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Abstract. In this paper, we present a method of finding conceptual clusters of music objects
based on Formal Concept Analysis.
A formal concept (FC) is defined as a pair of extent and intent which are sets of objects and
terminological attributes commonly associated with the objects, respectively. Thus, an FC can be
regarded as a conceptual cluster of similar objects for which its similarity can clearly be stated in
terms of the intent. We especially discuss FCs in case of music objects, called music FCs.
Since a music FC is based solely on terminological information, we often find extracted FCs
would not always be satisfiable from acoustic point of view. In order to improve their quality,
we additionally require our FCs to be consistent with acoustic similarity. We design an efficient
algorithm for extracting desirable music FCs. Our experimental results for The MagnaTagATune
Dataset shows usefulness of the proposed method.

Keywords: formal concept analysis, music formal concepts, music objects, terminological simi-
larity, acoustic similarity.

1 Introduction

Clustering has been well known as a fundamental task in Data Analysis and Data
Mining [1]. In the decade, it is paid much attention as a representative of Unsuper-
vised Learning in the field of Machine Learning [2].

The task of clustering is to find groupings, called clusters, of data objects given
as a database, where each group consists of similar objects in some sense. Based on
the clusters, we can overlook the database. If we find some of them interesting, we
might intensively examine those attractive ones.

In this paper, we are concerned with a problem of clustering for music objects.
Clustering plays important roles in many real applications of Music Information
Retrieval (MIR) [3, 4]. A typical application would be music recommendation [5].
Several CF(collaboration filtering)-based methods for music recommendation have
been proposed with the help of clustering techniques, e.g., see [6]. A clustering-
based method for automatically creating playlists of music objects has been inves-
tigated in [7]. Clustering is also fundamental in visualizing our music collection [8].

Since clustering is a representative of unsupervised-tasks, we need to try to
interpret obtained clusters by some means. It is, however, not always easy to have
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adequate interpretations or explanations. It would be especially difficult in case
of clusters of music objects because those objects are highly perceptual and thus
not descriptive. Nevertheless, meaningful clusters would be preferable for many
MIR tasks. For example, such clusters provides us a very informative and insightful
overview of our music collection.

In this paper, we discuss a method of finding conceptual clusters of music ob-
jects. Particularly, we try to detect our clusters based on the notion of formal
concept.

A formal concept (FC) is defined as a pair of extent and intent which are sets
of objects and terminological attributes commonly associated with the objects,
respectively. Thus, such an FC can be regarded as a conceptual cluster of similar
objects for which its similarity can clearly be stated in terms of the intent.

Although music objects are usually given in some audio format such as MP3
and WAV, they are often provided linguistic information including playing artists,
composers, genres, etc. Moreover, they would often be freely assigned user-tags by
active users of popular music online services. Assuming such linguistic information
as terminological attributes of music objects, therefore, we can extract music FCs
from our music database.

It is noted that since a music FC is based only on linguistic information, we
often find that extracted FCs would not always be satisfiable from acoustic point
of view. In order to improve their quality, we formalize a problem of finding music
FCs consistent with acoustic similarity and then design an efficient algorithm for
extracting them.

Our experimental results for The MagnaTagATune Dataset [9] shows that we
can efficiently detect satisfiable music clusters excluding many undesirable ones
with acoustical inconsistency.

The remainder of this paper is organized as follows. The next section discusses
previous work closely related to our framework. In Section 3, we introduce the
fundamental notion of music FCs. We then formalize our problem of finding music
formal concepts consistent with acoustic similarity in Section 4. An algorithm for
the problem with a simple pruning rule is also presented. We show our experimental
results in Section 5, discussing usefulness of our framework. Section 6 concludes the
paper with a summary and future work.

