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ABSTRACT 
 
Optical Character Recognition (OCR) is the process of extracting digitized text from images of 

scanned documents. While OCR systems have already matured in many languages, they still 

have shortcomings in cursive languages with overlapping letters such as the Arabic language. 

This paper proposes a complete Arabic OCR system that takes a scanned image of Arabic 

Naskh script as an input and generates a corresponding digital document. Our Arabic OCR 
system consists of the following modules: Pre-processing, Word-level Feature Extraction, 

Character Segmentation, Character Recognition, and Post-processing. This paper also 

proposes an improved font-independent character segmentation algorithm that outperforms the 

state-of-the-art segmentation algorithms. Lastly, the paper proposes a neural network model for 

the character recognition task. The system has experimented on several open Arabic corpora 

datasets with an average character segmentation accuracy 98.06%, character recognition 

accuracy 99.89%, and overall system accuracy 97.94% achieving outstanding results compared 

to the state-of-the-art Arabic OCR systems. 
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1. INTRODUCTION 
 

The problem of Optical Character Recognition (OCR) has been the scope of research for many 
years [1]–[3] due to the need for an efficient method to digitize printed documents, prevent their 

loss and gradual unavoidable wear, as well as increase their accessibility and portability. The 

challenges that face Arabic OCR systems stem from the cursive and continuous nature of Arabic 
scripts. The presence of a semi-continuous baseline in Arabic text prevents the use of 

segmentation techniques proposed for other OCR systems. Moreover, the vertical overlapping of 

characters caused by ligatures means that segmenting a word along a single horizontal line will 

not achieve perfect segmentation. Furthermore, the challenges introduced by the nature of the 
Arabic script do not only affect character segmentation. The recognition of Arabic characters 

requires a huge training set since each character can have a different shape depending on its 

position in the word. Also, cases of constantly misclassifying a character as another specific one 
are frequent due to the presence of characters that are only told apart through the number of dots. 

In this paper, we propose a complete OCR pipeline for Arabic text that is language-independent 

and supports multiple fonts. Our system takes a scanned image of an Arabic document as an input 
and outputs a digitized text document containing the predicted text. The input image is first 

preprocessed where binarization, denoising, and deskewing are carried out, followed by line and 

word segmentation. Character segmentation is then performed based on the extracted word-level 

features, followed by cut filtration based on the wide rules-set we have defined. The segmented 
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characters are then fed into our character recognition neural network model which classifies the 
given character into one of the 29 Arabic characters. Furthermore, post-processing is applied to 

the predicted characters and conveniently concatenates them into a comprehensible text 

document. 

 
Our main contribution in this paper lies in the development of an efficient light-weight system 

that outperforms current state-of-the-art accuracy in the field of Arabic OCR. We achieve 

outstanding runtime results without trading off our system accuracy through efficient denoising 
of documents, vectorized implementation of all segmentation stages, and finely tuning our 

recognition model’s complexity. In addition, we maintain our overall system accuracy by 

improving the character segmentation using the proposed improved cut filtration algorithm. The 
algorithm is robust against structural, morphological, and topological similarities between letters. 

We also propose a neural network model to learn the underlying features of input characters and 

build a character classification model. We finally eliminate the use of any lexical analysis to 

maintain the language independence of the system. 
 

The rest of the paper is organized as follows: Section II describes the state-of-art related work. 

Section III discusses in detail the proposed OCR system. Section IV describes the datasets used 
for training the neural network and for evaluating the overall system performance, then discusses 

the results with comprehensive comparisons with other related algorithms and methods. Section 

V discusses limitations in our proposed system and proposals on future work in this area.  
Finally, Section VI presents the paper’s conclusion. 

 

2. RELATED WORK 
 

There has been a variety of techniques proposed in the area of OCR for Arabic text. In this 
section, we will review the different approaches in the literature for character segmentation, 

feature extraction, and character recognition in OCR systems. 

 
A significant number of approaches for the Arabic character segmentation task have been 

proposed in the literature. Mohamed et al. [4] proposed the use of contour extraction to facilitate 

the character segmentation phase followed by cut index identification based on the contour of a 

word. Their method achieved significant results in character segmentation; however, its 
performance degraded in the case of small-sized Arabic fonts or noisy documents. The scale-

space method utilized by El Makhfi et al. [5] represents another direction in Arabic character 

segmentation. This method works well for scanned documents containing high random noise 
since blobs are retrieved from characters and are then detected to recover the appropriate cut 

positions in the image. Although this approach has been used in several computer vision 

applications since its first proposal, its use in Arabic character segmentation is still widely 

unexplored. 
 

