
David C. Wyld et al. (Eds): COMIT, SIPO, AISCA, MLIOB, BDHI - 2020

pp. 65-75, 2020. CS & IT - CSCP 2020 DOI: 10.5121/csit.2020.101606

LOCAL BRANCHING STRATEGY-BASED

METHOD FOR THE KNAPSACK
PROBLEM WITH SETUP

Samah Boukhari1, Isma Dahmani2 and Mhand Hifi3

1LaROMaD, USTHB, BP 32 El Alia, 16111 Alger, Algérie
2AMCD-RO, USTHB, BP 32, El Alia, 16111 Bab Ezzouar, Alger, Algerie
3EPROAD EA4669, UPJV, 7 rue du Moulin Neuf, 80000 Amiens, France

ABSTRACT

In this paper, we propose to solve the knapsack problem with setups by combining mixed linear

relaxation and local branching. The problem with setups can be seen as a generalization of 0–1
knapsack problem, where items belong to disjoint classes (or families) and can be selected only

if the corresponding class is activated. The selection of a class involves setup costs and resource

consumptions thus affecting both the objective function and the capacity constraint. The mixed

linear relaxation can be viewed as driving problem, where it is solved by using a special black-

box solver while the local branching tries to enhance the solutions provided by adding a series

of invalid / valid constraints. The performance of the proposed method is evaluated on

benchmark instances of the literature and new large-scale instances. Its provided results are

compared to those reached by the Cplex solver and the best methods available in the literature.

New results have been reached.

KEYWORDS

Knapsack, Setups, Local Branching, Relaxation

1. INTRODUCTION

The Knapsack Problem with Setup (namely KPS) can be viewed as a more complex variant of
the well-known Knapsack Problem (namely KP), where a set of items is considered that is

divided into a set of classes. Each class is characterized by both fixed cost and fixed capacity

while an item can be selected if the class containing that item is activated. KPS finds its
application in many real-world industrial and financial applications, such as order acceptance and

production scheduling. An instance of KPS is characterized by a knapsack capacity C and a set I

= {1,..., m} of disjoint classes associated with items. Each element j belongs to a given class ti =

{1,...,ni } (ni denotes the number of items belonging to the class i, i I) and the j-th item of the i-

th class has a nonnegative profit pij and a weight wij. Furthermore, a nonnegative setup cost fi is
incurred and a non-negative setup capacity si is consumed in case items of class i are selected in

the solution. Without loss of generality, we assume that all input parameters have integer values.

The goal of the problem is to maximize the difference between the profits related to the selected
items and that related to the fixed costs incurred for setting-up classes without violating the

knapsack capacity constraint. The studied problem has applications in many areas such as

production planning and scheduling (see Chebil and Khemakhem 2015), energy consumption

management (see Della Croce, Salassa, and Scatamacchia 2017), and resource allocation (see

http://airccse.org/cscp.html
http://airccse.org/csit/V10N16.html
https://doi.org/10.5121/csit.2020.101606

66 Computer Science & Information Technology (CS & IT)

Della Croce, Salassa, and Scatamacchia 2017). The KPS has also a important theoretical status
because of its generalization to the classical KP.

The rest of the paper is organized as follows. The related work is exposed in section 2. A

formal description of the knapsack problem with setup is presented in Section 3.1. Section 3.2

describes the greedy initialization procedure that is used for achieving a starting solution. Section

3.3 discusses the standard local branching used for a general mixed integer programming. Section
3.4 presents the adaptation of the local branching for solving KPS. Finally, Section 4 exposes the

experimental part, where the performance of the proposed method is evaluated on two sets of

benchmark instances. The first set, containing small and medium-sized instances, is taken from

the literature where the provided results are compared to the best solution values published in the
literature. The second set contains random generated large-scale instances, where the provided

results are compared to those achieved by the Cplex solver.

