebot3 Burger

Robot Operation System, or ROS for short, is a framework that facilitates code reuse in robotics

by packaging robot subsystem information in a distributed network. The network, or “ROS

Computer Science & Information Technology (CS & IT) 17

runtime graph”, consists of nodes broadcasting information, or “messages” about the robot,

organized under different topics: heading, speed, sensor data, control commands, etc. Messages

are shared through a subscription model, where a node broadcasts its messages independent of

receivers. With ROS runtime network, robot subsystem code can be encapsulated, abstracted and

reused. Within the ROS framework, a navigation node is written to carry out the planned paths.

Figure 2: Robot workspace in Gazebo, Rviz LiDAR data view and occupancy grid view

While ROS provides a general framework of a robot system, Gazebo integrates with ROS to

provide realistic simulations of real-life robot use cases. With realistic rigid-body dynamics, 3D

graphics, and sensor noise generation, Gazebo is a reliable tool for evaluating robot software

performance. Using Gazebo, Turtlebot3 Burger, and an example room, is simulated.

Additionally, Gazebo messages provide a ground truth for robot position, with which many

performance metrics, such as coverage completeness, coverage overlap or coverage time can be

calculated.

Rviz is a ROS tool that visualizes ROS topics. Using Rviz, the actual path traveled by Turtlebot3

Burger is visualized.

In order to create a path, a priori knowledge of the robot’s environment is required. Turtlebot3

Burger’s laser rangefinder is used to carry out this task. When mapping the room, Turtlebot3

Burger travels in straight lines, and makes a turn at a random angle when its bumper sensors

detect an obstacle. Given sufficient time, Turtlebot3 Burger can obtain a perspective on all areas

in the room to provide a complete map. Meanwhile, odometry provides the relative position of

the robot. With this relative position, as well as laser range sensor data, an occupancy grid is

created using Gmapping from OpenSLAM. The occupancy grid is a 2D list of occupancy states

(occupied, free or indeterminate), indexed by their positions.

3.3. Path Generation

Path planning algorithm is implemented in a python [14] script using Dijkstar library. Before

generating the path, the script inflates obstacles and walls by a safety margin of 5 cells. After the

inflation, the occupancy grid bmp file is read, and occupancy status of each tile stored in a 2-

dimensional list. The robot is represented by a square block of tiles approximating its footprint.

The center of this square block is the rotation axis of the differential drive chassis. A modified

DFS is implemented, with the aim of having the center cell traverse the occupancy grid. At each

move, the entire block of cells is checked for obstacles, such that every movement of the center

cell is clear for the entire robot. The center cell’s coordinates are then stored in a list, which

would be the list of goal points. Meanwhile, the script marks the surrounding area of the visited

center cell that is a radius of the block back in the goal points list as visited. Thus, each move of

the center cell would not cause the robot footprint to intersect with a section already covered.

When DFS runs into a block where no neighbors of the center cell may be added without running

18 Computer Science & Information Technology (CS & IT)

into a visited cell, Dijkstra is used to find the nearest cell by Manhattan distance and generate a

path to that cell. After a list of path points is generated, a function iterates through the list to

check for collinear sections of goal points and returns a new goal points list that trims the excess

points, while maintaining an arbitrary minimum density of goal points to prevent open loop

behavior in the navigation stack. As the new goal points list is generated, the heading angle

between each point in the path and the next point is calculated, and appended to the current point

in the iteration. This list of goal poses is then formatted into YAML and stored.

Figure 3: An Excerpt of the Path Generation and Cleaning Algorithm

Computer Science & Information Technology (CS & IT) 19

3.4. Navigation

In order to determine how planned paths, perform despite imperfections induced by real-world

physics, a navigation node is written to execute the planned paths in Gazebo. The navigation

node reads the list of goal poses from the aforementioned YAML file. The node then calls a

function that carries out the navigation between the robot’s actual pose and the desired pose.

When the robot reaches the vicinity of the goal pose, the navigation function exits and is called

again with the next goal pose. Similar to real-life cleaning robots, absolute localization is carried

out with odometry with the knowledge of robot initial pose. For each target the navigation node

performs two operations. The first is to drive the robot from the initial position to the target, and

the second is to rotate the robot to align with the orientation of the target pose. For the first step,

the algorithm uses a proportional control loop to minimize two variables: heading error and

position error. The target heading during this step is the angle between the initial position and the

target position. When this parameter is minimized, only straight movement is required to reach

the target. The angular speed in this step is proportional to heading error, and furthermore, to the

inverse of linear speed. Because displacement for a given angular speed is proportional to linear

speed, the heading adjustment angular speed is proportional to its inverse such that the heading

adjustment behavior is consistent for varying distances between target and initial position. The

linear speed is proportional to distance error raised to a power of larger than one, such that when

the distance is below 1, the robot slows down and eventually stops.