2 Related Work

In the field of MIR, main approaches to processing music objects can generally
be divided into two categories, content-based [3] and context-based [10] ones. In
the former, each music object is represented by their intrinsic acoustic features
extracted with the help of adequate signal processing techniques. In the latter,
on the other hand, they are processed based on their external semantic features.
Those features are often referred to as metadata which can be classified into three
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categories, editorial, cultural and acoustic metadata [11]. Although both content-
based and context-based approaches have been separately investigated in traditional
studies in MIR, effectiveness of combined approaches has been verified recently.

For the task of artistic style clustering, Wang et al. have argued that using both
linguistic and acoustic information is a useful approach [12]. They have proposed a
novel language model, called Tag+Content (TC) Model, in which style distribution
of each artist can be related to each other by making use of both information, while
standard topic language models impractically assume their independence.

Miotto and Orio have proposed a probabilistic retrieval framework in which
content-based acoustic similarity and (pre-annotated) tags are combined together [13].
In the framework, a music collection is represented as a similarity graph, where each
music is described by a set of tags. Then, the documents relevant for a given query
are extracted as some paths in the graph most likely related to the request.

Knees et al. have extended a search engine for music objects in which contextual
queries are accepted [14]. In order to improve quality of its text-based ranking, they
have utilized audio-based similarity in the ranking schema.

Our framework proposed in this paper takes a similar approach in which both
content-based and context-based information are effectively utilized. However, we
have several characteristic points to be noted.

The clustering problem in [12] is purpose-directed in the sense that we have
to designate in advance which kind of clusters we try to detect (e.g., artistic style
clusters) and prepare our dataset suitable for the purpose. We, therefore, would not
suffer from issues of interpretation for clustering results which is the main concern
in our framework.

In [13], a retrieval result is obtained by finding plausible paths in a similarity
graph. That is, we can find solutions by directly searching the graph. A similarity
graph plays an important role also in our proposed method. However, our similarity
graph cannot provide any solution directly. As is different from [13], it is used for
just checking whether a candidate of our solution is acceptable or not. Our similarity
graph prescribes an additional constraint our solutions must satisfy.

The main purpose of combining acoustic similarity in [14] is to improve ranking
quality based solely on textual information. In other words, both acoustic and
textual information are associatively utilized. On the other hand, those information
are independently used in our framework. Based solely on our similarity graph, we
strictly reject undesirable candidates of solutions.

In more general perspective, a dataset often comprises numerical and categorical
features in many application domains. Such a dataset is called mixed data. Since
clustering mixed data would be a challenging task, various clustering algorithms
designed for mixed data have already been developed. The literature [15] provides
an extensive survey of the state-of-the-art algorithms.
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In the proposed framework, each music object is necessarily assumed to have its
own linguistic information like annotation-tags. It would be an inevitable limitation
of our method. As has been pointed out as cold start problem in recommendation
systems, our method would suffer from the same kind of problem. In the field
of MIR, importance of text-based information has been recognized and several
approaches to obtaining such information for music objects have been investigated
and compared [16–18]. Those approaches are surely helpful for our method.

3 Music Formal Concepts

In this section, we discuss a notion of music formal concepts with which we are
concerned in this paper. We first introduce the basic terminology of Formal Concept
Analysis [19, 20].

3.1 Formal Concept Analysis

Let O be a set of data objects (or simply objects) and A a set of attributes. For a
binary relation R ⊆ O×A, a formal context C is defined as a triple C = ⟨O,A, R⟩,
where for (o, a) ∈ R, we say that the object o has the attribute a. For an object
o ∈ O, the set of attributes associated with o is denoted by o′, that is,

o′ = {a | a ∈ A and (o, a) ∈ R},

where “ ′ ” is called the derivation operator.
Similarly, for an attribute a ∈ A, the set of objects having a is also denoted by

a′, that is,
a′ = {o | o ∈ O and (o, a) ∈ R}.

It is easy to extend the derivation operator for sets of objects and attributes.
More precisely speaking, for a set of objects O ⊆ O and a set of attributes A ⊆ A,
we have O′ =

∩
o∈O o′ and A′ =

∩
a∈A a′, respectively.