2. RELATED WORKS

Guignard [10] tackled the setup knapsack by using a Lagrangean decomposition for the setup

knapsack problem, where no restrictions on the non-negativity of both setup cost of each class

and the profit of each item are considered.

A special case of KSP has been studied by Akinc [1] and Altay et al. [2], where only the setup

cost of each class is taken into account (called the fixed charge knapsack problem). In Akinc [1],
an exact algorithm has been designed, which is based upon a classical branch-and-bound scheme,

while in Altay et al. [2] the authors tackled the case where items can be fractionated by cross

decomposition.

Michel et al. [11] addressed an extended multiple-class integer knapsack problem with setup. For

that case, the weights associated to items are related to the classes and the total weight is bounded

by both lower and upper weight bounds. Different integer linear programming formulations were
proposed and an extended branch-and-bound algorithm that is based upon Horowitz and Sahni

method was proposed such that nonnegative setup costs were favored.

The knapsack problem with setup has been studied by Chebil and Khemakhem [4] who proposed

a dynamic programming procedure, within pseudo-polynomial time complexity. A special

converting formulation was considered in order to reduce the size of the storage capacity, which

remains quite expensive when using such type of approach.

Chebil and Khemakhem [5] designed a special truncated tree-search for approximately solving

KPS. The method applies an avoid duplication technic that consists in reformulating the original
problem into a particular integer program. The experimental part showed the effectiveness of that

method, especially the effect of the avoiding duplication technic in terms of improving the quality

of the provided solutions.

Furini et al. [9] developed linear-time algorithms for optimally solving the continuous relaxation

of different integer linear programming formulations of the knapsack with setup. As mentioned in

their experimental part, it has been shown that their algorithms outperform both dynamic
programming-based approach and blackbox solver.

Della et al. [7] designed an exact method which handles the structure of the formal description of
KSP, where the search process explored the partitioning strategy that is based on splitting the

decision variables into two levels. A fixation strategy has been applied for reducing the current

Computer Science & Information Technology (CS & IT) 67

subproblem to solve while the blackbox solver is applied for solving the reduced subproblem.
The experimental part showed that method remains competitive when compared to Chebil and

Khemakhem's [4] dynamic programming method.

Pferschy and al. [12] introduced a new dynamic programming approach which performs better
than a previous standard dynamic programming-based procedure; that can be considered as a

good alternative for an exact resolution when combined with an ILP solver.

Chebil et al. [6] proposed a multilevel matheuristic for solving large-scale problem instances of

the knapsack problem with setup and the multiple knapsack version of the problem. The principle

of the method is based (i) on reducing the original instance into a special knapsack instance (each
class contains one item) and (ii) on solving the continuous relaxation of the induced problem to

provide a feasible solution for the original problem. In order to enhance the quality of the

solutions reached, a simple tabu list has been incorporated. The experimental part showed that the

proposed method remains competitive when its results were compared to those achieved by the
state-of-the-art methods available in the literature.

More recently, Amiri [3] proposed a Lagrangean relaxation-based algorithm for solving the
knapsack problem with setup. The method follows the standard adaptation of the Lagrangean

relaxation, where a series of local optimal solutions are provided by using a descent method. The

performance of the method was evaluated on both the standard set of benchmark instances and
very large-scale ones (containing till 500 classes and 2 millions of items) and its achieved results

were compared to the best bounds available in the literature.

3. MIXED INTEGER AND LOCAL BRANCHING

3.1. The Model

First, let xij be the decision variable setting equal to 1 if item j of class i is placed in the knapsack,
0 otherwise. Second, let yi denote the setup decision variable that is equal to 1 if the family i is

activated, 0 otherwise. Then, the formal description of SKP (noted PKPS) can be written as

follows:

Maximize 
 


m

i
ii

m

i

n

j
ijij yfxp

i

11 1

 (1)

Subject to 
 


m

i
ii

m

i

n

j
ijij Cysxw

i

11 1

 (2)

iiij njIiyx ,...,1 , ,  (3)

    iiij njIiyx ,...,1 , ,0,1,1,0  (4)