20 Computer Science & Information Technology (CS & IT)

Figure 4: An Excerpt of the Navigation Algorithm

4. EXPERIMENT

The robot carries out the generated path within the Gazebo/ROS simulation environment. The

navigation node takes in a desired pose and publishes commands to take the robot to the pose in a

straight line maintained by closed loop control of heading. During the run, several pieces of data

are calculated: area covered, area duplicated, distance travelled time taken, and poses not

reached.

Computer Science & Information Technology (CS & IT) 21

4.1. Occupancy Grid Efficiency

The most straightforward approach to measure the efficiency of the generated path is to utilize

the generated points in path with the map dimensions. This shows a very accurate calculation on

the coverage, as well as the duplicated points in the path. Even though the grid does not fully

represent the actual coverage situation in reality, the efficiency result provides the evaluation

from the algorithm foundation.

As shown in Table 1, the generated path only produces a 7.8% duplicated path while covering the

100% space.

Table 1: The Experiment Result of the Occupancy Grid Efficiency

Map Total Pixels in Path Duplication Instances Duplication Rate

Indoor 1 9740 755 7.8%

Figure 5: Generated path with duplicated blocks in gray (left) and target points after post-processing (right)

4.2. Simulation-Based Completeness

The area swept over subtracted by area duplicated yields the real covered area. The real covered

area compared to the total free area on the map yields the real completeness of the coverage

algorithm. This piece of data is obtained by a polygonal approximation of the area covered by the

robot, and approaches a high accuracy as the robot position sample rate increases.

4.3. Simulation-Based Efficiency

The average speed of the robot is obtained by calculating the Euclidean distance over a traversal

of points in the path sequence and dividing this distance by time taken. The average speed of the

robot can be used to determine the amount of acceleration, deceleration and turns the robot goes

through. The average speed as a percentage of the maximum speed represents how efficient the

planned path is optimized for robot kinematics.

22 Computer Science & Information Technology (CS & IT)

Table 2: The Experiment Result of the Simulation-based Efficiency

Map Total Distance

Traveled (m)

Total Time (s) Average Speed

(m/s)

Speed Reduction Rate

Indoor 1 241 3260 0.074 74%

Figure 6: Robot trajectory during execution of generated path

5. DISCUSSION

5.1. Experimental Analysis

The generated path displays occupancy grid completeness by making sure that all points in the

inflated occupancy grid are visited. It is also able to do this efficiently, with a duplication rate of

7.8%. It is worth noting that in real application, completeness can sometimes be sacrificed in

favor of speed. Much of the duplicated coverage is caused by the robot travelling a long distance

to visit one isolated cell. Given that it is difficult for humans to perceive the difference in

cleaning results caused by the robot missing a number of small, isolated areas, coverage speed of

this algorithm can be further improved by trimming points that are too costly to reach at little

expense of completeness. The generated path follows a zig-zag scanning pattern at most places.

The zig-zag pattern can be horizontal or vertical in orientation. More importantly, the proposed

algorithm does not enforce scanning one row/column at a time, and is able to efficiently fill one

local area bounded by obstacles for the most part and backtracking to another divided area. Given

that our implementation of DFS weighs neighboring blocks on Manhattan distance, and selects

the first unvisited block in the nearest equidistant set of neighbors, the zig-zag pattern is

expected. If neighboring blocks during the search are weighted by other preferences, DFS may

produce different patterns. For example, a wall- following spiral pattern can be encouraged by

decreasing the cost of blocks that are near an obstacle.

The experimental validation shows that the proposed algorithm achieves complete coverage of

the inflated occupancy grid even in environments that have a large number of oblique features.

Using proportional control, the robot was able to follow the generated path to a precision such

that there are no collisions throughout the test. Figure 6 shows the robot’s trajectory in a full run.

During this run, the robot averages a speed that is 74% of the maximum speed. While this

number is subject to influences such as the particular robot’s acceleration and deceleration

capacity, it is true to Turtlebot3 specifically, due to Gazebo’s ability to handle robot kinematic

constraints according to manufacturer's specifications.

