
David C. Wyld et al. (Eds): BIoT, DKMP, CCSEA, EMSA - 2021

pp. 01-17, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.110801

LEA-DNS: DNS RESOLUTION VALIDITY

AND TIMELINESS GUARANTEE LOCAL

AUTHENTICATION EXTENSION WITH
PUBLIC BLOCKCHAIN

Ting Xiong1, Shaojin Fu1, Xiaochun Luo2 and Tao Xie1

1National University of Defense Technology, Hunan, China
2PLA News Media Center, Beijing, China

ABSTRACT

While the Domain Name System (DNS) is an infrastructure of the current network, it still faces

the problem of centralization and data authentication according to its concept and practice.

Decentralized storage of domain names and user local verification using blockchain may be

effective solutions. However, since the blockchain is an add-only type database, domain name

changes will cause out of date records to still be correct when using the Simplified Payment

Verification (SPV) mechanism locally. This paper mainly introduces Local Enhanced

Authentication DNS (LEA-DNS), which allows domain names to be stored in public blockchain

database to provide decentralization feature and is compatible with the existing DNS. It

achieves the validity and timeliness of local domain name resolution results to ensure correct
and up to date with the Merkle Mountain Range and RSA accumulator technologies.

Experiments show that less than 3.052Kb is needed for each DNS request to be validated, while

the validation time is negligible, and only 9.44Kb of data need to be stored locally by the web

client. Its compatibility with the existing DNS system and the lightness of the validation

protocols indicate that this is a system suitable for deployment widely.

KEYWORDS

Domain name system, Blockchain, RSA accumulator, Merkle Mountain Range.

1. INTRODUCTION

DNS is a distributed database with a centralized data governance model that maps the names to

values online, primarily controlled by the Internet Corporation for Assigned Names and Numbers

(ICANN1). In this regard, ICANN manages the top-level domain (TLD) and therefore controls
the root name server. In practice, if a client wants to contact a host with a specific name, it must

first send a query to the DNS server to obtain the host’s IP address. In order to improve

efficiency, the DNS server may maintain a replica of this information in its cache, based on how

often the domain name is requested. In the case that the DNS server does not hold the requested
knowledge, the query will be propagated to the root name server. Next, the basic name server will

find the server of the corresponding TLD, and then forward the query to the corresponding

authoritative name server, which may return the requested IP [13].

1https://www.icann.org/resources/pages/governance/bylaws-en

http://airccse.org/cscp.html
http://airccse.org/csit/V11N08.html
https://doi.org/10.5121/csit.2021.110801

2 Computer Science & Information Technology (CS & IT)

Due to its centralized management architecture, DNS root is vulnerable to many attacks. The
article [14] divides the current issues facing DNS into two categories: centralization problem

and data authenticity problem. The centralization problem is that because users default to all

DNS root servers being trusted, there will be malicious servers to attack [10]. The failure of this

trust anchor is far more than a theoretical threat. The controversy surrounding the closure of
wikileaks.org shows that the trust anchor failure occurs in the real world2. Distributed Denial of

Service (DDoS) attacks are another threat3. Cache poisoning [16] and renumbering issues[9] are

also related to centralization problem.

Using Blockchain technology in DNS is an effective solution to both of the above problems.

Because of the decentralization nature of the blockchain and the untamperability nature of the
data, the DNS resolver only needs to provide proof of the existence of the information in the

blockchain, and the local browser can effectively solve the problem of DNS centralization and

data authority by running the verification program. However, the blockchain is an add-only

database, and an attacker may provide an outdated proof of existence to spoof the client to
achieve the attack. As shown in Figure 1, an “old Tx” transaction can have all the block headers

stored by the light node, then the SPV can be used to prove its existence. However, if a new

transaction “new Tx” is based on “old Tx” with modifications, “old Tx” is still correct. But we
cannot prove that the “old Tx” is the latest unless we download the whole chain to verify that