Where the objective function (1) maximizes the total profit of the selected items minus the fixed

costs incurred for setting up the selected classes. The constraint (2) ensures that the weight of
selected items in the knapsack, including all setup capacities related to the activated classes, does

not exceed the knapsack capacity C. Finally, constraints (3) (representing the precedence

constraints) ensures that an item j is selected only with its activated class j.

https://scholar.google.fr/citations?user=eawCAR8AAAAJ&hl=fr&oi=sra

68 Computer Science & Information Technology (CS & IT)

3.2. A Starting Solution

A starting solution for KPS can be provided by solving a mixed integer relaxation of the original
problem PSKP. Let RPSKP denote the problem provided by relaxing all binary variables, i.e., setting

xij  [0, 1]  j = 1,…, ni,  i  I and yi  [0, 1],  i  I such that RPSKP:

Maximize 
 


m

i
ii

m

i

n

j
ijij yfxp

i

11 1

Subject to 
 


m

i
ii

m

i

n

j
ijij Cysxw

i

11 1

iiij njIiyx ,...,1 , , 

    iiij njIiyx ,...,1 , ,1,0,1,0 

To provide a constructive approximate solution, we first proceed to fix step by step the variables
yi to their binary values and to one the decision variables having a fractional value in PRSKP.

Second, one can observe that a single knapsack problem can be provided by considering the

decision variables xij whose classes are activated, i.e., yi = 1. Third and last, an optimal solution
of the induced knapsack problem built in the second step, which allows a feasible starting

solution for PSKP.

The Greedy Constructive Procedure (noted GCP) used, for providing a starting solution, can be
described as follows:

- The relaxation RPSKP is optimized by using the simplex method. Then, we collect the current

primal solution by setting (YX ,) as the achieved configuration.

- Let Y’ denote the binary structure provided by fixing yi to its current integer value and all the
fractional variables yi to one,

- Let S be the set of indices of the classes fixed to one: S= {i  I | yi=1}.Update C’=C-∑iI si.

- Let PKP be the knapsack problem with capacity C’ and the set of elements xij, iI. Each element

j of class iS is characterized by its profit pij and weight wij . Then, the PKP problem described as

follows: PKP :

Maximize 
 Si

n

j
ijij

i

xp
1

Subject to '
1

Cxw
Si

n

j
ijij

i


 

  iij njSix ,...,1 , ,1,0 

- Let X’ be the optimal solution of PKP. Then, (X’, Y’) denotes the (starting) feasible solution of

PSKP.

Computer Science & Information Technology (CS & IT) 69

Algorithm 1 describes the main steps of GCP that is used for providing a starting solution and
used as the core of the proposed method, as shown in the rest of the paper.

3.3. Local Branching

The original Local Branching (LB) has been first introduced by Fischetti and Lodi [8], especially

for efficiently tackling mixed integer formulations of hard combinatorial optimization problems.
The solution related to such formulations is often done by calling a black-box solver, like Gurobi,

Cplex and Lingo. Because the aforementioned solvers are not able to optimally solve large-scale

instances, LB can be used as an alternative at least for enhancing the quality of the solutions.

However, since solution procedures using LB-based strategy shown an increasing interest of that
method, we propose to solve KPS by using a simple adaptation of LB combined with the greedy

constructive procedure GCP (Algorithm 1). The principle of LB-based algorithm may be

described as follows:

1. Let S be a starting solution affected to the first node of the developed tree.

2. Initialize the first tree using the solution previously generated.
3. Iterative phase:

i Completely resolve the local tree.

ii when the local search terminates, the following two cases are distinguished:
a- A better feasible solution has been provided for the local tree structure.

Create a new tree using the aforementioned improved solution like starting

solution (called the reference solution).
b- The solution has not been improved, so abort the local branch.