For a set of objects O and a set of attributes A, if and only if O′ = A and
A′ = O, then the pair (O,A) is called a formal concept (or simply a concept) in the
context C [19], where O is called the extent and A the intent of the concept.

It should be noted that a formal concept (O,A) provides a clear interpretation
of the extent and intent. The extent means that every object in O shares all of
the attributes in A. Moreover, the intent means there exists no object having every
attribute in A except for ones in O. In other words, the extent is regarded as a
cluster of similar objects for which we can clearly state the reason why they are
similar in terms of the intent.

For a formal context C, we refer to the set of all formal concepts in C as FCC . We
here assume an ordering ≺ on FCC such that for any pair of concepts FCi = (Oi, Ai)
and FCj = (Oj , Aj) in FCC (i ̸= j), FCi ≺ FCj if and only if Oi ⊂ Oj (dually
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Ai ⊃ Aj), where FCi is said to be more specific than FCj and conversely FCj more
general than FCi. Then, the ordered set (FCC ,≺) forms a lattice, called a formal
concept lattice.

object attribute

1 a c  e  f

2 c e

3 d e  f

4 b d

5 a c  f

6 c d
(1, acef) (3, def) (4, bd) (6, cd)

(12, ce)  (13, ef)        (15, acf)

(φ, abcdef)

(123, e)              (135, f)  (346, d)

(123456,φ)

(1256, c)

Fig. 1. Example of formal concept lattice

Figure 1 shows the formal concept lattice for a small example of formal context
with the sets of objects and attributes, { 1, 2, 3, 4, 5, 6 } and { a, b, c, d, e, f
}, respectively. In the figure, each concept is represented in a simplified form. For
example, the concept ({ 1, 3 }, { e, f }) is abbreviated as (13, ef). Moreover, general
concepts are placed on the upper side.

3.2 Music Formal Concept

In this paper, we assume that our music object owns two kinds of information,
audio signal-based information and linguistic information.

For the former, a music object is usually represented (or stored) in a standard
audio format like WAV and MP3. From those music objects, we can then extract
some audio features, such as Mel-Frequency Cepstrum Coefficient (MFCC) and
Chroma, with the help of useful techniques of signal processing.

On the other hand, for the latter, we expect that music objects are usually
provided several linguistic labels including playing artists, composers, song writers,
genres, etc. Furthermore, those objects would often be freely assigned user-tags by
active users of popular music online services. In order to obtain formal concepts
for music objects, therefore, we can consider a formal context whose attributes are
based on the linguistic information.
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Let M be a set of our music objects in some audio formats and L a vocabulary
(a set of terms) to express linguistic information on M, that is, we assume each
music object in M is annotated with some of terms in L. Then, we define our music
formal context MC as MC = ⟨M,L, R⟩, where R ⊆ M×L and R = {(m, t) | m ∈
M, t ∈ L,m is annotated with t}. We can now extract formal concepts from MC,
called music formal concepts.

It is, in general, well known that we often find a large number of formal concepts
in a given formal context. We actually have 13 concepts even in the small context
shown in Figure 1. Needless to say, it would be quite impractical to examine all of
them in order to obtain preferable ones. In some case, unfortunately, most of the
extracted FCs would not be satisfiable to us.

In the next section, we try to improve quality of music FCs by taking acoustic
information of music objects into account.

4 Finding Music Formal Concepts Consistent with Acoustic
Feature Similarity

Since a music formal context is defined based on linguistic information, music FCs
provides us clusters of similar music objects from linguistic point of view. This
means that our music FCs would not always reflect acoustic similarity. As a result,
we could often find many music FCs uncomfortable and unsatisfiable. In order to
exclude such undesirable FCs, we additionally impose a constraint upon our target
FCs to be extracted.

As has been mentioned above, we can usually extract several kinds of acoustic
information from our music objects with useful techniques of signal processing.
Since such an information is provided in a form of real-valued feature vectors, we
assume each of our music objects has its own acoustic feature vector with dimension
of d. For a music object mi ∈ M, its feature vector is referred to as vi.

