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ABSTRACT 
 
It is commonly understood that code reviews are a cost-effective way of finding faults early in 

the development cycle. However, many modern software developers are too busy to do them. 

Skipping code reviews means a loss of opportunity to detect expensive faults prior to software 

release. Software engineers can be pushed in many directions and reviewing code is very often 

considered an undesirable task, especially when time is wasted reviewing programs that are not 

ready. In this study, we wish to ascertain the potential for using machine learning and image 

recognition to detect immature software source code prior to a review. We show that it is 

possible to use machine learning to detect software problems visually and allow code reviews to 

focus on application details. The results are promising and are an indication that further 

research could be valuable. 
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1. INTRODUCTION 
 

Code reviews are policy in many software development organizations, and it is commonly 

believed that code reviews are an economical way to discover faults before a software product is 
deployed. Indeed, it is even suggested that code that has not been adequately reviewed has twice 

the faults of reviewed code [1]. However, many software engineers are overwhelmed with work, 

so proper code reviews are often not done. The reviewability of software is affected by many 
factors such as documentation, logic, semantics, and syntax.  Source code includes aspects that 

might even be considered aesthetic, and aesthetic aspects might turn tedious and possibly 

overwhelm the review process [2]. In a paper by Yazdani and Manovich, non-photographic 

images, such as screenshots and images of text messages, were analysed and found they could be 
useful in predicting social trends [3]. This paper aims to evaluate the possibility of using 

"screenshots" of source code with machine learning image recognition as part of the software 

code review process. Tools to reduce monotonous tasks related to reviews could be very 
valuable. This paper begins by discussing the readability aspects of code and estimates the impact 

style has on reviews. We then created images of poorly styled code and properly styled code and 

used machine learning to train an image recognizer to identify poorly formatted code and present 
positive results. Creating source code “screenshot images” for analysis could be part of 

automating code reviews. Using automation as part of the review process could make software 

engineers more efficient.   
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2. RELATED WORK 
 

2.1. Code Reviews  
 

As code reviews are an essential topic, many papers are written each year to address the review 
process's problems. In the paper, "Confusion in Code Reviews," the authors recognize that code 

reviews do not always go smoothly and identify items confusion in the review process [4]. 

Fatima et al. discuss the good and bad consequences of feedback in the review process [5].  A 
vital feature these papers discuss is related to problems of the code review process, and by 

automating some of the toils of the review process, we believe it is possible to improve the 

overall quality of the review. 

 

2.2. Machine Learning and Image Analysis  
 

Machine Learning and Image Recognition has been used with success in many areas.  For 

example, Lin et al. describe the successful use of deep learning for laser positioning [6].  An even 

more applicable subject is image processing and sentiment analysis.  Qian et al. analysed twitter 
messages attempting to capture human expressiveness with image recognition [7].   Zhang et al. 

(2015) describe microblogs' sentiment analysis by integrating text and image features [8].  

Although these papers were not software related, they positively demonstrate the success of 

machine learning in the context of image analysis as well as showing the possibility of detecting 
text sentiment. 

 

2.3. Machine Learning and Source Code 
 

Concerning research related directly to software source code, the paper, "Aesthetics Versus 

Entropy in Source Code," found that evaluating code beauty could be used for style checking [9].  
Other studies have used machine learning and deep learning in code review systems to analyse 

code errors automatically. Bielki et al.  introduced a machine learning-based system where the 

analyser learned to produce static analysis tools using a decision tree algorithm [10]. The system 
showed a coverage improvement but mentioned scalability and generalizability could be 

improved. Gupta and Sundaresan created a system using a 'long short-term memory' network 

called DeepCodeReviewer, which learned to review from human reviews. The authors explain in 
their paper they plan to improve the DeepCodeReviewer tool to learn continuously and 

personalize itself to a team or a repository [11].   These papers demonstrate the applicability of 

machine learning to the code review process, but do not address reviews using image processing.  

 

3. BACKGROUND FOR METHODS 
 

3.1. Data from Previous Work 
 
This paper uses some data originally gathered in preparation for the 2019 IEEE Aerospace 

Conference in Big Sky, Montana (Aeroconf). At Aeroconf, we wanted to study what stylistic 

issues were most problematic for code reviews [7]. For this study, we created 'code snippets' and 
asked programmers to determine the proper outcome should the code be executed. This survey 

demonstrated that problematic code not only takes longer to review, but it is more often reviewed 

incorrectly. The survey showed that improperly formatted code had a review success of less than 
90% on average, and on average it took about 22.5 seconds longer to review than properly 

formatted code. Some feedback received from this presentation indicated that many issues could 

be avoided simply by following coding standard rules.  We agree, as in general, the issues 



Computer Science & Information Technology (CS & IT)                                    161 

identified were stylistic, not logic-based. With this in mind we suggest these issues may be 
spotted visually, analogous to a tumour in a medical CT scan. 