there are no further transactions. Blockchain has the natural advantage of storing unmodified

data, but this correspondence may be adjusted if the pair of <name, value> the DNS is stored,
such as in the case of marketplace transactions for domain names. Attackers may take stale

transactions(may store the old pair of <name, value>) to trick users, but users don’t perceive

them. However, compared with the traditional network, the performance of the public chain is

very low, and it is difficult to directly resolve the domain name on the blockchain in the
production environment. It is feasible to expand the security of the original domain name system,

rather than pushing it back. In this paper, we try to solve these problems and design a DNS

extension called LEA-DNS.

Contributions:

(1) Drawing on the Namecoin’s architecture, we designed a UTXO-based structure for storing
and transacting DNS <name, value> pairs to fit our system design.

(2) We draw on the block structure design of miniChain[3] and boneh[1] to simplify the

blockchain design applied to stateless blocks as a public blockchain database for storing key-
value pairs.

(3) We design a system called LEA-DNS, that allows users to perform enhanced verification of

domain name resolution result locally. The system not only verifies the validity of the data,
but also the timeliness of the result.

(4) Simulated experimental results show that each DNS response with verification does not

exceed 3.052 Kb in size, and only a small amount of data needs to be stored locally (less than

9.44 Kb). Local validation time takes less than 10ms.

Organization of the Paper:

The rest of this paper is organized as follows. The related works are presented in Section 2. Then

we give a brief introduction to our LEA-DNS system in Section 3. In Section 4, we present the

details of the design of our system. In Section 5, we theoretically and experimentally evaluate our
prototype implementation of LEA-DNS. Finally, we conclude our paper in Section 6.

2https://news.netcraft.com/archives/2010/12/03/wikileaks-org-taken-down-by-us-dns-provider.html
3https://en.wikipedia.org/wiki/Distributed_denial-of-service_attacks_on_root_nameservers

Computer Science & Information Technology (CS & IT) 3

Figure 1. The Unspent Proof Problem of Transactions in Blockchain by Light Node. Old Tx existence

proof can be proved by SPV and old Tx spent proof cannot be proved only by light node, so only give a

SPV, the light node may be cheat by the invalid old Tx.

2. RELATED WORK

Decentralized systems were in principle used to improve the robustness and availability of
domain name resolution tasks as well as enabling the feature of by passing censorship campaigns

and tampering [6, 7,17].

In the Byzantine fault-tolerant DNS, a client sends a request to all the replicas that runs the
Byzantine fault-tolerant consensus algorithm and waits for enough authenticated replies. It can

tolerate one-third malicious servers behaving arbitrarily. However, Byzantine fault-tolerant

systems increase the communication overhead squared back as the number of nodes increases.
So, the performance of Byzantine fault-tolerant algorithm decreases quadratically as more servers

are added. In DHT based DNS schemes, DDNS and Overlook are peer-to-peer name services

designed to enhance load balancing and fault tolerance properties. DDNS is a DNS alternative
using a peer-to-peer distributed hash table built on top of Chord. The Overlook is based on

Pastry. Both DDNS and Overlook have much higher latencies than conventional DNS.

With the birth of bitcoin, blockchain technology is increasingly being used in distributed DNS
technology. The Ethereum name service (ENS) uses smart contracts to manage the .eth registrar

by means of bids and recently added the support for .onion addresses. Namecoin is a

cryptocurrency based on Bitcoin, with additional features such as decentralized name system
management, mainly for the .bit domain. It was the first project to provide an approach to address

Zooko’s triangle 4 since the system is secure, decentralized and user-chosen names (human

meaningful). Nevertheless, contrary to well-established blockchains like Bitcoin, Namecoin’s

main drawback is its insufficient computing power, which makes it more vulnerable to the 51%
attack. Blockstack is a well-known blockchain-based domain name storage system that

overcomes the main drawbacks of Namecoin. The architecture of Blockstack separates control

and data planes, enabling seamless integration with the underlying blockchain. EmerDNS5 is a
decentralized domain name system that supports all the range of DNS records. Nebulis 6 is a