Based on those feature vectors, we can now evaluate similarity between any two
music objects from acoustic viewpoint. For music objects mi,mj ∈ M, we calculate
similarity between mi and mj , denoted as sim(mi,mj), by Cosine Similarity [21],
that is,

sim(mi,mj) =
vi · vj
|vi||vj |

. (1)

In order to bring acoustic similarity of music objects in our target FCs, we take a
graph-theoretic approach for efficient computation.

Assuming a threshold θ as the lower bound of similarity, we create a similarity
graph, G(θ), for our music objects. It is formally defined as G(θ) = (M, E(θ)),
where

E(θ) = {(mi,mj) | mi,mj ∈ M, i ̸= j, sim(mi,mj) ≥ θ}. (2)
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That is, any pair of music objects are connected by an edge if they have a certain
degree of similarity with respect to their acoustic feature vectors.

It is easy to see from the definition that a clique in G(θ) gives a set of music
objects pairwise similar. For a music FC, therefore, if we additionally require the
extent to form a clique in G(θ), our FC can reflect acoustic similarity as well as
linguistic one. In other words, by the additional requirement, we can exclude any
music FC whose extent shows inconsistency of acoustic similarity. As the result,
it would be expected that we can reasonably obtain more preferable FCs. In what
follows, we refer to a music FC consistent with acoustic feature similarity as a music
FC again.

We now formalize our problem of finding music FCs.

Definition 1. (Problem of Finding Music FCs)
Let M be a set of music objects, L a vocabulary annotating those objects, MC =
⟨M,L, R⟩ a music formal context corresponding to the annotation and G(θ) =
(M, E(θ)) a similarity graph. Then, a problem of finding music formal concepts is
to enumerate every formal concept (M,L) in MC such that M must be a clique in
G(θ).

An algorithm for the problem is presented below. We first provide our basic
search strategy for computing ordinary FCs and then incorporate the additional
requirement into our search process.

Basic Search Strategy Let MC = ⟨M,L, R⟩ be a music formal context. We here
assume some total ordering ≺ on M and for any subset M ⊆ M, the objects in M
are always sorted in the ordering.

Based on ≺, the power set of M, 2M, can be arranged in a form of set enumer-
ation tree [22], where the root node is ∅ and for a node M , a child of M is defined
as M ∪ {m} such that tail(M) ≺ m, referring to the last object of M as tail(M).

It is easy from the definition to see that for each FC (M,L) inMC, we can always
find a set of objects X ⊆ M such that M = X ′′ and L = X ′. By traversing the set
enumeration tree, thus, it is possible to meet every FC by computing (X ′′, X ′) for
an X in the tree.

More concretely speaking, as a basic process, we try to expand a set of objects
X into X ∪ {m} with an object m such that tail(X) ≺ m. We then compute
((X∪{m})′′, (X∪{m})′) to obtain an FC. Such an object m we try to add is called
a candidate and is selected from the set of candidates, cand(X), formally defined
as

cand(X) = {m | m ∈ (M\X ′′) and tail(X) ≺ m}.

Initializing X with ∅, we recursively iterate our expansion process in depth-first
manner until no X can be expanded.
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It is noted that based on the ordering ≺, we can avoid a considerable number
of duplicate generations of each individual FC.

More concretely speaking, when we expand X with a candidate m ∈ cand(X),
if (X ∪ {m})′′ \ X ′′ includes some object x such that x ≺ m, then the FC ((X ∪
{m})′′, (X ∪ {m})′) and those obtained from any descendant of X ∪ {m} are com-
pletely useless because those concepts have already been obtained in our depth-first
search. Therefore, we can immediately stop further expansions of X ∪ {m} and
backtrack to the next candidate.

Pruning Useless Music FCs According to the basic strategy, we can surely
extract every ordinary FC in MC. Since our final goal is to find every FC whose
extent must form a clique in G(θ), we incorporate the requirement into our search
process.

