
David C. Wyld et al. (Eds): SEAS, CMCA - 2021

pp. 01-15, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.110201

VALIDATION METHOD TO IMPROVE

BEHAVIORAL FLOWS ON UML

REQUIREMENTS ANALYSIS MODEL BY CROSS-
CHECKING WITH STATE TRANSITION MODEL

Hikaru Morita and Saeko Matsuura

Graduate School of Engineering and Science, Shibaura Institute of Technology,

Minuma-ku 307, Saitama, Japan

ABSTRACT

We propose a method to evaluate and improve the validity of required specifications by

comparing models from different viewpoints. Inconsistencies are automatically extracted from

the model in which the analyst defines the service procedure based on the initial requirement;

thereafter, the analyst automatically compares it with a state transition model from the same
initial requirement that has been created by an evaluator who is different from the analyst. The

identified inconsistencies are reported to the analyst to enable the improvement of the required

specifications. We develop a tool for extraction and comparison and then discuss its

effectiveness by applying the method to a requirements specification example.

KEYWORDS

Requirements Specification, UML Modeling, Validation, Behavior Model.

1. INTRODUCTION

In recent years, a system that provides services is often complex, and it is linked with various

hardware and other systems. To build a system that satisfies the final service goal, it is important

to verify that the requirement specifications satisfy the goal after considering the characteristics
of the system components in the requirements analysis phase. We studied model driven

development, which defines requirements specifications using unified modeling language (UML)

models based on use case analysis [1]. Further, we verified the inconsistencies between the
models using the model-verification technique [2,3] and converted the investigated specifications

into products at the design and implementation phases [4]. Similar to our approach [2], Tariq et

al. [5], and Rafe et al. [6] transformed the activity diagram created in the requirements analysis

stage into a finite state model suitable for model verification tools, i.e., a formal verification
technique. Hence, exhaustive verification was performed to guarantee reachability and safety.

However, although these verification methods can confirm the validity of the service procedure

described, any excess or deficiency in the user request cannot be verified. To determine the
excess or deficiency in a requirements specification, the requirements specification must be

interpreted from multiple perspectives; in addition, requirements that are necessitated must be

identified based on their differences.

http://airccse.org/cscp.html
http://airccse.org/csit/V11N02.html
https://doi.org/10.5121/csit.2021.110201

2 Computer Science & Information Technology (CS & IT)

Herein, we compare a requirements analysis model by defining the service procedure based on
the consensus of multiple developers and the state transition model from the viewpoint of the

state that the system should assume to perform the service. The purpose is to cross-validate the

requirements analysis model and determine the excess or deficiency of the behavior.

The remainder of this paper is organized as follows. Section 2 describes the method to define a

UML requirements analysis model and the role of the state transition model for evaluating the

behavioral model. Section 3 describes the comparison method for the extracted and evaluation
models. Section 4 discusses the effectiveness of our method using a case study. Finally, Section 5

discusses the conclusions and directions for future research.

2. REQUIREMENTS ANALYSIS MODEL AND EVALUATION MODEL

The service can be realized by linking the use cases provided by the system. In recent complex

systems, the boundaries of each use case and the method to link the use cases at the early stage of

development must be identified. We focused on exchanging information at each boundary in a
system workflow and defined the cooperation and behavior of subsystems based on the procedure

by the action flow using an activity diagram.

Figure 1: UML Requirements Analysis Model

A workflow is beneficial for realizing a service that utilizes the use cases of each subsystem. To

achieve the system goals, the data exchange that is required to satisfy the service goals at each
subsystem boundary must be clarified. Each partition in the activity diagram represents each

subsystem and the users, and a set of use cases of each subsystem is described within the

partition. Consequently, the cooperation between all users and subsystems is clarified, and the
service procedure of the system is correctly defined.

Figure 1 shows the requirements analysis process after validating the workflow model. The use

case diagram of each subsystem is described based on the partition of each subsystem of the
workflow. At this point, the subsystem and the user who are exchanging data with the subsystem

become actors in the use case diagram. Each use case not only defines the behavior by the

activity diagram, but it also clarifies the behavior related to the data defined in the class diagram
in Figure 1. We name this model the UML requirements analysis model. In such behavioral

modeling, the procedure of the required function can be easily understood from the control

structure. However, as the change in the state of the system due to the action is unclear, it is
difficult to determine all the states that the system should assume.