4. Solve the rest of the search tree.

5. Return the best solution found.

3.4. Adaptation of the Local Branching

In order to adapt LB to the studied problem SKP, we need a starting solution for initializing the

first tree, the constraints to use for locally branch on non-searched subspaces and, a blackbox
solver for computing the local optimum for each (sub) tree.

Let Y be a feasible reference solution of PKPS provided by the constructive method GCP (cf.

Section 3.2). Let S1 (resp. S0) be the set related to Y containing elements fixed to one (resp. zero),

70 Computer Science & Information Technology (CS & IT)

i.e., S1={i | iI, yi=1} (resp. S0 ={i | iI, yi=1}). Then, for a given nonnegative integer

parameter k, kOpt defines the neighborhood N(Y , k) of the solution Y as the set of the feasible

solutions of PSKP satisfying the following additional local branching constraint:

kyyYY
Si

i

Si

i  
 01

)1()',((5)

where the two terms of left-hand side count the number of binary variables flipping their value

(with respect to Y) either from 1 to 0 or from 0 to 1, respectively.

Herein, as used in Fischetti and Lodi [8], the local branching constraint is applied as a branching
criterion within an enumerative scheme for PKPS. Indeed, given the incumbent solution Y’, the

solution space associated with the current branching node can be partitioned by separately adding

the following disjunction:

kYY )',(or 1)',( kYY (6)

where k denotes a neighborhood-size parameter.

4. COMPUTATIONAL RESULTS

The objective of the computational investigation is to assess the performance of the Local

Branching-Based Method (LBBM) by comparing their provided bounds (objective values) to the
best known bounds available in the literature. LBBM is evaluated on two sets of instances: the

first set, contains 200 small-sized instances, extracted from the literature (cf., Chebil et al. [6])

and a second set, containing 30 large-scale instances, randomly generated following the same
generator used by Chebil et al. [6]. Note that the first set (the second set is detailed in section 4.3)

includes 20 groups, where each group contains 10 instances.

These instances are considered as the strongly correlated ones, where they are randomly

generated applying the following generator described below.

1: - Solve PKPS by using the simplex method.

- Let (X’; Y’) be the resulting configuration.

- Call GCP (Algorithm 1) for achieving the starting feasible solution Z0.

2: Stop=0;

3: while (Stop=0) do

4: Solve PKPS with the additional local constraint (Y; Y’) ≤ k, and let (X0; Y0) be the provided

solution with objective value Z0.

5: if (Z0 > Z’) then
6: Set Z’ = Z0.

7: Remove the old branches.

8: Add the new local branch (Y; Y’) ≥ k + 1.

9: Set Y’ = Y0.

10: else

11: Stop=1;

12: end if

13: end while

14: return Z0.

Algorithm 2. Local Branching for KPS

Computer Science & Information Technology (CS & IT) 71

Table 1: Behavior of LBBM on the benchmark instances of the literature: variation of the parameter k

ni N
 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

5 500 11004,7 11073,8 11073,8 11073,8 11073,8 11073,8 11073,8 11073,8 11073,8

10 11127,4 11144 11144,6 11144,6 11144,6 11144,6 11144,6 11144,6 11144,6

20 13917,6 13917,6 13917,8 13917,8 13917,8 13917,8 13917,8 13917,8 13917,8

30 13951,8 13952,1 13951,9 13952,2 13952 13952,1 13951,9 13951,7 13952,4

5 1000 19977,8 19977,8 19977,8 19977,8 19977,8 19977,8 19977,8 19977,8 19977,8

10 21943,3 21943,3 21943,3 21943,3 21943,3 21943,3 21943,3 21943,3 21943,3

20 22587,1 22603,5 22629,2 22639,4 22644,1 22648 22648 22648 22648

30 22609 22630,3 22633,5 22647,2 22650,7 22651,1 22650 22650,6 22643,6

5 2500 55185,9 55297,7 55519 55519 55519 55519 55519 55519 55519

10 54840,9 54829,3 54850 54850 54850 54850 54850 54850 54850

20 50128,3 50136,6 50209 50218,7 50245,7 50243,1 50253,4 50244,2 50242,2

30 55445,4 55460,1 55486,5 55514,3 55501,4 55506 55497,1 55505,8 55487,7

5 5000 100302,2 100302,2 100301,9 100302,2 100302,2 100302,2 100302,2 100302,2 100302,2