 

3.2. Scope of the Problem 
 

Even though modern code editors can enforce properly formatted code, we were still surprised to 

see how much existing code violates style rules. It seems that even though modern tool kits are 
helpful, some issues of poorly formatted code linger. To demonstrate the ramifications of this 

problem, we downloaded several hundred projects from GitHub and scanned them for the 

common issues. As shown in Table 1, we discovered that most projects had at least some 

software issues and two projects had more than 15% of their lines associated with a issues. Figure 
1 shows this table graphically. We used static analysis tools ‘nsiqcppstyle’[12] and ‘lizard’[13] to 

identify issues. 
Table 1. 

 

Percent Value 

0 to 1% 180 

1.1% to 2% 181 

2.1% to 3% 121 

3.1% to 4% 51 

4.1% to 5% 36 

5.1% to 6% 23 

6.1% to 9% 22 

9.1% to 12% 15 

12.1% to 15% 3 

More than 15% 2 

Increased Time 21% 

 

 
 

Figure 1. Percentage of Lines Associated with Tumours 

 

3.3. Impact of Tumours 
 
We will examine a hypothetical project to illustrate the possible consequences of tumours in 

source code. To arrive at a reasonable size for our hypothetical project, we analysed projects in 

our collection with very few tumours, specifically the projects where 0% to 2% of their lines 
were associated with a tumour, as shown in Figure 1. Static analysis of this group showed the 

median number of lines was 61,649, and the median number of tumours was 499, with the 
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probability of a line being part of a tumour being 0.008. Our hypothetical project was given 
characteristics based off these numbers and is shown in Table 2 with the results. We used the 

results of the Aeroconf [7] study to estimate how long code with and without tumours takes to 

review, and in our hypothetical project the presence of tumours increased the review time by 

21%. It is also important to note that not only does the presence of tumours increase the review 
time, but it also reduces the accuracy of the review to lower than 90% [7]. 

 
Table 2. Hypothetical Project Specifications 

 

Description Value 

Project Lines 61,649 

Project Tumours 499 

Code Segments 

Lines 

56 

Segment Count 1,100 

No TumourSegment 

Review  Time 

37.5 Seconds 

Segment Review 
Time with Tumour 

59.5 Seconds 

No Tumours 

Review Time 

11.5 Hours 

Tumour Review 

Time 

14.5 Hours 

Increased Time 21% 

 

3.4. Deep Learning Review 
 

In recent years, deep learning and convolutional neural networks (CNN) have been shown to be 

efficient in resolving complex non-linear problems and have become a prevalent approach for a 
broad range of tasks [14]. By automating the process of feature learning, CNN takes advantage of 

the concept of local information and effectively detects different deep features in multiple 

successive stacked layers [15]. This has resulted in CNN becoming one of the most popular 
methods for image recognition and classification. In this paper, we leveraged the powerful 

capacities of CNN to develop our recognition system. 

 

VGG-19 and ResNet50 are state-of-the-art convolutional neural networks that are trained on the 
ImageNet dataset for solving image classification tasks in computer vision [15][16]. VGG-19 is a 

classic convolutional neural network that has 19 layers with trainable weights, in which exists 16 

Convolutional layers and 3 fully connected layers [17]. ResNet50 (Residual Networks) has 50 
layers [16]. They are both applied to solve tasks related to transfer learning. These networks are 

used for this study as they possess a rich feature representation and can likely yield good results.  

 

4. METHODS AND ALGORITHMS  
 

4.1. Identification of the Tumours  
 

As previously mentioned, hundreds of GitHub projects were selected in order to conduct the 
analysis [18]. Problematic code was identified through static analysis and image files were 

created. Good code snippets were likewise identified and separated, and the resulting image files 

were also produced. The process for image creation is shown in Figure 2. In total, a set of about 
44,000 images were prepared and collected for model training and testing, with about 38,000 

images labelled as non-tumour and the remaining labelled as tumour (about 6,000). However, due 
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to the imbalanced distribution ofdata, only about 6,000 of the non-tumour images were randomly 
selected, along with the 6,000 images of tumour data. Doing this, the model potentially avoids the 

problem of overfitting, which is a major factor leading to the poor performance of a model and 

boosts its overall performance significantly. 

 

 
 

Figure 3. Example Source Code Image 

 

The created images are monochromatic and 228 pixels by 280 pixels in size. An example 

is shown in Figure 3.  
 

4.2. Implementation  
 

In training the models, a Keras framework [19][20] is utilized with a Tesla T4 GPU [21]. All the 

models are rigorously trained over 100 epochs. Data is broken down into batches of 64 images. 
Different optimizers were tried to accelerate the training process, and stochastic gradient descent 

was selected with a learning rate of 0.001. Also, ImageDataGenerator [22] is employed to 

progressively manipulate and load data in batches and help monitor the training process. 
  

As shown in Figure 4, ImageDataGenerator implements multiple stages in a single platform, 

ranging from the preprocessing of data, the code-snippets in this case, to the training and 
evaluating the resulting models. Using ImageDataGenerator makes the training and testing 

straightforward, and it also helps effectively monitor the training.  We choose this class as an 

intermediary is because of the automation and convenience it offers.  ImageDataGenerator is a 

very beneficial tool and is heavily used for big datasets demonstrating training automation and 
computational efficiency.  