As a simple observation, it is easy to see that any subset of a clique in G(θ)
is also a clique. This implies that if a set of music objects X ⊆ M cannot form a
clique in G(θ), any superset of X can never be a clique. This observation brings us
a simple pruning rule we can enjoy during our search process.

For an (ordinary) FC MC, if its extent does not form a clique, then any FCs
succeeding to MC in our depth-first search tree can safely be pruned as useless ones
because their extents do not also form cliques and therefore can never be our target
FCs. Whenever we find such a violation of the requirement, we can immediately
stop our expansion process and then backtrack.

Algorithm Description We present a simple depth-first algorithm for finding
our target music FCs. Its pseudo-code is shown in Figure 2.

In the figure, the head (first) element of a set S is referred to as head(S).
Moreover, we refer to the original index of object o in OMC as index(o). The
if statement at the beginning of procedure FCFind is for avoiding duplicate
generations of the same FC and the else if for pruning useless expansions.

5 Experimental Results

In this section, we present our experimental results. We have implemented our
algorithm for finding music formal concepts consistent with audio features and
conducted several experimentations to verify its usefulness. Our system has been
coded in C and executed on a PC with IntelR⃝ Core

TM
i5 (1.6 GHz) processor and

16 GB main memory.
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[Input] MC = ⟨M,L, R⟩ : a music formal context
G : a similarity graph forM based on acoustic feature vectors

[Output]MFC : the set of music formal concepts consistent with
acoustic feature similarity

procedure Main(MC, G) :
MFC ← ∅ ;
Fix a total ordering ≺ onM ;
C ←M ;
while C ̸= ∅ do
begin
m← head(C) ;
C ← (C \ {m}) ;
MusicFCFind({m}, ∅, C) ;

end
return FC ;

procedure MusicFCFind(X, PrevExt, Cand) :
MFC ← (Ext = X ′′, X ′) ; // music FC
if ∃x ∈ (Ext \ PrevExt) such that x ≺ tail(X) then
return; // discard duplicate music FC

else if Ext is not a clique in G then
return; // discard music FC violating cliqueness

endif
MFC ←MFC ∪ {MFC} ;
while Cand ̸= ∅ do
begin
m← head(Cand) ;
Cand← Cand \ {m} ; // removing m from Cand ;
NewCand← Cand \ PrevExt ; // new candidate objects.
if NewCand = ∅ then continue ;
MusicFCFind(X ∪ {m}, Ext, NewCand) ;

end

Fig. 2. Algorithm for Finding Music Formal Concepts Consistent with Acoustic Feature Similarity

5.1 Dataset

In our experimentation, we have used “The MagnaTagATune Dataset” [9], a dataset
publicly available 1.

The dataset contains 25,863 audio clips in MP3 format, where each of the clips
has length of 30 seconds. The number of the original music works (titles) from
which those clips have been extracted is 6385.

For most of the clips, two kinds of audio features, pitch and timbre, have already
been provided in the dataset. More concretely speaking, for each audio clip, a couple
of sequences (time-series) of 12-dimensional vectors have been prepared for both
audio features.

1 http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
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The dataset also contains annotation data for the audio clips. Each of the clips
except for 4,221 has been annotated with several tags out of 188 possible ones.

5.2 Music Formal Context and Similarity Graphs

For preparation of our music formal context and similarity graphs for audio features,
we have to select only audio clips from the dataset each of which is assigned at least
one annotation tag and has its corresponding feature vectors. We have found 21,618
audio clips out of 25,863 satisfying the conditions.

Based on the selected 21,618 music audio clips and their annotation data, we
have created our music formal context MC = ⟨M,A, R⟩, where M is the set of
21,618 audio clips as our data objects and A the set of 188 possible annotation
tags as our attributes. Furthermore, R is defined as R = {(m, a) | m ∈ M, a ∈
A,m is annotated with a}.