Inspired by NLP applications, Alkhateeb et al. [6] and Radwan et al. [8] proposed the use of a 

sliding window approach for segmentation. A Convolutional Neural Network (CNN) is used to 
determine the likelihood of a given sliding window consisting of several segments to be an actual 

character. Subsequently, the segments that qualify as characters are fed into their recognition 

model. This segmentation approach has shown very high performance on a single font but failed 
to maintain this high performance when tested on multiple fonts and font sizes. Lots of efforts 

[8]–[10] in Arabic character segmentation have been based on histogram analysis of words. 

It is important to mention that Qaroush et al. [8] also proposes a very effective word 

segmentation methodology that achieves state-of-the-art accuracy by implementing cut 
identification and filtration through gap length. Their proposed method handles multiple fonts 

and font sizes. 
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Although not being as challenging as character segmentation, feature extraction is one of the keys 

to boosting the accuracy of any OCR system. Rashad and Semary [11] adopted a simple approach 

that manually extracts basic features from each character such as height, width, number of black 

pixels, number of horizontal transitions, number of vertical transitions, and other similar features. 
Rashid et al. [12] proposed a multi-dimensional Recurrent Neural Network (RNN) for their 

recognition system that achieved outstanding character recognition rates. However, the effects of 

using this complex approach on the runtime were not properly investigated. The use of deep 
learning approaches is highly efficient when developing Arabic OCR systems that operate on 

unconstrained scene text and video text, not scanned documents [13]. 

 
Dahi et al. [14] adopted a similar approach by manually selecting features from a noise-free and 

pre-segmented character input. They added a font recognition module before the feature 

extraction, to include the font as a feature for the character recognition, alongside other slightly 

complex features such as ratios between black pixel count per region and the statistical centre of 
mass for each character proposed by [15]. The overall system of [14] achieved very high 

accuracy for Arabic character recognition. 

 
It is worth mentioning that the OCR system of [14] did not include a character segmentation 

module as it worked only on a pre-segmented character input. Additionally, the OCR architecture 

of Dahi et al. [14] failed to scale up and recognize Arabic characters in other fonts that were not 
supported by the font recognition module. A convenient middle ground between ineffective 

manual extraction [11], [14], and the computationally expensive use of deep learning [12], [13] is 

presented by the use of Principal Component Analysis (PCA) for automatic feature extraction. 

As proposed by Shayegan and Aghabozorgi [16], PCA provides an efficient and effective 
solution for the problem of feature extraction in recognizing Arabic numerals. However, applying 

PCA becomes computationally infeasible for the huge datasets needed for training Arabic 

character recognizers. 
 

As for character recognition, implementing this module without the use of machine learning has 

been deemed obsolete; because of the outstanding results achieved by machine learning 

recognition models. Hence, we will only consider the techniques for character recognition that 
are based on machine learning for review in the subsequent paragraphs. Shahin [17] proposed 

using linear and ellipse regression to generate codes from the segmented characters. This 

approach of codebook generation and code matching showed average results for character 
recognition. Additionally, it suffered from the same problem of not being able to generalize to 

other Arabic fonts as [14]. The use of the holistic approach in [18] emerged from the difficulty of 

the segmentation phase as we mentioned. This word-level recognition technique skips all the 
inaccuracy produced by segmentation errors but creates the need for post-recognition lexical 

analysis, thus resulting in a language-dependent system that relies on a look-up data base and 

semantic checks after recognition. 

 
Often paired with the use of a sliding window for segmentation, the use of a Hidden Markov 

Model (HMM) for character recognition was adopted by [18]–[20]. By using a model that 

mimicked the architecture of an Automatic Speech Recognition system and an HMM, Rashwan 
et al. [19] managed to overcome the challenges presented by the presence of ligatures. Many 

OCR systems use other classical machine learning techniques in their character recognition 

module; such as random forests [11], [14], K-Nearest Neighbor [11], shallow neural networks 
[21]. The neural network model used by Al-Jarrah et al. [21] yielded the best results, compared to 

other classical machine learning techniques [11], [14], [19], [20], and was able to generalize over 

different fonts. 
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3. METHOD PROPOSED 
 

 
 

Figure 1. System Architecture: A block diagram representing the system modules and both training and 

testing (prediction) pipelines. 