4http://en.wikipedia.org/wiki/ Zooko%27s triangle
5https://emercoin.com/en/documentation/blockchain-services/emerdns/emerdns-introduction
6https://www.nebulis.io/

4 Computer Science & Information Technology (CS & IT)

globally distributed directory that relies on the Ethereum ecosystem and smart contracts to store,
update, and resolve domain records. Moreover, Nebulis proposes the proposal of using off-chain

storage (i.e. IPFS) as a replacement for HTTP. OpenNIC7 is a hybrid method during which a

group of peers manage the name space registration, but the name resolution task is completely

decentralized. OpenNIC provides DNS resolution and namespace over a collection of domains,
including those maintained by blockchain solutions like New Nations 8 and EmerDNS. In

addition, the OpenNIC resolver has recently added access to domains managed by ICANN.

Additionally, to namespace registrar, users can even create their own TLD upon request [8, 13,
15].

However, none of them consider the data authenticity problem properly. Though the SPV
capability is available, clients need to pay too much overheads to verify the resolution results.

BlockDNS [14] give a solution, but it still cannot solve the problem showed in Figure

1(explained in Section 1).

3. OVERVIEW OF LEA-DNS

Figure 2. System Architecture of LEA-DNS.

As shown in Figure 2, LEA-DNS is composed of four main components:

3.1. Tree-structure DNS

Tree-structure DNS is the traditional tree architecture domain name system. To maintain good

compatibility with the LEA-DNS, it can be deployed directly without any modification to the

current DNS architecture. In other words, LEA-DNS is transparent to the legacy DNS.

3.2. Name-Value Blockchain Database(NVBD)

Name-Value Blockchain Database (NVBD) is a decentralized way of storing <name, value>

pairs that require enhanced validation. The design of NVBD is borrowed from Namecoin,

Blockstack and miniChain. The <name, value> is stored directly in the transaction, allowing
domain name registration, assignment, and transfer operations. Due to the immutability nature of

the blockchain, we consider the data stored by the blockchain itself to be authenticated (the data

has been verified by enough honest nodes when confirmed). Since the operation of each

7https://www.opennic.org/
8http://www.new-nations.net/

Computer Science & Information Technology (CS & IT) 5

transaction in the blockchain is controlled by the public and private keys, we bind <name, value>
to the transaction, and the ownership of the domain name is signed with the private key, we can

easily verify the data through the public key in the transaction, which confirm the source of

authenticated.

3.3. DNS Bridge

DNS Bridge is a set of proxy servers that handle requests and provide verifiable DNS response.

The DNS Bridge is required to synchronize block and transaction information with the NVBD as

step 4) in Figure 2. The DNS request is specially processed to obtain a transaction containing a

<name, value> pair and proof of validity and timeliness of the result, which is sent to the Client.
Note that DNS Bridge is a trusted institution, because it can’t forge real proof. If the proof

provided by DNS Bridge can be verified locally, it can be trusted by users. In order to prevent

DNS Bridge from being attacked by DOS, multiple nodes can provide services.

3.4. Client

Client can firstly request services directly from the traditional DNS. Secondly, it can send a

verifiable request to DNS Bridge as step 2). In step 5), the Client needs to maintain

communication with the NVBD at the same time but only needs to synchronize the latest block
headers and save a small amount of other data to verify the transaction locally about guaranteeing

validity and timeliness. If the validation fails, the error-proof message is submitted to the NVBD

as step 6) in Figure 2.

4. DESIGN OF THE SYSTEM

In this section, we focus on the main techniques used to design each part of the system. While

many of the market mechanisms in Namecoin were examined in the article[11], this section
focuses on the technical details, including transaction design and the block structure of NVBD,

DNS Bridge and Client.