Our similarity graphs for audio features have also been created from the selected
21,618 audio clips and their audio feature vectors. As has been stated above, each
audio clip has its corresponding two time-series of 12-dimensional feature vectors
for pitch and timbre. As standard processing for (music) audio data, we average
each dimension of time-series to get a single feature vector. Moreover, we also
compute standard deviation of each dimension. Thus, for each audio clip mi ∈ M,
we can obtain four single 12-dimensional vectors, vp-avg

i , vp-std
i , vt-avg

i and vt-std
i , for

averaged pitch, standard deviation of pitch, averaged timbre and standard deviation
of timbre, respectively.

Assuming M as the set of vertices, given a threshold θ for similarity of audio
features, our similarity graph for averaged pitch, denoted by Gp-avg(θ), has been
constructed as Gp-avg(θ) = (M, Ep-avg(θ)), where Ep-avg(θ) is defined with vectors
vp-avg
i according to the equations (1) and (2). As similarity graphs for standard

deviation of pitch, averaged timbre and standard deviation of timbre, we can con-
struct Gp-std(θ), Gt-avg(θ) and Gt-std(θ), respectively, in the same manner.

We have set θ to each value in the range from 0.9 to 1.0 with a step of 0.01.

5.3 Examples of Music Formal Concepts

We present here two music formal concepts. One is an example of our target FCs ac-
tually extracted by the proposed system and the other a negative example rejected
due to inconsistency of acoustic similarity.

In Figure 3(a), we present a music FC actually found as accepted one. The FC
satisfies the requirement of acoustic similarity based on standard deviation of pitch,
where θ has been set to 0.95.

The extent consists of 6 music objects all of which are annotated with (at least)
the 6 tags in the intent, where each object is expressed in the form of
“Artist-AlbumTitle-TrackNum-TackTitle.” Listening to those music objects, it is
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Extent 1. zilla-egg-07-rufus
2. aba structure-tektonik illusion-03-pipe
3. magnatune compilation-electronica-10-introspekt mekhanix
4. hoxman-synthesis of five-11-nighty girl
5. strojovna 07-iii-04-loopatchka
6. strojovna 07-Number 1-05-bycygel

Intent fast drums techno synth funky upbeat

(a) Accepted Music FC

Extent 1. saros-soundscapes-03-symphony of force
2. dj markitos-evolution of the mind-01-sunset endless night journey remix
3. burning babylon-knives to the treble-12-double axe
4. belief systems-eponyms-05-talk box
5. hands upon black earth-hands upon black earth-11-priest

Intent techno synth trance bass

(b) Rejected Music FC

Fig. 3. Examples of Music FCs

found the concept provides a nice cluster in which they are certainly similar acous-
tically and have a clear interpretation given by the intent.

On the other hand, as a negative example, Figure 3(b) shows a music FC re-
jected by our algorithm due to inconsistency of any acoustic similarity provided for
our experimentation. For the concept, each music object of the extent is surely an-
notated with all tags in the intent. Listening their audio samples, however, we would
have an impression that the cluster given by the concept seems slightly ambiguous
as a homogeneous group. For example, the music 2 of DJ MARKITO is a typical
techno sound with clear beat of high tempo, while the music 5 of Hands Upon Black
Earth is a illusional sound of synthesizers with no beat. With the help of acoustic
similarity, such an undesirable cluster (FC) can be excluded in our framework.

5.4 Computational Performance

We here discuss computational performance of the proposed system. Concretely
speaking, we have executed our system for each of the constructed graphs and
observed computation times and numbers of extracted music FCs.

Figure 4 shows behavior of computation times for extracting music FCs consis-
tent with acoustic similarity given by Gp-avg(θ), Gp-std(θ), Gt-avg(θ) and Gt-std(θ),
respectively. In the figure, for example, the performance curve referred to as t-std
is for Gt-std(θ) with each value of θ. In order to see effectiveness of incorporating
acoustic similarity, we have also put a dotted line, referred to as NoSim, correspond-
ing to the performance curve in case without the additional requirement.