 

As shown in Figure 1, the input to the OCR system is expected to be a number of scanned images 

of computerized Arabic documents. In the Pre-processing stage, we apply image preprocessing 
through the filtering, deskewing, and denoising of the input images, followed by line and word 

segmentation. In the Word-Level Feature Extraction stage, we generate statistical, structural, and 

topological features for every word. In the Character Segmentation stage, we apply the Excessive 
Cut Creation and Improved Cut Filtration algorithms to segment the word into individual 

characters. These segmented characters, together with the associated ground truth labels, 

represent the dataset that our Character Recognition Model uses for training. We train an 
Artificial Neural Network (ANN) to classify each segmented character into one of the 29 possible 

characters in the Arabic language. Finally, we aggregate the segmented characters into words and 

generate the output of our OCR system. 

 

3.1. Pre-processing 
 

 
 

Figure 2. Examples from Preprocessing Stages: a) cut indices for line segmentation, on document b) cut 

indices for word segmentation, on lines 

 

The preprocessing module consists of four main steps: raw image filtering, document deskewing, 
line segmentation, and word segmentation. Initially, we start by converting the input image to 
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grayscale, then binarizing it by applying Adaptive Gaussian Thresholding. The document 
deskewing is carried out by rotating the document about its geometric centre with a specific angle 

calculated through obtaining the orientation of the text’s minimum bounding rectangle. This is 

followed by another round of binary thresholding to set binary values for the pixels that have 

been interpolated due to the previous rotation. The line segmentation step is performed by 
blurring the image then applying horizontal histogram projection of black pixels. Local minima 

of this histogram indicate positions of separations between lines. The goal of blurring is to avoid 

generating segmented lines containing dots only (e.g. the dots of the ‘yaa’ letter at the end of the 
word) or containing special Arabic diacritics only (e.g. ‘hamza’ or ‘shadda’). For word 

segmentation, we applied thinning to the image instead of blurring. We propose thinning as a 

solution to enhance the fine details within and between words. This eliminates the overlapping 
pixels between any two words (if one of them ends with a curved letter) and results in 

standardized gap lengths between words. We subsequently implemented [8]’s algorithm for cut 

identification and filtration based on gap lengths. 

 

3.2. Word-level Feature Extraction 
 

The word-level feature extraction algorithm takes the segmented words as an input and generates 

for each word several geometric features. These features are essential for the character 

segmentation algorithm to be able to identify individual characters and segment them 

accordingly. We discuss the generated features for each segmented word in this subsection. 
 

3.2.1. Baseline 

 
The baseline is an imaginary horizontal line that connects all of the letters in an Arabic word [8]. 

In order to detect the baseline for every word, we search for the row of pixels with the greatest 

number of black pixels by applying horizontal histogram projection and finding the global 
maximum. 

 

3.2.2. Line of Maximum Transitions (LMT) 

 
We define a transition as a change in pixel value from 0 (black) to 1 (white) or vice versa. An 

important feature of the Arabic script is that a transition above the baseline is always due to a 

character being drawn. The Line of Maximum Transitions (LMT) is the line that cuts through the 
greatest number of these transitions (i.e. the row of pixels in which the number of transitions 

from black to white and white to black pixels is greatest) [8]. For better estimation of the baseline 

and LMT, we propose that both features should be derived from the whole line of text rather than 

from each word.  
 

3.2.3.Potential Cut Region (PCR) 
 

The LMT’s key characteristic is that it passes through all potential characters in an Arabic word 

and is therefore essential in separating the word into its individual character components. A cut is 

defined as an imaginary line that separates two characters, and a Potential Cut Region is the area 
where a cut may exist. Since we cannot at first determine which character-intersections with the 

LMT belong to the same character and which are the result of a new character being written, we 

assume that each intersection represents a distinct character and therefore a PCR exists between 
any two successive intersections. 

 

In order to determine the start and end indices of PCRs, we traverse the LMT from right to left. 
Each black pixel followed by a white pixel is defined as a start index of a PCR and each white 
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pixel followed by a black pixel is defined as an end index. Furthermore, the column of pixels that 
is chosen as the location of a cut is called a cut index. 

 

 
 

Figure 3. An Arabic word with the baseline highlighted in red, the LMT highlighted in green, the PCR start 

indices highlighted in dark blue, and the PCR end indices highlighted in light blue. 

 

3.3. Character Segmentation 
 

To solve the problem of over-segmentation of characters, our character segmentation algorithm 
consists of two main steps: Excessive Cut Creation (ECC), which generates excessive potential 

cuts, and Improved Cut Filtration (ICF), which filters the false cuts from these potential cuts and 

outputs a set of valid cuts only. The Improved Cut Filtration algorithm is considered an 

improvement over the Cut Filtration algorithm proposed by Qaroush et al. [8].  
 