4.1. Transactions Design

Figure 3. The difference between UTXO model and Account model.

As shown in Figure 3, because of the parallel characteristics of UTXO model, it can process

multi transactions at the same time without mutual influence. The set of unspent transactions

“UTXO” can be used as the set of the latest transactions. The Account model is based on the
account, all transactions are added serially, and the latest transaction set size is only 1. From the

6 Computer Science & Information Technology (CS & IT)

perspective of transaction, UTXO model is more suitable for timeless proof, because it contains
more transactions than Account model. If the account is taken as the basic unit of proof, the

Account model can also be applied. For convenience, this paper uses UTXO model.

Let’s assume that domain name provider A has a public-private key pair (𝑝𝑘𝐴, 𝑠𝑘𝐴) and its user

address is 𝐻𝐴𝑆𝐻(𝑝𝑘𝐴). The public-private key pair for domain name provider B is (𝑝𝑘𝐵, 𝑠𝑘𝐵),

and its user address is 𝐻𝐴𝑆𝐻(𝑝𝑘𝐵). The key to a domain name store with blockchain as the

storage interpretation is that the data is transparent, traceable, and verifiable, but anonymity can
be ignored, so our user address is a direct public key hash, and the user can also perform

transactions on the same address. To simplify the situation, we only consider the transaction of

one-to-one addresses, and do not consider the transaction fee, so we omit the index field of the

transaction output, a simple process design is shown in Figure 4.

Figure 1. NVBD Transactions Design and the State Change. The conversion from transaction TX#0 to

transaction TX#4 represents four operations on a domain name: registration, assignment, deletion and

transfer.

Regist Name:

Domain name provider A first needs a “raw” transaction as its initial transaction, as shown in

Figure 4, TX#0. When A needs to register a domain name,it takes the “raw” transaction as input
and outputs a transaction of type “name regist”. The output contains the domain name field. If the

domain name is duplicated, the transaction will not be packaged into the block.

Set Name Value:

Assigning a value to a registered domain name or a transferred domain name is known as an IPv4

address in LEA-DNS. When A needs to specify an IP address for the domain name, it takes the
transaction “name regist” as input and generates a transaction of type “set value”.

Delete Value:

When A needs to reassign a value to a domain name or to transfer a domain name, A needs to

enter a transaction of type “set value” and generate a “delete value” type of transaction, the

original assignment is deleted.

Computer Science & Information Technology (CS & IT) 7

Transfer Name:

Transfer of a registered domain name. When A needs to transfer its domain name to B, A needs

to enter a transaction of type “name regist” or “delete value” and generate a transfer of type

“transfer name” transaction, the output address of which is the hash of the public key of B. At
this point, the public key of B is not public and is anonymous to a certain extent.

Update Value:

The value update operation is similar to the domain assignment operation. Its input and output are

both a transaction of type “set value”.

All transactions are verified similarly to Bitcoin, but with the addition of a determination of

domain duplicity.

4.2. Block Design

First, we’d like to understand about accumulators. Basically, a cryptographic accumulator[5] is

an algorithm to mix an outsized set of values into one short commitment, and enables to compute

a brief membership witness (or nonmembership witness) of any element that has (or not) been

accumulated. RSA accumulator is predicated on modular exponentiation under the strong RSA
assumption[12]. In decentralized public blockchains where no single trusted accumulator

manager exists, the essential RSA accumulator doesn’t satisfy the need, anyone who knows the

secret keys p and q can use the Euclidean theorem 𝜑(𝑁) = (𝑝 − 1)(𝑞 − 1) to calculate the order
of RSA group, which may further forge any membership and nonmembership witness. Boneh[1]

built a stateless blockchain[4] supported UTXO commitment by using the RSA accumulator,

which needs plenty of deletion operations. Since the complexity of deletion operation is 𝑂(𝑛2),

the efficiency of the accumulator updates would drop rapidly when the amount of deletion
operations increases. We use the Chen’s work[3],which divides the UTXO to STXO(i.e., spent

transactions outputs) and TXO(i.e., all transactions outputs).A transaction in UTXO indicates its

validity like a transaction in TXO but not in STXO.