 

In this project, two advanced architectures for image classification, VGG-19 [23] and ResNet50 
[24], as well as a customized CNN, were adopted. We felt that traditional machine learning 

methods would be ineffectual in capturing spatial and local features in images. Accordingly, we 

adopted the advancements of deep neural networks as the principal proposition of this study. In 
particular, VGG19 and ResNet50 were trained on top of two fully connected layers interwoven 

with a dropout layer and a pooling layer in between.  
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Transfer learning is regularly used with pre-trained models as a starting point for further 
development on the task at hand. Consequently, we exploited transfer learning to utilize the well-

tuned pre-defined architectures to accelerate the result and speed up the training. With minor 

modifications on this predictive task, pre-trained models can harness the proven feature learning 

capacity and yield better outcomes. 
 

 
 

Figure 4. Pre-processing Data and Training Models 
 

The customized CNN consists of three convolutional blocks which are followed by two fully 
connected layers at the end for classifying whether a given snippet of source code contains a 

tumour or not. By training the network, the model will be learning the weights and adjusting 

according to the training process that the model went through. 
 

All the models are trained on the same data for the sake of accuracy rate comparison. The model 

selection is executed manually after the training and the model which achieved the best result in 

model evaluation phase is selected as a final model for predictions (Figure 5). 
 

 
 

Figure 5. Model Evaluation 
 

5. RESULTS AND DISCUSSION 
 
To evaluate performance of the architectures, two metrics were used: accuracy and F1-score. 

Accuracy is adopted to measure how accurate the models are and F1-score is also elected so that 

the way the models make predictions can be observed and accessed more closely. We tried to 
balance the distribution of tumour and no-tumour training images, yet the probability of predicted 

images still might not be well distributed, so steps were taken to help mitigate noises and over 

fitting.  The customized CNN architecture was found to be the best model with 80% accuracy and 
a 0.79 F1-score. VGG-19 and ResNet50 did not seem to perform as well on this task with results 

of only 59% and 55% respectively in terms of accuracy. Relevant comparisons are shown in 

Table 3.The problem might lie in the inherent nature and the amount of data presented. The 
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application of transfer learning makes a smooth transition to solve the problem, but the models do 
not align well with the data leading to the performances being weak. In addition, the amount of 

training data is not sufficient to bear the number of layers that constructs the notable distinction 

of the two state-of-the-art architectures. Our customized CNN has fewer layers and a less 

complicated architecture then ResNet50 and VGG-19. Also, since this is a binary classification 
problem, it seems to fit the data better than other pretrained powerful models such ResNet50 or 

VGG-19. 
Table 3. Model Accuracy Rate Comparison 

 

Description Accuracy  F1-Score 

VGG19 59% 0.62 

ResNet50 55% 0.61 

Our CNN 80% 0.79 

 
As we performed a reduction in training data earlier, class distribution over the data is balanced, 

and hence the problem of overfitting was avoided. This is exhibited via the results in the 

confusion matrix shown in Table 4. The number of correctly predicted tumours is appropriate for 
the number of tumours exists in the dataset. In other words, the precision and recall rates of the 

target classes are relevant and consistent, which demonstrate the efficiency of the model. 

 
The deep convolutional network designed for this project achieved an impressive outcome as 

compared to VGG-19 and Resnet50. Using a convolutional model, 80% accuracy was achieved 

in detecting software tumours in the code snippets, which shows it is possible for a CNN to 

identify software segments with code tumours.  
 

Even though we obtained a satisfying outcome, there are still gaps that could be filled in order to 

achieve a better effect. On the one hand, data is essential for any CNN model to operate well on a 
given task. Therefore, with improved tools to extract and process data, we could expect the model 

to perform better, and accordingly gain more effect. On the other hand, a larger and more 

sophisticated network can be employed to learn more complex features with the introduction of 
both spatial and temporal information into the network. These topics should be addressed in 

future research. 
Table 4. Classification Report of the Final Model 

 

Description Precision Recall F1-Score 

No tumour 0.77 0.85 0.81 

Tumour 0.83 0.74 0.78 

Macro average 0.81 0.80 0.80 

Weighted Average 0.81 0.80 0.80 

 

6. CONCLUSION 
 
Even for humans, visually recognizing a code tumour in software is a difficult task. Applying 

deep learning image classification brings a huge advancement and a positive outcome. This paper 

shows it is possible to use a convolutional neural network with up to 80% accuracy to identify 
patterns in code. Though our work identifies patterns that might be spotted by static analysis 

tools, it is possible that other tumour styles can be identified and discovered by our method. It 

seems it is possible to identify any bad looking code using machine learning and image 
recognition. Other methods should certainly be explored and researched since this work shows 

promising results, and tools can be created to enhance code review practices and perhaps other 

aspects of software development. Further research is required to make this system practical and 

useful. 
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