3.3.1. Excessive Cut Creation Algorithm (ECC) 

 
In the Arabic script, characters are either connected through the baseline or separated by a single 

space. Therefore, there are two different methods used in the Excessive Cut Creation algorithm: 

Finding Baseline Cuts and Finding Separation Cuts. The former deals with separating baseline-
connected characters and some space-separated characters while the latter addresses the 

remaining space-separated characters. 

 

I. Baseline Cuts: In order to identify a baseline cut, we inspect each column of pixels in a 
PCR, starting from the end index to the start index. We count the total number of black 

pixels above and below the baseline and, for every PCR, we propose the position of the cut 

index to be the first column where the count is zero, i.e. where the only black pixel allowed 
is the baseline. This approach is useful as a preliminary step for separating baseline-

connected characters and also helps in separating some space-separated characters; e.g. the 

‘aleph’, ‘daal’ or ‘thaal’ (ــذ ، ــد ،ــا) followed by another letter. 
 

II. Separation Cuts: While baseline cuts succeed in separating some space-separated 

characters, it will not place a cut whenever a black pixel exists below the baseline. This 

introduces a real challenge for letters that have curves which dip below the baseline such as 
‘reh’ and ‘zeen’ (ـز ،ـر) since the entire PCR may contain black pixels below the baseline. 

To solve this problem, we place a separation cut whenever the pixels at the left and right 

indices of a PCR are not connected by an uninterrupted path of black pixels. This ensures 
that a cut will be placed wherever there are two space-separated characters even if one of 

them happens to dip below the baseline. We choose the separation cut index to be the 

middle of this PCR.  

 
As illustrated in Algorithm 1, we search every PCR for a baseline cut. If we find a baseline cut, 

then we add this cut to the set of cut Indices. If we fail to find a baseline cut, we search for a 
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separation cut. If we find a separation cut, then we add this cut to the set of cut Indices. If we find 
neither a baseline cut nor a separation cut, we claim that this PCR contains a part of a character 

that should not be cut. 

 
Algorithm 1. ECC Algorithm 

 

Input: PCRArray 
  
ExcessiveCutIndices = Φ 
for all PCR in PCRArray do 
     CutFound = False 
     for all PixelColumn in PCR do 
          if ProjAboveBaseline = 0 and ProjBelowBaseline = 0 then 
               CutFound = True 
               ExcessiveCutIndices.Add(PixelColumn.Index) 
               break 
     if CutFound = False and PCR.IsConnected = False then 
          SeparationCutIndex = (PCR.LeftIndex + PCR.RightIndex) / 2 
          ExcessiveCutIndices.Add(SeparationCutIndex) 
  
Output: ExcessiveCutIndices 

 

3.3.2. Improved Cut Filtration Algorithm (ICF) 

 
After generating a relatively large number of potential cut indices in the ECC stage, we begin 

inspecting each Potential Character (PC), where a PC is defined as any region that exists between 

two successive cuts. The goal of the cut filtration stage is to determine which of the cut indices 
are excessive false cuts. We identify the Arabic letters that usually cause false cuts in the cut 

filtration algorithm in the paper written by [8] and other character segmentation algorithms and 

we propose an improved algorithm to detect all of these letters. To the best of our knowledge, 

there is no single algorithm that can perfectly segment all Arabic letters, and hence we introduce 
our solution as the new state-of-the-art. We will discuss these challenging cases, and how ICF 

handles each of them accordingly. 

 
I. ‘Seen’ and ‘Sheen’ case (ش ،س): The most notable causes of excessive false cuts are the 

letters ‘seen’ and ‘sheen’ (ش ،س). These two letters are composed of three successive 

strokes, with three dots above the second stroke in the case of ‘sheen’. A stroke is a PC that 

represents a part of a character having a one-pixel thickness. Because each stroke passes 
through the LMT, the ECC algorithm generates three cut indices, instead of one. In order to 

filter these cuts, we define a seen-stroke as a stroke with no dots above or below the 

baseline and no hole. A seen-stroke is also characterized by having a small peak above the 
baseline (i.e. is relatively short) and a flat structure near the baseline (does not dip below 

the baseline). Also, we define a sheen-stroke as a seen-stroke with dots above the baseline. 

 
Based on the above definitions, the false cuts in the ‘seen’ or ‘sheen’ letters in the start and 

middle of the word (ـشـ ،ـسـ) will be filtered by detecting three successive seen-strokes for 

the ‘seen’ case or two seen-strokes with one sheen-stroke in between for the ‘sheen’ case. 

Nevertheless, this method filters the false cuts of the two letters in the start and the middle 
of the word, but it fails to detect false cuts when they appear at the end of the word. 