Computer Science & Information Technology (CS & IT) 3

Meanwhile, the state transition model defines the behavior by changing the state of the system by
external or internal events. It is easy to understand whether the system requirements are

comprehensively analyzed by specifying the state name; however, it is difficult to confirm the

execution procedure of the system function and its relationship with other subsystems. Therefore,

activity diagrams are suitable for defining the entire system workflow, which includes
coordination between subsystems. On the contrary, the state transition model organizes the

requirements that the subsystem should satisfy based on the state that the system should assume.

Therefore, it can be a test case of requirements specification defined by the former; as such, we
propose using it as the evaluation model of the requirements analysis model, as shown in Figure

2.

Figure 2: Validation Method by Comparing Extracted Model with Evaluation Model.

3. CONFIRMATION METHOD OF REQUIREMENTS SPECIFICATION S USING

STATE TRANSITION MODEL

3.1. Extraction of State Transition Model from Workflow

The state was extracted from the requirements analysis model by focusing on the workflow

control structure and actions. The extracted state transition model is named as the extraction

model.

Table 1: Extraction Rules

Activity model in

workflow
State transition model

Activity model in

workflow

State transition

model

4 Computer Science & Information Technology (CS & IT)

Table 1 shows the conversion rule from the requirements analysis model to the state transition
model based on the following reason. First, the decision merge node is a transition control node

and the transition differs depending on the branch condition; therefore, the separation of the states

before and after that is identifiable.

Next, we focus on the action nodes. This is because the control structure divides the state by its

guard, and it is assumed that the state changes by executing the action. Such actions comprise

actions that receive data from other systems, actions that indicate the passage of time, actions that
change the attributes of the system, and actions that are unique to the subsystems. Actions that

receive data from other systems are described as signal receiving nodes, whereas actions that

indicate the passage of time are described as timers. Signal-receiving nodes and timers are
converted into events in the state machine diagram, signal sending nodes, and update actions,

wherein the attributes of an object are converted into entry actions in a state; meanwhile, other

actions are converted into actions on a transition arrow. Because the pre- and post-conditions

directly represent the state of the system, they are used as the state of the state transition model.
Figure 4 shows an example of the extraction model, which is expressed as a one-layer state

transition model under the extraction rules. This extraction model is generated based on the rules

in Table 1 from the activity diagram shown in Figure 3.

Computer Science & Information Technology (CS & IT) 5

Figure 3: Example of Activity Model

Figure 4: Example of Extraction Model

To confirm whether the extraction model includes the states to be assumed by the system
indicated by the evaluation model, the states to be assumed by the system must be described

6 Computer Science & Information Technology (CS & IT)

appropriately based on the characteristics of the target system in the evaluation model. Because
the workflow defines the cooperation scenario between subsystems, the state to be assumed by

the subsystem should first be determined based on the state of each partner to be linked, as well

as the type of work scenario to be executed within that state.

Consequently, the state of the evaluation model is defined by dividing it into layers for each

viewpoint, as shown in Figure 5. In addition, if the words and phrases described in the evaluation

model are freely described by the evaluator, it will be difficult to compare the contents of the
state transition model. Therefore, we herein provide a list of actions of the defined workflow to

unify words and phrases.

Figure 5: Example of Evaluation Model

3.2. Validation Process by Comparing Extraction and Evaluation Models

In the extraction model, the states are subdivided into one hierarchy based on the action and

branch structure; therefore, each state is divided into the hierarchical states of the evaluation
model based on a list of common actions prepared in advance. Table 2 provides a judgment list of

behavior of the evaluation model shown in Figure 5.

Table 2: Judgment List of Behavior of Evaluation Model Shown in Figure 5

s0 s1 s2

E0 E0 E0

G0 action1 action6

action0 action2 time

action3 action0

action4 action9

action5 action10

G1 action12

A0 action11

G2 action0

A1

This list was generated for each hierarchy to be compared. All states, actions, and state transition

contents, such as events, guards, and actions described in the state to be classified were acquired.
Because the actions included in each state si and the event guard actions described in the state

Computer Science & Information Technology (CS & IT) 7

transitions whose transition source si occur in state si, they are classified into si. Duplicated labels
listed in Table I are in bold font.

State transitions that transition between classification targets (si, i = 1, ... n) are beneficial for

classifying hierarchies. We name these transitions “external transitions.”