Computer Science & Information Technology (CS & IT) 23

5.2. Related Works

Oh et al. attempts to create smoother movements by using a triangular cellular decomposition of

the map [9]. We use the more traditional square cellular decomposition in the form of the

occupancy grid, however, our methods of DFS path generation and duplicate coverage reduction

does not depend on the shape of the cells, and can be extended to operate on an arbitrary

connected graph as long as the geometric relationship between each node on the graph is defined

(in a square cellular decomposition, neighboring cells are in the cardinal directions).

De Carvalho et. al uses a series of movement templates [10], including straight forward, turn and

U-turns to carry out their planned paths. They seek to incorporate geometric constraints and

kinematic characteristics into path planning for optimal speed. We incorporate the geometric

constraint of the robot at the path planning stage by applying a robot shaped mask that marks its

vicinity as visited during the path search. Additionally, linear approximation of the path point

collection in this paper reduces unnecessary turning when covering and smooths out the path,

thus reducing acceleration and deceleration.

Gonzalez et al. proposes Backtracking Spiral Algorithm, which generates a complete coverage

path by spiraling from the perimeter of the environment inwards, and backtracking [5] to an

unvisited region when the robot reaches the center of a local spiral. As DFS is a greedy

algorithm, each path point is likely to be followed by its immediate neighbors on the occupancy

grid. As a result, the proposed algorithm tends to continue in a straight line, and thus fills the map

with zig-zag patterns. Whereas in the open space the spiral filling pattern is ostensibly better at

reducing unnecessary acceleration, deceleration and turns, the superiority of the spiral filling

pattern in this regard has not been established for all possible shapes of the workspace.

Khan et al. uses a zig-zag pattern to scan the map [6]. When the zig-zag scan leaves regions

uncovered, the paper proposes two-way proximity search to backtrack to the border of the

unscanned region. Whereas the above paper enforces scanning in an arbitrary direction, there is

no enforced orientation of zig-zag filling in DFS.

Lee et. al improves upon the BSA approach by generating Bezier curves from the BSA path [11].

This is done to increase the smoothness of robot movement and reduce physical coverage time.

This paper smooths out paths by constructing polylines from the collection of points in the path.

Because DFS favors long straight paths, i.e. zig-zag patterns, the polyline method is more

appropriate because it requires less angular acceleration for most of the path, whereas a Bezier

curve would turn a set of points approximating a linear shape into a snaking path.

6. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel path-motion planning solution for complete coverage in indoor

differential robots. Cellular decomposition is implicitly applied when an occupancy grid is

generated from SLAM. Using this cellular representation, an algorithm is used to visit all the

cells in the occupancy grid. Beyond cell completeness, this paper seeks to maximize real

coverage and reduce duplicate coverage by incorporating the robot’s shape into path generation.

The algorithm is tested in the ROS/Gazebo environment where the simulated robot carries out the

path generated with the proposed algorithm. The robot carries out a test run in the test

environment, during which data such as area covered, duplicate coverage and time are collected

to validate the feasibility of this paper’s proposal. The source of the completed implementation of

the algorithm can be found at [17].

24 Computer Science & Information Technology (CS & IT)

Some limitations exist in this paper’s solution as-is. Firstly, this paper assumes complete a priori

knowledge of the workspace, whereas real life applications may deal with unexpected obstacles.

However, collisions can still be avoided using data from the cleaning robot’s sensor suite.

Moreover, real-time re-planning may be implemented simply by deleting inaccessible cells from

the path sequence. Secondly, the a priori workspace knowledge must be obtained using

specialized sensors, such as LiDAR or RGB-D stereo camera. Both sensors have seen limited

application in indoor robots, but high price precludes these sensors from thoroughly penetrating

the market of home cleaning robots. Thirdly, the current path is represented by a poly-line

approximated from the cell visit sequence generated by the proposed algorithm. For an accurate

execution of the poly-line representation, the robot must decelerate at each node in the poly-line

to perform a real pivot turn. This may lead to extra time consumption. This problem can be

partially solved by rounding the corners in the poly-line to reduce need for braking.

We would address the current solution’s limited ability in dealing with unexpected obstacles by

incorporating real-time re-planning capabilities. We would also direct our focus to further post-

processing of the generated path for improved smoothness.