We propose an improvement over this algorithm by taking into consideration the unique 

characteristic of the ‘seen’ and ‘sheen’ letters when they exist at the end of the word. This 
characteristic is the bowl shape seen at the end of these letters (ـش ، ـس). We define a bowl 

as (1) a PC with no dots above or below the baseline (2) a PC such that its right cut index 
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must have at least one black pixel and its left cut index must contain no black pixels. This 
means that the bowl must be directly connected through the baseline to a PC before it and 

must not be connected to any PC after it. (3) a PC such that there must exist a region where 

the baseline vanishes within but resurfaces again (i.e. there exists a dip below the baseline). 

(4) a PC with a relatively small peak above the baseline.  
 

Based on this improved algorithm, the false cuts (the first two cut indices) in the ‘seen’ 

letter will be filtered when the IFC algorithm detects three successive seen-strokes or two 
successive seen-strokes followed by a bowl, whereas the false cuts (the first two cut 

indices) in the ‘sheen’ letter will be filtered when the IFC algorithm detects two seen-

strokes separated by a sheen-stroke or a seen-stroke followed by a sheen-stroke and a bowl. 
 

II. ‘Saad’ and ‘Daad’ case (ضـ ،صـ ،ض ،ص): The second set of characters that result in an 

additional false cut is ‘saad’ and ‘daad’ (ـضـ ،ـصـ ،ض ،ص). To filter the false cuts in these 

two letters, we define a hole as a PC containing a rounded area of white pixels (a hole) 
enclosed by a larger rounded area of black pixels. The two letters consist of a hole followed 

by a seen-stroke when they appear at the start or the middle of a word, or a hole followed 

by a bowl when they appear at the end of a word. Initially, we wrote our cut filtration 
algorithm so that whenever it encountered such a case, it merged the two PCs into one by 

removing the cut index in-between. 

  
However, an interesting case that generated confusion with this definition was a ‘meem’ or 

a ‘faa’ followed by a ‘daal’ (ـدف ، مد ). Both cases would always be misinterpreted as a ‘saad’ 

or ‘daad’ and the cut filtration algorithm would falsely merge the ‘daal’ and the preceding 

character into one. 
 

Therefore, we defined a saad-stroke to differentiate between the ‘daal’ stroke and the 

strokes of ‘saad’ and ‘daad’. The saad-stroke is a seen-stroke with the additional condition 
of being surrounded by cut indices that have at least one black pixel each. The goal of this 

extra specification is to ensure that the saad-stroke is connected to the baseline from both 

sides and is not followed by a space, as is the case with ‘daal’. As such, the false cuts in 

‘saad’ and ‘daad’ can be filtered when the cut filtration algorithm finds a hole followed by 
a saad-stroke or when it finds a hole followed by a bowl.  

 

III. ‘Baa’, ‘Taa’, ‘Thaa’ and ‘Faa’ case: There is also a difficult case where a ‘baa’, ‘taa’, 
‘thaa’ or ‘faa’ (ــف ،ــث ،ــت ،ـب) at the end of a word may cause a false cut. This occurs 

when the stroke at the end of the aforementioned characters is tall enough to intersect with 

the LMT. In this case, the ECC algorithm will generate a false cut at this stroke position 
which will need to be filtered. 

 

In order to filter this extra false cut, we define an end stroke as a ‘seen’ stroke that has 

additional restrictions. Firstly, an end stroke must be followed by a cut index that does not 
intersect the baseline and preceded by a cut index that intersects the baseline. Furthermore, 

we locate the leftmost and the uppermost black pixels of the PC and we calculate the 

horizontal distance d between these two pixels. If d is measured to be less than or equal to 
2 pixels, the ICF algorithm identifies the PC as an end stroke and removes the preceding 

cut.  

 
It is worth noting that the extra restriction on the horizontal distance between the top-

leftmost and the uppermost black pixels is essential  in order not to  incorrectly identify  the 

‘daal’ letter (ــد) as an end stroke because the stroke in the ‘daal’ letter has geometrical 

features that resemble the second stroke in the ‘taa’ and ‘thaa’ letters.  
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Algorithm 2. ICF Algorithm 

 
Input: PCArray 
  
FilteredCharacterArray = Φ 
for all PC in PCArray do 
     if PC is SeenStroke then 
          if NextPC is SeenStroke or NextPC is SheenStroke then 
            if AfterNextPC is SeenStroke or AfterNextPC is Bowl then 
                 PCArray.Merge(PC, NextPC, AfterNextPC) 
for all PC in PCArray do 
     if PC is Saad/DaadStroke or PC is Bowl then 
          PCArray.Merge(PreviousPC, PC) 
for all PC in PCArray do 
     if PC is EndStroke with D ≤ 2 then 
          PCArray.Merge(PreviousPC, PC) 
FilteredCharacterArray = PCArray 
  