It is clearly stated that the requirement of acoustic similarity effectively im-
proves efficiency of our computation. This means that the pruning based on the
requirement can work well in our search.
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Fig. 4. Computation Times (sec)

We can enjoy sufficient degree of improvement as the value of θ becomes larger
(requiring stronger acoustic similarity) even in case of Gt-std(θ), that is, acoustic
similarity based on standard deviation of timbre vectors. At the setting of θ =0.95
whose corresponding angle is about 18 degree, we get reductions of at least 50 %
in any case and thus reasonable computation times.

Figure 5(a) shows how effectively the requirement of acoustic similarity can
reduce numbers of music FCs to be extracted. It is easy to see that the behavior is
almost the same as one in case of computation times. As has been discussed, we can
completely discard non-target FCs by detecting just a small part of them defining
a boundary between target and non-target in our search. Therefore, computation
time of our algorithm is mainly spent for detecting target FCs consistent with
acoustic similarity.

In case of t-std, although numbers of extracted FCs are surely reduced com-
pared to that in case of NoSim, they still seems too large to actually examine them.
As is mainly focused on the other three cases in Figure 5(b), we can obtain reason-
able numbers of music FCs in case of p-std and p-avg, and very small numbers
of those in case of t-avg. Thus, our requirements for acoustic similarity based on
timber feature vectors bring us undesirable effects from practical point of view.

5.5 Discussion

As has been observed, the requirement for acoustic similarity can certainly reduce
computation times and numbers of FCs to be extracted. Needless to say, degree
of reductions is directly affected by the threshold θ adjusted in our construction
process of similarity graphs. Although larger values of θ would bring us drastic
reductions still keeping high homogeneity, we often find few music FCs satisfying
such a severe requirement. Moreover, if we fortunately detect some FCs for larger
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Fig. 5. Number of Extracted Music Formal Concepts

θ, they would not be interesting for us in the sense that such an FC tends to include
many music objects by the same artist or in the same album 2. Therefore, we have
to carefully set θ to an adequate value. At the moment, we have just an empirical
instruction that values around 0.95 would be reasonable from practical viewpoint.

As an extended approach, users can flexibly adjust values of θ with the help
of user-interaction so that they can intensively and deeply examine music FCs
particularly interesting for them. At an early stage, we try to extract music FCs by
setting θ to a (relatively) small value. In such a setting, since the requirement for
acoustic similarity is not severe, it is easy to imagine that we have a large number
of FCs. Obviously, showing users all of them is quite impractical. In order to have
an overview of our music database, it would be reasonable to present maximally
general FCs (that is, ones with maximally larger extents) which have a very small
part of them. Browsing those maximal FCs, users would mark several promising
candidates to further examine. For an increased value of θ, we can again extract
music FCs with finer homogeneity and then intensively find ones related to the
candidates previously marked.

6 Concluding Remarks

In this paper, we discussed a method of finding music formal concepts. Those con-
cepts correspond to meaningful clusters of music objects in the sense that each
cluster can clearly be interpreted in terms of its intent and consists of objects
acoustically similar. We presented a depth-first algorithm for efficiently extracting
music FCs with a simple pruning rule. In our experimentations, we observed use-

2 In case where several music objects are clipped from a single track, as The MagnaTagATune
Dataset, we could find most of the objects in an FC are from the same track.
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fulness of the proposed method from the viewpoints of quality of extracted FCs
and computational efficiency.

Since our current framework assumes that each music object is assigned its own
linguistic information like annotation-tags, we have to cope with issues such as cold
start problems in recommendation systems. It would be worth incorporating some
mechanism of automatic-tagging/labeling into our current system.

The proposed method is a general framework applicable to any domain in which
data objects can be represented in numerical vectors and assigned their own lin-
guistic information. Based on the current framework, we can design and develop
useful recommendation systems in various application domains.
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