REFERENCES

[1] Robot vacuum cleaner, by T. Charles, A. Parker, S. Lau, E. Blair, A. Henginer, E. Ng, E. DiBernardo,

R. Witman, M. Stout. (2006, Jan. 26). U.S. Patent 20060020369A1 [Online]. Available:

https://assignment.uspto.gov/patent/index.html#/patent/search/resultAssignment?searchInput=200600

20369&id=23224-384

[2] Random motion cleaner, by D. E. Gerber, K.L Thomas. (2002, Jun. 6). U.S. Patent 6571415B2

[Online]. Available: http://patft.uspto.gov/netacgi/nph-

Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=P

ALL&s1=6571415.PN.

[3] W. Brockman and D. Klingbiel, "Rating the Performance of Robotic Coverage Tasks," Proceedings

of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles July 5-7, 2004 Lisboa,

Portugal, vol. 22, no. 6, pp. 46-57, June 1989, doi: 10.1109/2.30720.

[4] A. Elfes, "Using occupancy grids for mobile robot perception and navigation," in Computer, vol. 22,

no. 6, pp. 46-57, June 1989, doi: 10.1109/2.30720.

[5] E. Gonzalez, O.Alvarez, Y.Diaz, C.Parra and C.Bustacara, "BSA: A Complete Coverage Algorithm,"

Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona,

Spain, 2005, pp. 2040-2044, doi: 10.1109/ROBOT.2005.1570413.

[6] A. Khan, I. Noreen, H. Ryu, N. L. Doh, and Z. Habib, “Online complete coverage path planning

using two-way proximity search,” Intel Serv Robotics 10, 229–240 (2017). doi: 10.1007/s11370-017-

0223-z

[7] J. Connors and G. Elkaim, "Analysis of a Spline Based, Obstacle Avoiding Path Planning

Algorithm," 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring, Dublin, 2007,

pp. 2565-2569, doi: 10.1109/VETECS.2007.528.

[8] Yuan, R., Zhang, F., Qu, J., Li, G. and Fu, Y., "A novel obstacle avoidance method based on multi-

information inflation map," Industrial Robot, Vol. 47 No. 2, pp. 253-265. https://doi.org/10.1108/IR-

05-2019-0114

[9] Joon Seop Oh, Yoon Ho Choi, Jin Bae Park and Y. F. Zheng, "Complete coverage navigation of

cleaning robots using triangular-cell-based map," in IEEE Transactions on Industrial Electronics, vol.

51, no. 3, pp. 718-726, June 2004, doi: 10.1109/TIE.2004.825197.

[10] R. N. De Carvalho, H. A. Vidal, P. Vieira and M. I. Ribeiro, "Complete coverage path planning and

guidance for cleaning robots," ISIE '97 Proceeding of the IEEE International Symposium on

Industrial Electronics, Guimaraes, Portugal, 1997, pp. 677-682 vol.2, doi: 10.1109/ISIE.1997.649051.

[11] T. Lee, S. Baek, Y, Choi, and S. Oh, “Smooth coverage path planning and control of mobile robots

based on high-resolution grid map representation,” Robotics and Autonomous Systems, Vol. 59, No.

10, pp. 801-812. https://doi.org/10.1016/j.robot.2011.06.002

[12] Quigley, Morgan, et al. "ROS: an open-source Robot Operating System." ICRA workshop on open

source software. Vol. 3. No. 3.2. 2009.

Computer Science & Information Technology (CS & IT) 25

[13] Santos, Joao Machado, David Portugal, and Rui P. Rocha. "An evaluation of 2D SLAM techniques

available in robot operating system." 2013 IEEE International Symposium on Safety, Security, and

Rescue Robotics (SSRR). IEEE, 2013.

[14] Quigley, Morgan, Brian Gerkey, and William D. Smart. Programming Robots with ROS: a practical

introduction to the Robot Operating System. " O'Reilly Media, Inc.", 2015.

[15] Korf, Richard E. "Depth-first iterative-deepening: An optimal admissible tree search." Artificial

intelligence 27.1 (1985): 97-109.

[16] Jianya, Yue Yang Gong. "An efficient implementation of shortest path algorithm based on dijkstra

algorithm [j]." Journal of Wuhan Technical University of Surveying and Mapping (Wtusm) 3.004

(1999).

[17] Project source code. https://github.com/Jackack/Turtlebot3_complete_coverage

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