10 100502,5 100641,9 100645,2 100645,2 100645,2 100649,4 100649,4 100649,4 100649,4

20 100269,8 100544 100630,7 100713,1 100761,1 100774,5 100767,7 100766,9 100761

30 101166,5 101162,2 101183,7 101196,5 101180,8 101177,5 101170,7 101140,4 101152,7

5 10000 221536,1 223128,9 223127,6 223126,4 223126,4 223126,4 223126,4 223126,4 223126,4

10

199177,7 200831,2 201201,8 201227,3 201226,9 201226,9 201227,3 201225,8 201227,9

20

201093 200716,6 201620,8 201522,4 201621,1 201776,9 201776,2 201774,7 201744,8

30

201028,3 200961,6 201486,8 201470,8 201533,3 201520,2 201563,1 201499,7 201485,2

Average 78889,765 79062,735 79176,745 79180,1 79190,86 79199,03 79200,485 79195,605 79192,49

 The number of classes varies in the discrete interval {10; 20; 30}.

 Number of elements n, related to the number of classes, was fixed to 500, 1000, 2500,
5000 and 10000, respectively.

 The number of items ni of each class i I varies in the discrete interval









10
,

10

k
k

k
k where

m

n
k  and integer.

 Both profits and weights were generated as follows; pij is randomly generated in the

discret interval [10; 100] and wij = pij + 10, forming strongly correlated instances.

 The setup cost (resp. capacity) of each class i is a random value linking the summation

 The setup cost (resp. capacity) of each class i is a random value linking the summation of
the profits (resp. weights) of the items belonging to the class; that is,





in

i

iji pef
1

1 (resp. 



in

i

iji wes
1

1), where is drawn from the uniform

distribution [0:15, 0:25].

 The knapsack capacity)(5.0
1


 


Si

n

j
ij

i

wC

72 Computer Science & Information Technology (CS & IT)

The proposed method was coded in C and run on an Intel Pentium Core (TM) i3-6006U with
2GHz.

4.1. Behavior of LBBM on Set 1

In this section, LBBM's behavior is analyzed on the set of instances representing the benchmark

instances of the literature. Its achieved results are compared to those reported in Amiri [3]: a
Lagrangean relaxation-based heuristic (noted Lag), the Two-Phase Reduced Mathheuristic (noted

Mred) proposed in Chebil et al. [6] and the Cplex solver (noted Cplex: that solver was tested

using two tunings, where each version was fixed to one hour: (i) automatic search method and,

(ii) dynamic search; for each of these versions, the RINS heuristic was fixed to 100); thus, the
best objective value achieved by these versions are retuned as the best solution value of Cplex.