Subsequently, the difference in interpretation between the two models is identified stepwise from

the following viewpoints.

Step 0: The name of the state in the extraction model is compared with the name of each state in

the evaluation model.

As shown by the rules listed in Table 1, the pre- and post-conditions in the workflow directly

represent the states; therefore, they are compared with the state names of the extraction model

obtained. Furthermore, by comparing between Figures 4 and 5, whether aaa matches any of the
states can be determined.

Step 1: The state of the extraction model is classified based on the operation described in the
state.

For each state in the extraction model, some behaviors included in it are verified if they can be
classified into the state in the evaluation model using the judgment list. The category of the

evaluation model that includes the state in which the behavior is described can be identified

among the states of the extracted model. If the behavior is not described and the description

element of the extraction model is not unique in the judgment list, then, the classification cannot
be specified; consequently, it is set as unknown.

Step 2: Classify by the event, guard, and action described in the state transition

For an unknown state that cannot be classified by its own behavior, the state transition that exits

from that state is acquired. The unknown state is classified by the event, guard, and action

described in the acquired state transition using the judgment list. If no transition occurs, then, the
description element is not unique in the judgment list, or no description element (we name it an

unconditional transition) exists; consequently, the classification cannot be specified and hence, it

is set as unknown. Table 3 lists the categories following the above mentioned three steps, and
states divided by the first step are expressed in bold font.

Table 3: Classification by Steps 0,1, and 2

s0 s1 s2 unknown

Precondition : aaa s1 s5 s3

s2 s8 s6

s4 s9 s7

s10

s11

Step 3: Classify using an external transition based on the state before and after the state
transition

For the unknown state that has not yet been classified after the classification in the state
transition, the previous state is acquired from the connected state transition. If the acquired state

has already been classified into the state of the evaluation model, it is then classified into the

8 Computer Science & Information Technology (CS & IT)

same state. If it cannot be classified, the previous state is acquired from the state transition
associated with the previous state, and the same judgment is performed. The acquisition of the

previous state continues unless the behaviors on the connected state transition are the last in the

list of behaviors of the abovementioned external transition. This is because the last behavior of

the external transition divides the states in the same layer.

Table 4: Result of Step 3

s0 s1 s2 unknown

Precondition : aaa s1 s5

s3 s2 s8

s4 s9

s7 s6

s11 s10

Table 4 lists the results of the extraction model divided into the first layer of the evaluation

model.

After this step, the extraction model is divided into the first layer in the evaluation model such

that the number of states in this layer can be compared. Considering this difference, we can

identify the following problems:

A) Among the states of the extraction model, a state exists that cannot be classified.

Therefore, the corresponding action of the workflow is not described in the evaluation model;
hence, it may be in an unnecessary state that is derived from some excess behaviors. As the

action flow causing the workflow defect is identified by tracing back the extraction rule, the flow

can be rectified.

B) The extraction model does not contain a state that corresponds to the state of the evaluation

model.

Therefore, the state considered in the evaluation model is not described as an action that can

identify the state, such as a workflow signal reception action or an action for data. Some new

actions must be added to identify the state of the workflow as the required state or flow may be
missing.

C) The extracted model does not contain a state name that includes the state name of the

evaluation model.

Therefore, the pre- and post-conditions may not be described in the workflow or the appropriate

condition may not be defined. Hence, a note is added to the initial and final nodes of the
workflow to add the pre- or post-condition.

After modifying the workflow or the evaluation model such that the number of states is
equivalent, the number of state transitions of the modified extraction and evaluation models are

compared.

The difference in the number of transitions is compared by generating a state transition table for
both models. If the numbers differ, then the behaviors of the transitions are compared to identify

the transitions that can be considered the same. The remaining transitions in the target state

including some internal state transitions must be compared to determine whether their
combinations are the same. In this case, the workflow transition condition may be ambiguous;

Computer Science & Information Technology (CS & IT) 9

therefore, some actions must be added. Moreover, if an additional transition exists, whether the
behavior is necessary must be considered.

For all layers of the evaluation model, the previous steps are repeated to improve the workflow

based on the observed difference. The improved extraction and evaluation models become a state
transition model in which both the states and transitions are equal.

Figure 6 shows an extraction model after the abovementioned classification for all layers.