Since LEA-DNS allows user validation of <name, value> to be done locally, the simplest idea is

to store the full blockchain in the NVBD to validate transactions of the “set value” type.

However, storing the full blockchain data would significantly increase the storage cost for the
user. A more lightweight approach is similar to Bitcoin’s light wallet, where only the block

header data is stored locally, and the full node sends the transaction’s SPV proof to verify the

transaction’s validity in the blockchain. But the SPV scheme doesn’t solve the problem of
whether the transaction is the most recent, or to determine if the transaction is a UTXO except all

UTXOs data needs to be synchronized locally. But UTXO grows at a rate that the average user

can’t afford. These solutions are not feasible. We modified the structure of Chen’s work[3] to
allow users to verify the validity and timeliness of transactions by storing only a small amount of

data.

The design architecture of the block is shown in Figure 5.

STXO Commitment:

STXO_C is an append-only data structure which contains all spent transaction outputs, removing

the time-consuming deletion operations needed by UTXO commitment. Specifically, each block

header contains an accumulator which represents the current STXO set. A transaction can be
provided a nonmembership witness which specifies that the transaction was not spent before.

8 Computer Science & Information Technology (CS & IT)

STXO_C is essentially an RSA accumulator, and when a transaction is added to a block, we
simply add the UTXO spent on that transaction to the accumulator. The initialization accumulator

is generated by a security parameter 𝜆 and returns an accumulator 𝐴0 .

The whole process of handling transactions is similar to Bitcoin, except that it needs to update the
accumulator by marking the transaction input as spent when a blockchain mining node receives a

transaction. The update algorithm accepts an old accumulator 𝐴𝑡 and a transaction 𝑇𝑋 , and

updates 𝐴𝑡 to 𝐴𝑡+1 by performing a 𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑟𝑖𝑚𝑒(i.e., a function that transfer hash to prime) of

the input transaction in 𝑇𝑋 . The number of transactions in a block means the times an

accumulator needs to be updated from Pre_STXO_C to STXO_C.

TXO Commitment:

TXO_C is a commitment for all transactions. Traditional verification can check the Merkle path

from transaction to TMR directly, but this requires the verifier to store all block headers. To
reduce the verifier’s storage overhead and speed up this verification approach, we use the MMR

approach. The user only needs to store all the MMR Peaks in Figure 5(a), provided with the

Merkle path from the transaction to the TMR and the Merkle path from the TMR to the MMR
root which is constructed by MMR Peaks. The number of MMR Peaks increases logarithmically

with the length of the blockchain, so this overhead is small.

Figure 2. NVBD block architecture. (a) represents the Merkle Mountain Range (MMR)[2] which connects

all the block headers. (b) represents the main fields in block header containing 4 parts:(1)TMR organizes

all transactions within a block through a merkle structure, (2) STXO_C represents a commitment for all

spent transactions, (3)TXO_C represents a commitment for all MMR Peaks through a normal merkle

structure. (4) Pre_STXO_C represents the previous block STXO_C.

Computer Science & Information Technology (CS & IT) 9

4.3. DNS Bridge Design

DNS Bridge is required to synchronize all of NVBD’s block information and update the DNS and

transaction map information based on the transactions in the block. It forwards the user’s DNS
request, and finally form a verifiable DNS response back to the user. In order to let user verify

the validity and timeliness of the returned <name, value> pair, it is necessary to generate the

validity and timeliness proof of the “set value” type of transactions corresponding to <name,
value>.