Table 2: Performance of LBBM versus Mred and Lag

Relaxed XY_LB1

Cplex Lag Mred
k=7 k=8

N ni z cpu opt

Gap/op

t CPU

Gap

/opt cpu opt

Gap/op

t CPU opt

Gap/op

t CPU opt

5 500 11073,8 222,5408 9 0,16300 5,00 0,00542 0,11 9 0 8,87 10 0 9,54 10

10

11144,6 169,2485 10 0,16900 5,00 0,05563 0,04 4 0 14,28 10 0 12,12 10

20

13917,8 203,6598 8 0,09100 4,00 0,07832 0,01 2 0 40,18 10 0 51,60 10

30

13952,4 329,4308 9 0,03900 4,00 0,06666 0,00 1 0,00215 42,51 9 0,00358 47,51 8

5 1000 19977,8 778,8846 4 0,51400 5,00 0,00200 0,11 9 0 28,94 10 0 29,61 10

10

21943,3 556,6288 0 0,07600 5,00 0,38326 0,04 1 0 41,29 10 0 41,09 10

20

22648 187,573 10 0,24000 5,00 1,02040 0,00 5 0 23,82 10 0 29,18 10

30

22653,6 827,3707 8 0,14600 5,00 0,03311 0,00 0 0,01633 70,61 4 0,02119 78,36 2

5 2500 55519 449,0332 0 0,80500 5,00 0 0,07 10 0 25,78 10 0 25,93 10

10

54850 1648,4682 1 0,24200 5,00 3,53747 0,02 5 0 22,61 10 0 14,78 10

20

50168,2 984,0365 0 0,16200 5,00 0,01731 0,02 7 0,02050 64,12 9 0 87,78 10

30

55512,4 904,0988 0 0,13700 5,00 0,72221 0,01 3 0,03296 80,94 3 0,04899 80,70 1

5 5000 100302,2 1452,1917 0 0,32100 8,00 0 0,01 10 0 0,89 10 0 0,93 10

10

100649,4 859,8139 2 0,31500 8,00 0,00298 0,01 9 0 2,30 10 0 2,07 10

20

100645,8 1274,339 2 0,38200 8,00 0,00079 0,01 9 0,00447 67,23 8 0,01121 83,38 7

30

101200,4 470,8615 8 0,14700 7,00 0,00148 0,01 8 0,02875 80,79 3 0,03547 80,61 0

5

1000

0 223129,8 1333,462 0 0,94600 17,00 4,25044 0,02 9 0,00152 1,44 7 0,00152 1,43 7

10

201227,9 1961,5044 0 0,30300 16,00 2,25953 0,02 7 0,00050 2,49 9 0,00030 2,43 9

20

200589,1 2742,7227 0 0,31100 16,00 0 0,02 10 0,00292 75,95 8 0,00327 98,74 7

30

201581,8 1382,913 8 0,24700 17,00 0,00015 0,02 9 0,03264 80,83 1 0,01136 80,66 3

Average 79134,365 936,939 79 0,28780 7,75 0,62186 0,03 127 0,00714 38,79

16

1 0,00684 42,92 154

Table 2 reports the results achieved by the four methods tested: Cplex solver, Mred, Lag and

LBBM on all instances of set 1. The first two columns of the table show the instance's

information (each line corresponds to a group containing 10 instances). Columns from 3 to 5

report the Cplex solver's integer bound (noted z), runtime limit consumed and the number of the

Computer Science & Information Technology (CS & IT) 73

optimal solution values matched by the Cplex. Columns 6 and 7 display the average Gap

(computed as follows: 100



opt

procedureopt

z

zz
Gap) achieved by Lag and its runtime limit

(extracted from Amiri [3]. Columns from 8 to 10 tally the average Mred's Gap, its average
runtime limit and the number of optimal solution values matched by Mred. Finally, column from

11 to 13 (resp. from 14 to 16) show the LBBM's average Gap with k = 7 (resp. k = 8), its related

average runtime and the number of the optimal solution values matched by the algorithm.

In what follows, we comment on the results reported in Table 2, where we compare the number

of results obtained by the proposed method LBBM (the solution values) with the best solution

values provided by the other three methods. On the one hand, LBBM with k = 7 (resp. k = 8)
achieves an average Gap of 0.00714 (resp. 0.00684) while Lag's average Gap is equal to 0.28780

and that of Mred is more greater (0.62186). On the other hand, Cplex matches 79 optimal values

over the 200 instances of Set 1 (representing a percentage of 39.5%), Mred provides 127 optimal
values (representing a percentage of 63.5%) whereas LBBM matches 161 optimal values for k =

7 (representing a percentage of 80.5%) and 154 ones for k = 8 (representing a percentage of

77%). Finally, even LBBM's average runtime remains higher when compared to those consumed

by Lag and Mred, it remains very reasonable for a method using a local branching strategy.