Figure 6: Classified Extraction Model

Finally, the correspondence of each behavior is verified, and the excess or deficiency of the
behavior is determined. The difference between the two types of behavior models is noteworthy.

In the behavior model based on the activity diagram, when the state changes by the change in the

attribute of an object, it is defined by an action that changes the state. However, in the state
transition model, it is typically expressed directly by the state name. Therefore, the meanings of

the different expressions must be confirmed when comparing the descriptive elements in both

models. In the correspondence between the evaluation model shown in Figure 5 and the classified

extraction model shown in Figure 6, action7 and action14 in the extraction model can be
interpreted as corresponding to G1 and G2 of the evaluation model, respectively.

By comparing the description elements, we can perform the following modifications:

 Rectify the behavioral expressions of action9 and action15 to A0 and A1, respectively.

 Because G0 is omitted in the extraction model, it is added to the workflow preconditions.
 Because behavior E0 is required in all states in the evaluation model, it should be a

precondition in the workflow, or the behavior at the start of each state as an action should be

added.

4. CASE STUDY AND DISCUSSION

This method was applied to the automatic baggage transport system, which is a PBL task in our

department. This system is a parcel delivery system that links two autonomous vehicle-type
robots with six subsystems: a relay station, headquarters, a reception desk, and the recipient’s

house. Figure 7 shows the circumstances and the relation between all subsystems.

10 Computer Science & Information Technology (CS & IT)

Figure 7: Circumstances and Relation between Sub systems.

First, the workflow of this system is defined as a cooperation model of six subsystems. Figure 8

shows the extraction model generated from the workflow of the relay station based on the
extraction rules. Figure 9 is an evaluation model that defines the requirements of the relay station

as a state transition model. The orange box in Figure 8 shows the classification results based on

the process outlined in Section 3 for the evaluation model. In this case, as a result of the state
classification, the number of states in the first layer is equivalent to that in the evaluation model.

However, as shown in Figures 7 and 8, the number of transitions between “waiting” to “working

with delivery robot” differs. Comparing the state transitions inside both states, it was discovered

that the difference in the transition branching is caused by the part surrounded by the dotted line
in Figure 9.

Figure 8: Extraction Model after Steps 0, 1, and 2

Computer Science & Information Technology (CS & IT) 11

Figure 9: Evaluation Model

Comparing the state transitions inside both states, it is clear that the black transitions have the
same meaning. However, because the remaining two transitions (see two sets of red and blue

lines in Figure 8) have different transition branches depending on the part surrounded by the

dotted line in Figure 9, a difference in meaning is generated.

Figure 10: Corresponding Part of Workflow

Figure 10 shows a part of the workflow corresponding to the two blue lines in the extraction
model. This can be automatically identified from states S10 and S12 based on the conversion

rules.

12 Computer Science & Information Technology (CS & IT)

Reviewing the workflow, it was discovered that the branching condition can be read from the
branching processing flow, but the branching condition based on the delivery status value

specified in the evaluation model was not specified in the workflow. Because the design model

for the final program will be derived from the workflow, the processing procedure should be

described in clear terms at this stage. Therefore, the workflow was modified as shown in Figure
11. Figure 12 shows the extraction model regenerated from the modified workflow.

Figure 11: Improved Workflow

Figure 12: Regenerated Extraction Model

Next, we consider the transitions marked in red with states S10 and S12 as transition sources. The
workflow defines the behavior of delivery completion, but the evaluation model does not include

a behavior equivalent to delivery completion. As the initial requirements include the behavior at

the time of delivery completion, it is clear that the evaluation model is insufficient. Figure 13

Computer Science & Information Technology (CS & IT) 13

shows the modified evaluation model. The part surrounded by the red dotted line in Figure 13
denotes the added state and state transition.

Figure 13: Improved Evaluation Model

After the first layer was modified, the extraction model was regenerated. It was observed that the

number of states and transitions in the first layer was equivalent in both models.

Subsequently, the same classification was performed in the second layer. The results of steps 0, 1,

and 2 are shown in Table 5, and the results of step 3 are shown in Table 6. Similarly, the number

of states and transitions matched in the second layer.