Validity Proof:

A validity proof of a transaction is a proof of the existence of a transaction in the blockchain. The

proof of existence of a transaction is divided into two parts. 1) Merkle path of the transaction to

TMR . 2) The Merkle path from TMR to MMR root(i.e., TXO_C).

Timely proof:

A timely proof of a transaction is a proof of the non-existence (i.e., unspent) of the transaction

from the beginning of the generated block 𝑛 to the specified block 𝑚(𝑚 > 𝑛). In Li’s paper[12],

this is called a nonmembership witness. The situation described above is full timely proof. If 𝑛 is

not the block where the transaction is located inside, we take ∆ to represent the difference in

height from the located block height to the height of the 𝑏𝑙𝑜𝑐𝑘𝑚, then call it a ∆-timely proof.

We use 𝑡𝑓𝑚(𝑥𝑛) to represent the timely proof of the transaction 𝑥𝑛 to 𝑏𝑙𝑜𝑐𝑘𝑚 . Δ𝑡𝑓𝑚(𝑥𝑛) means

in the latest ∆ blocks, the 𝑥𝑛 is not been spent. The algorithm for generating 𝑡𝑓𝑚(𝑥𝑛) is shown

in Algorithm 1. Assuming 𝑥𝑛 ∈ 𝑈𝑇𝑋𝑂 and𝑥𝑛 ∉ 𝑆𝑇𝑋𝑂, the algorithm first obtains the set of all

unspent transactions 𝑆𝑇𝑋𝑂𝑛:𝑚 from the 𝑏𝑙𝑜𝑐𝑘𝑛 to 𝑏𝑙𝑜𝑐𝑘𝑚 , and simultaneously performs a

𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑟𝑖𝑚𝑒. Then calculate the product of all primes as 𝑝. Since 𝑥𝑛 and 𝑝 are different prime

numbers, it is easy to find 𝐵𝑒𝑧𝑜𝑢𝑡 coefficients 𝑎 and 𝑏 such that 𝑎𝑥 + 𝑏𝑝 = 1 by using extended

Euler’s theorem. The final calculation 𝑑 = 𝐴𝑛
𝑎 , returns (𝑑, 𝑏) as 𝑡𝑓𝑚(𝑥𝑛).

Algorithm 1 Timely Proof

Input:

𝑏𝑙𝑜𝑐𝑘𝑛 previous accumulator 𝐴𝑛−1(Pre_STXO_Cn);

𝑏𝑙𝑜𝑐𝑘𝑚 accumulator 𝐴𝑚(STXO_Cm);

proof transaction 𝑥𝑛;

all spent transactions from 𝑏𝑙𝑜𝑐𝑘𝑛 to 𝑏𝑙𝑜𝑐𝑘𝑚 presented by STXOn:m .

Output:

 timely proof 𝑡𝑓𝑚(𝑥𝑛) ← {𝑑, 𝑏}.

1: 𝑝 ← 1

2: 𝑥𝑛 ← 𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑟𝑖𝑚𝑒(𝑥𝑛)

3: for 𝑠𝑡𝑥 in STXOn:m do

4: 𝑝 ← 𝑝 ∙ 𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑟𝑖𝑚𝑒(𝑠𝑡𝑥)

5: end for

6: 𝑎, 𝑏 ← 𝐵𝑒𝑧𝑜𝑢𝑡(𝑥𝑛, 𝑝)

7: 𝑑 ← 𝐴𝑛
𝑎

8: return 𝑡𝑓𝑚(𝑥𝑛) ← {𝑑, 𝑏}

10 Computer Science & Information Technology (CS & IT)

Algorithm 2 Timely Proof Update

Input:

𝑏𝑙𝑜𝑐𝑘𝑚 accumulator 𝐴𝑚;

 old proof 𝑡𝑓𝑚(𝑥𝑛);

transaction 𝑥𝑛;

all spent transactions from 𝑏𝑙𝑜𝑐𝑘𝑚 to 𝑏𝑙𝑜𝑐𝑘𝑚′ presented by STXOm:m′ .