Output: FilteredCharacterArray 

 

Although the previous cut filtration cases may seem largely independent of each other, the 
filtration order can greatly affect the character segmentation performance. For instance, executing 

the saad/daad-case before the seen/sheen-case may cause the algorithm to confuse the first stroke 

of the ‘seen’ letter as a ‘saad’ or a ‘daad’ stroke, and falsely merge it with the preceding 
character. As shown in Algorithm 2, our ICF algorithm filters all PCs according to the order of 

filtration cases mentioned in this paper. 

 

It is worth mentioning that our character segmentation algorithm does not depend on any 
linguistic or statistical patterns in the Arabic language and is well-equipped to segment any 

sequence of Arabic letters. The previous work of [8] relied on their cut filtration algorithm’s 

assumption that some letters such as ‘saad’ and ‘daad’ are never followed by ‘seen’ or ‘sheen’. 
On the other hand, our ICF algorithm is general enough to segment any Arabic word regardless 

of the arrangement of the letters in the word. 

 

Our character segmentation algorithm provides several improvements over the work of [8]. As 
opposed to the algorithm proposed by [8], the ECC algorithm does not generate a cut at positions 

where there are black pixels above or below the baseline, and this improvement reduces the 

number of false cuts that the cut filtration algorithm has to filter. The second improvement in our 
ICF is filtering each PC based on clear and specific structural features of Arabic letters such as 

‘seen-stroke’, ‘sheen-stroke’, ‘saad-stroke’, ‘end-stroke’, ‘bowl’ and ‘hole’. These features are 

essential for the ICF algorithm in order to not accidentally remove any valid cut. Previous work 
in character segmentation [8] did not provide a correct exact definition of a bowl and, as a result, 

the characters having a bowl-shape in their structure such as ‘noon’, ‘qaaf’, ‘yaa’, ‘raa’, and 

‘zaay’ letters (ز ،ر ،ي ،ق ،ن) were confused with the bowl part of the ‘saad’ and ‘daad’ letters (ص، 

 .and were falsely merged with the preceding character (ض
 

The third improvement is filtering the false cuts in the case of the letters ‘baa’, ‘taa’, ‘thaa’, and 

‘faa’ based on the leftmost black pixel and the uppermost black pixel instead of the top-leftmost 
black pixel only. The aforementioned false cuts are detected in [8]’s algorithm if the top-leftmost 

black pixel has a relatively small height when compared to the highest black pixel in the line. As 

a result, almost all letters that occur at the end of a word will be falsely merged with the 
preceding character. Only the ‘alef’ ( أ ) character will not be falsely merged when written at the 

end of a word since its top-leftmost black pixel is relatively tall, while every other character in 
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the Arabic alphabet will have a relatively low top-leftmost black pixel when written at the end of 
a word.  

 

Finally, our segmentation algorithm solves the challenging case of the ‘seen’ ( س ) and ‘sheen’ ( 

 letters at the end of the word, which was not handled by the algorithm proposed by [8] and ( ش
resulted in a considerable number of incorrect segmentations. We conclude that our algorithm 

improves on the one proposed by Qaroush et al. [8] and addresses many of its shortcomings in 

the character segmentation problem. 
 

3.3.3. Character Recognition Model 

 
We propose feeding the images of the segmented characters to an artificial neural network since 

this will yield better performance than choosing features manually. The architecture of the ANN 

used in this research is a multilayered feed-forward network architecture with four layers. This 

neural network learns highly complex nonlinear features by training on a sufficiently large 
training set of Arabic characters together with their ground-truth labels. 

 

We will generate our own training set by comparing the number of segmented letters generated 
from a word-using our proposed algorithms- with the number of letters in the ground truth word. 

If the numbers match, we associate each letter with its corresponding label. If the numbers do not 

match, then we skip and discard this word. It is worth noting that this over/under-segmentation 
problem arises if the scanned document was too noisy or blurry. However, we are cautious about 

the training set and prefer not to risk accidentally training with false characters. 