4.2. Behavior of LBBM on the Instances of Set 2

Because Chebil et al. [6]'s instances are note available, we then considered thirty instances

representing more largest benchmark instances (these instances are publicly available for other

researchers in the domain): the number of classes (m) varies in the discrete interval {50; 150;

300}, the total number of items of each class (ni, i  I) varies in the discrete interval {10000;
100000}, where five instances are considered for each of the six groups. Herein, LBBM's

behavior is analyzed on these instances, where its achieved results are also compared to those

achieved by the Cplex solver. Table 3 reports the solution values achieved by Cplex solver (its
runtime limit was fixed to 3600 seconds) and LBBM on the instances of Set 2. From the table,

one can observe what follows:

1. LBBM remains competitive when comparing its results to those achieved by the Cplex
solver.

2. LBBM is able to provide ten better average bounds with k = 7 (column 5 in bold-space) than

those achieved by Cplex. In this case, LBBM's global average bound is equal to 1472611.17
for k = 7 (resp. 1472487.97 for k = 8) while Cplex's global average bound is equal to

1472310.57.

3. For k = 7, LBBM's average Gap is equal to -0.020 (column 7, last line) and it is equal to -

0.012 for k = 8 (column 10, last line) which means that LBBM is capable to improve globally
the bounds achieved by the Cplex solver by consuming a smaller runtime (in some cases, it

needs only twentieth than the average runtime required by the Cplex).

74 Computer Science & Information Technology (CS & IT)

Table 3: Performance of both Cplex solver and LBBM on large-scale instances.