Table 5: Classification by Steps 0, 1, and 2

Check for baggage Dlivery of baggage Receiving the report Baggage Storage Get time unknown

S6 S7 S10 S12 S11

S5 S8

Table 6: Result of Step 3

Check for baggage Dlivery of baggage Receiving the report Baggage Storage Get time unknown

S6 S7 S10 S11 S12

S5 S8

As the workflow and evaluation model were improved by the difference for all layers of the

evaluation model, the improved extraction and evaluation models became a state transition
model, in which the states and transitions were equal. Finally, we compared the words of the

event, guard, and action, which were the behavior of the transition or the state and determined the

excess or deficiency of each behavior.

In reference to the “working with collecting robot” state shown in Figures 11 and 12, the four

behaviors can be regarded as having the same content, but the behaviors circled in red showed
different expressions. As the expression in the evaluation model was considered to be better, the

expression of the action in the workflow was modified. Furthermore, it was discovered that the

behavior order was different. The order in the evaluation model appeared to be more appropriate;

therefore, the order of actions in the workflow was altered.

14 Computer Science & Information Technology (CS & IT)

Figure 14: Modified Workflow

Next, we focus on the “working with delivery robot” state shown in Figures 11 and 12. The

extraction model did not exhibit the behavior corresponding to the behavior circled in blue in the
evaluation model. Because the behavior was insufficient, an action at the part corresponding to

the relevant state of the workflow was added. Moreover, in the extraction model of Figure 12, the

blue underlined behavior aims to update the “delivery record” such that the representation is

modified more clearly. Figure 14 shows a workflow that reflects these modifications. The actions
shown in pink in Figure 14 represent the added and modified actions.

5. CONCLUSIONS

To realize model-driven development in which behaviors are assigned to classes from the

requirements analysis models and the final programs are generated from the designed class

diagrams, the requirements analysis model must be of high quality. We proposed a validation

method to improve the quality of requirements analysis models and developed a support tool.

The support tool was implemented as a plug-in in astah * Professional [7], which is a UML

modeling tool. It offers the following two functions:

 A function to generate an extraction model from the workflow of the selected subsystem.

 A function to compare the extraction and evaluation models and present the information

regarding the difference.

According to this information, the developer improves the behavior described in the workflow.

However, a deficiency might be discovered in the interpretation of requirements in the evaluation
model.

In the case study, we discovered differences in interpretation as well as the lack of descriptions
such as guard conditions or some states that must be specified in the requirements analysis

model. Because it is unclear whether the description of the evaluation model is always

Computer Science & Information Technology (CS & IT) 15

appropriate, it is possible that truly necessary and unnecessary requirements should be
determined by comparing the two different view models and discuss the differences. We plan to

apply this approach to various cases and verify its effectiveness.

REFERENCES

[1] Ogata, S & Matsuura, S, 2008, A UML-Based Requirements Analysis with Automatic Prototype

System Generation, Communication of SIWN, 3, pp. 166-172.

[2] Ogata, S & Matsuura, S, 2010, A Method of Automatic Integration Test Case Generation from UML-

Based Scenario WSEAS Transactions on Information Science and Applications, Vol. 7, No. 4, pp.

598-607.

[3] Saeko Matsuura, Sae Ikeda, Kasumi Yokota, 2020, Automatic Verification of Behavior of UML

Requirements Specifications Using Model Checking, MODELSWARD2020, pp. 158-166.

[4] Kaito Yoshino, Saeko Matsuura, 2020, Requirements Traceability Management Support Tool for

UML Models, ICSCA2020, A31．

[5] Omar Tariq, Jun Sang, Kanza Gulzar, Hong Xiang, 2017, Automated Analysis of UML Activity

Diagram Using CPNs, 2017 8th IEEE International Conference on Software Engineering and Service

Science (ICSESS), pp. 134-138．

[6] Vahid Rafe, Reza Rafeh, Somayeh Azizi, Mohamad Reza Zand Miralvand, 2009, Verification and

Validation of Activity Diagrams Using Graph Transformation, International Conference on Computer

Technology and Development, pp. 201-205.

[7] Astah, http://astah.net/.

AUTHORS

Hikaru Morita In 2020, enrolled in the master's program at the Department of Systems

Science and Engineering, Graduate School of Science and Engineering, the same university.

Currently engaged in research in the field of software engineering.

Saeko Matsuura Shibaura Institute of Technology system Professor, Faculty of Science

and Technology of Electronics and Information Systems Department in April 2013.

Engaged in research on software development environments, design methodologies, and

object-oriented development technologies.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	Requirements Specification, UML Modeling, Validation, Behavior Model.