 

We begin by resizing all the images generated from the character segmentation algorithm to be 
24x24 pixels and then flattening them to be 576-dimensional vectors. In addition, we perform 

dimensionality reduction on these 576-dimensional vectors using Incremental Principal 

Component Analysis (IPCA), which -as illustrated in Figure 4- can represent the original vectors 
using only 200 principal components while retaining 99% of the total variance in the data. These 

200-dimensional vectors are then fed to the neural network that consists of two hidden layers and 

a softmax output layer of sizes 150, 70, and 29 respectively. The softmax output layer assigns a 

likelihood value for each character of the 29 characters. This value represents the probability that 
this character is the correct classification for the input image. The inference phase of the model 

then classifies the input character as the character with the highest likelihood of being the correct 

prediction. 

 
 

Figure 4. PCA Dimensionality Graph 
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We trained the model with our generated dataset that consists of 1,200,000 images of perfectly 
segmented Arabic letters in Naskh script using mini-batch training of batch size 8192 for 80 

epochs. Categorical cross-entropy loss is calculated in the output layer and optimized using 

Adam optimizer [22] with hyper-parameters β1 and β2 being 0.9 and 0.999 respectively. For the 

hidden layers, the Rectified Linear Unit (ReLU) is used as a non-linear activation function 
followed by a 10% dropout layer to ensure elimination of overfitting as much as possible. A 

learning rate of 0.001 with no decay factor is used. The network is initialized using He 

initialization [23] and shuffled per epoch. We used a validation set of 12,000 images, 
representing 1% of the training set. 

 

3.3.4. Post-processing 
 

The character recognition model outputs a predicted class for each of the character images. 

However, a final step of post-processing is necessary to aggregate these characters into words and 

separate them with spaces to generate a meaningful text document. The previously predicted 
letters are produced consecutively with no spaces until we encounter an activated End of Word 

(EOW) flag. Every character has an EOW flag value; values for this flag are obtained in the 

character segmentation phase by setting the EOW flag to true (activated) for the final segment of 
the word that is being segmented. In the post-processing step, whenever we encounter a character 

with an activated EOW flag, indicating the end of a word, we place a space directly after this 

character. This step ensures the production of a comprehensible document. 
 

4. EXPERIMENTAL RESULTS 
 

4.1. Datasets 
 

There are several datasets for Arabic character recognition [24]. We used the open dataset 

AlWatan corpus [25] for training our neural network. The dataset includes very large Arabic 

vocabulary, with different font types, sizes, and styles and is rich with separable characters, 
overlapping characters, and ligatures. The scanned images in the dataset are 72 dpi resolution 

images. For training the model, we randomly selected 550 documents/images of plain Arabic 

Naskh from different topics, approximately 282,000 words, or 1,200,000 characters. For 
validation and testing, we randomly chose 6 and 10 documents/images of Arabic Naskh script as 

a validation set and a test set respectively, of sizes 3300 words (12000 characters) and 5500 

words (100,500 characters). 

 
We further experimented with the system with different test sets of plain Arabic fonts; Naskh, 

Transparent Arabic, Simplified Arabic, M. Unicode Sara, Tahoma, Times New Roman, and Arial 

with different font sizes; 10, 12, 14, and 16. We tested the system on the APTI dataset (Arabic 
Printed Text Image) [26], which is a standard benchmarking dataset for Arabic OCR tasks. We 

used Keras [27] for training our model and we ran our experiments on a core i7 5820K 3.3 GHz 

machine, with 32 GB RAM, Ubuntu OS 16.04, and GPU NVIDIA RTX 2070 with 8 GB memory 
and 2560 cores. 

 

4.2. Results and Evaluation 
 

This section evaluates our word segmentation algorithm, character segmentation algorithm, 

character recognition model, as well as the overall system accuracy. We used both Watan-2004 
and a subset of the APTI datasets for evaluating our system. We also compare our segmentation 

algorithms to the work of Anwar et al. [28], Radwan et al. [29], and Mousa et al. [30]. We 
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compare the overall system performance when our improved segmentation algorithm is used 
against when the segmentation algorithm of Qaroush et al. [8] is used. 

 

4.2.1. Word Segmentation 

 
We define the word segmentation accuracy as the number of correctly segmented words divided 

by the total number of actual words in the document. Our method achieves an average word 

segmentation accuracy of 99.94% for different fonts, as indicated in Table 1, where we also 
compare our results for each font with Qaroush et al. [8]. 