k=7 k=8

N ni
zCplex cpu ZLBKPS cpu gap/cplex ZLBKPS cpu gap/cplex

50 10000 237777 682s 237767,00 162,13 0,004 237739,00 162,31 0,016

983352 570s 982900,00 161,25 0,046 983257,00 161,17 0,010

984146 3890,6s 983905,00 161,19 0,024 984035,00 160,81 0,011

985271 1158,6s 984582,00 241,49 0,070 985104,00 160,69 0,017

241677 946s 241662,00 161,96 0,006 241558,00 161,36 0,049

150 10000 975600 323s 975180,00 161,21 0,043 975195,00 161,13 0,042

980232 1h 980138,00 161,16 0,010 980159,00 161,21 0,007

238051 1h 237943,00 161,30 0,045 237980,00 161,97 0,030

977670 1h 977538,00 161,08 0,014 977513,00 161,19 0,016

240515 1323s 240464,00 162,47 0,021 240486,00 161,41 0,012

300 10000 242728 1h 242669,00 161,41 0,024 242634,00 161,11 0,039

240403 2573s 240352,00 161,56 0,021 240338,00 161,39 0,027

240297 1h 240245,00 161,47 0,022 240176,00 161,41 0,050

238 996 1222s 238974,00 161,14 0,009 238968,00 161,46 0,012

242906 4125s 242882,00 161,74 0,010 242841,00 161,55 0,027

50 100000 2395349 1h 2397736,00 567,01 -0,100 2397579,00 480,00 -0,093

2409584 1h 2409994,00 1976,91 -0,017 2410086,00 501,18 -0,021

2399396 1h 2398263,00 565,50 0,047 2399332,00 443,42 0,003

2399287 1129s 2399167,00 854,53 0,005 2399038,00 531,99 0,010

2399483 1h 2399205,00 607,82 0,012 2399280,00 432,47 0,008

150 100000 2428789 1h 2428303,00 173,60 0,020 2427565,00 176,91 0,050

2424999 1h 2427011,00 171,94 -0,083 2426975,00 174,32 -0,081

2402010 1h 2403642,00 172,28 -0,068 2402408,00 171,96 -0,017

2432900 1h 2435675,00 176,85 -0,114 2433396,00 170,47 -0,020

2359761 1h 2360405,00 171,55 -0,027 2360330,00 171,67 -0,024

300 100000 2402071 1h 2402903,00 166,28 -0,035 2402738,00 165,92 -0,028

2413486 1h 2413577,00 164,30 -0,004 2413521,00 163,99 -0,001

2419767 1h 2421827,00 164,96 -0,085 2420135,00 165,78 -0,015

2418549 1h 2417737,00 165,08 0,034 2418532,00 165,19 0,001

2414265 1h 2415689,00 165,61 -0,059 2415741,00 165,22 -0,061

Average

1472311

1472611,17 292,23 -0,020 1472487,97 216,69 -0,012

5. CONCLUSIONS

In this paper the knapsack problem with setup is studied; that is a more complex variant of the

well-known binary knapsack problem. A local branching-based method was proposed for
approximately solving the problem. The method combines two future strategies: (i) solving a

series of relaxed mixed programs and (ii) adding a series of branching constraints into a

Computer Science & Information Technology (CS & IT) 75

developed tree-search. Both strategies cooperate for creating a tree-search, where each path
corresponds to adding a series of constraints related to the current or improved solutions. The

performance of proposed method was analyzed on two sets of instances containing small and

large-scale instances. According to the experimental part, the proposed method remains

competitive, where it outperforms methods available in the literature and is able to provide
improved solutions for large-scale instances.

REFERENCES

[1] U. Akinc, (2006) “Approximate and exact algorithms for the fixed-charge knapsack problem”,

European Journal of Operational Research, Vol. 170, No 2, pp 363-375.

[2] N. Altay, JR. Robinson, E. Powell, and K. M. Bretthauer, (2008) “Exact and heuristic solution

approaches for the mixed integer setup knapsack problem”, European Journal of Operational

Research, Vol. 190, No 3, pp 598-609.

[3] A. Amiri, (2019) “A Lagrangean based solution algorithm for the knapsack problem with setups”,

Expert Systems with Applications, Vol. 143, pp113077.
[4] K. Chebil, and M. Khemakhem, (2015) “A dynamic programming algorithm for the knapsack

problem with setup”, Computers and Operations Research, Vol. 64, pp 40-50.

[5] K. Chebil and M. Khemakhem, (2016) “A tree search based combination heuristic for the knapsack

problem with setup”, Computers and Industrial Engineering, Vol. 99, pp 280-286.

[6] K. Chebil, R. Lahyani, M. Khemakhem, and L. C. Coelho, (2019) “Matheuristics for solving the

Multiple Knapsack Problem with Setup”, Computers and Industrial Engineering, Vol. 129, pp 76-89.

[7] C.F. Della, , F. Salassa, and R. Scatamacchia, (2017) “An exact approach for the 0-1 knapsack

problem with setups”, Computers and Operations Research, Vol. 80, pp 61-67.

[8] M. Fischetti and A.Lodi , (2003) “Local branching, Mathematical Programming”, Vol. 98, pp. 23{47.

[9] F. Furini, M. Monaci and E. Traversi, (2017) “Exact algorithms for the knapsack problem with

setup”, Technical report, Universit Paris Dauphine.
[10] M. Guignard, (1993) “Solving makespan minimization problems with lagrangean decomposition”,

Discrete Applied Mathematics, Vol. 42, no 1, pp. 17-29.

[11] S. Michel, N. Perrot, and F. Vanderbeck, (2017) “Knapsack problems with setups”, European

Journal of Operational Research, Vol. 196, no 3, pp. 909-918.

[12] U. Pferschy, R. Scatamacchia, (2018) “Improved dynamic programming and approximation results

for the knapsack problem with setups“, International Transactions in Operational Research, Vol. 25,

no 2, pp. 667-682.

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://scholar.google.fr/citations?user=eawCAR8AAAAJ&hl=fr&oi=sra
https://scholar.google.fr/citations?user=GTe-uosAAAAJ&hl=fr&oi=sra
http://airccse.org/

	Abstract
	Keywords
	Knapsack, Setups, Local Branching, Relaxation
	1. Introduction