 
Table 1. Word Segmentation Comparison with Qaroush et al. [8] 

 

Font 
Method Proposed Qaroush et al. [8] 

Input Words Accuracy Input Words Accuracy 

Tahoma 25,928 99.96% 2,319 99.4% 

Naskh 29,169 99.95% 2,921 96.1% 

Simplified Arabic 22,687 99.94% 2,884 98.8% 

Transparent Arabic 21,055 99.90% 2,860 99.1% 

 

4.2.2. Character Segmentation 
 

We first segment each word and compare the number of segmented characters with the number of 

actual characters in the word. Then we count their absolute difference as incorrectly segmented 

characters. We finally define the character segmentation accuracy as the total number of correctly 

segmented characters divided by the total number of actual characters. Our method achieves an 
average character segmentation accuracy of 98.23% for different fonts, as indicated in Table 2, 

where we also compare our results for each font with [8]. Comparing our results with the results 

of [28] and [30], as shown in Table 3, we note that our system outperforms all other character 
segmentation algorithms in the character segmentation task. 
 

Table 2. Character Segmentation Comparison with Qaroush et al. [8] 

 

Font 
Method Proposed Qaroush et al. [8] 

Input Characters Accuracy Input Characters Accuracy 

Tahoma 114,080 97.80% 12,262 97.00% 

Naskh 131,260 98.66% 12,585 94.52% 

Simplified Arabic 100,957 99.06% 13,572 96.10% 

Transparent Arabic 89,483 97.40% 13,120 96.26% 

 

Table 3. Character Segmentation Results 

 

Method 

Tested 
Dataset Font Sizes Font Styles 

Segmentation 

Accuracy 

Anwar et al. 

[28] 
Self-Generated 70pt 

Traditional 

Arabic 
97.55% 

Mousa et al. 

[30] 
Self-Generated Not reported Not reported 98.00% 

Qaroush et al. 

[8] 
[26]: 100,000 characters 

10, 12, 14, 16, 

18, and 24 
Font Set A* 97.50% 

Method 

Proposed 

[25] + [26]: 

1,000,000+characters 

10, 12, 14, and 

16 
Font Set B† 98.23% 

 

*Font Set A: Naskh, Transparent Arabic, Simplified Arabic, M Unicode Sara, Tahoma, and 

Advertising Bold 
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†Font Set B: Font Set A, Andalus, Diwani, Thuluth 
 

4.2.3. Overall System Performance 

 

The neural network achieved average recognition accuracy of 99.89%. The overall system 
accuracy is measured by calculating the Levenshtein edit distance between the generated 

document and the actual document. We show that our system achieves an overall accuracy of 

97.94%. Therefore, and to the best of our knowledge, we propose that our Arabic OCR system is 
superior to all other segmentation based Arabic OCR in terms of accuracy and running time. It is 

also worth mentioning that our proposed system was developed and trained using a very large 

dataset, which is rich with Arabic text in different font types and sizes. Table 4 shows the 
evaluation of our system in comparison to [31]’s system and [8]’s segmentation method followed 

by an ANN for recognition. 

 
Table 4. Overall System Evaluation 

 

Method Tested Dataset 
Number of 

Words 

System 

Accuracy 

Avg. Run Time / 550 

Words (sec) 

Qaroush et al. [8] + 
ANN 

[25] 3300 94.95% 3.42 

Touj et al. [31] 1500 words 1500 97.00% NA 

Method Proposed [25] + [26] 3300 97.94% 1.49 

 

5. FUTURE WORK 
 

Much like other OCR systems, our system’s performance decreases when operating on 
documents with high noise. This creates the demand to work on more elaborate preprocessing 

methods in the future without sabotaging our system’s remarkable runtime. Also, our recognition 

model is currently limited to the fonts that it inferred from the training set; as a result of that, we 

aim to enrich the training set to contain more fonts and possibly all fonts without ligatures. 
Apart from the low-level additions to our system, potential work on this system would include 

integrating it into larger applications such as image-speech systems. Such applications -where 

instant results are crucial- will be a perfect fit for our method because of the very low runtime we 
provide. 

 

6. CONCLUSION 
 

Arabic Optical Character Recognition introduces many challenges in the character segmentation 
and recognition phase. This paper proposes a complete language-independent Arabic OCR 

pipeline with an improved character segmentation algorithm based on word-level features and a 

bio-inspired character recognition model based on neural networks. We proposed a highly 
accurate and efficient system. The overall system architecture consists of: a simple yet effective 

pre-processing module, an enhanced reliable module for character segmentation, an artificial 

neural network for the recognition of segmented characters, and finally a post-processing module 

that formulates the output of our system into a digitized document. We evaluated our system on 
different datasets with high variability in font types and sizes. The experimental results show that 

our system outperforms the current state-of-the-art algorithms for word segmentation, character 

segmentation, and character recognition. We evaluated the overall performance of the system and 
concluded that our system achieves outstanding results in accuracy and running time. 
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