Output:

 new timely proof 𝑡𝑓𝑚′(𝑥𝑛).

1: 𝑝 ← 1

2: 𝑑, 𝑏 ← 𝑡𝑓𝑚 (𝑥𝑛)

3: for 𝑠𝑡𝑥 in STXOm:m′ do

4: 𝑝 ← 𝑝 ∙ 𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑟𝑖𝑚𝑒(𝑠𝑡𝑥)
5: end for

6: 𝑎′, 𝑏′ ← 𝐵𝑒𝑧𝑜𝑢𝑡(𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑟𝑖𝑚𝑒(𝑥𝑛), 𝑝)

7: 𝑟 ← 𝑎′𝑏

8: return 𝑡𝑓𝑚′(𝑥𝑛) ← {𝑑𝐴𝑚
𝑟 , 𝑏′𝑏}

Timely Proof Update:

𝑡𝑓𝑚 (𝑥𝑛) with the growth of the blockchain will become out of date. Assume the current block

height is 𝑚′ , in order to update the proof, we can recalculate the 𝑡𝑓𝑚′(𝑥𝑛) , and the new

𝑡𝑓𝑚′(𝑥𝑛) can be computed based on 𝑡𝑓𝑚 (𝑥𝑛) .The specifific update algorithm is shown in

Algorithm 2. Here we give the proof:

Suppose there is a Timely Proof 𝑡𝑓𝑚(𝑥𝑛) ← {𝑑, 𝑏} . it satisfies the following conditions (1)

through Algorithm3:

𝑑𝑥𝐴𝑚
𝑏 = 𝐴𝑛; 𝑥 = 𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑟𝑖𝑚𝑒(𝑥𝑛) (1)

when add some TXs to 𝐴𝑚,the prime product of TXs is 𝑝, from Algorithm2, we can get the new

timely proof 𝑡𝑓𝑚′(𝑥𝑛) ← {𝑑𝐴𝑚
𝑟 , 𝑏′𝑏} and new accumulator 𝐴𝑚′ = 𝐴𝑚

𝑝
,the conditions (2)

provided:

𝑎′𝑥 + 𝑏′𝑝 = 1

𝑟 = 𝑎′𝑏

�̂� = 𝑑𝐴𝑚
𝑟 (2)

�̂� = 𝑏′𝑏

If the proof update Algorithm2 is true, then equation (3) should be satisfied.

�̂�𝑥𝐴𝑚′
�̂� = 𝐴𝑛 (3)

By procedure (3), we can verify that equation (4) always holds.

�̂�𝑥𝐴𝑚′
�̂� = (𝑑𝐴𝑚

𝑟)𝑥𝐴𝑚′
�̂�

= 𝑑𝑥𝐴𝑚
𝑎′𝑏𝑥𝐴𝑚

𝑝𝑏′𝑏

= 𝑑𝑥𝐴𝑚

𝑏(𝑎′𝑥+𝑏′𝑝)
 (4)

= 𝑑𝑥𝐴𝑚
𝑏 = 𝐴𝑛

Computer Science & Information Technology (CS & IT) 11

Therefore, DNS Bridge returns a message in a format similar to <tx, block header, validity proof,
timely proof>, where tx is a “set value” type of transaction that contains the <name, value> pair

and the domain name provider’s public key information.

4.4. Client Design

The client receives the messages returned by DNS Bridge and can verify the validity and
timeliness of the message content. The prerequisite for the client to be able to perform validation

is that 1) only some latest block header information needs to be synchronized 2) all MMR Peaks

are saved.

Validity Verify:

Initially, users are required to download all MMR Peaks collections. After that, the MMR Peaks
collection can be updated by itself each time a new block header is synchronized. The validity

verify is divided into two steps: 1) Check if the Merkle Root of MMR Peaks is equal to the TXO

C of the latest synchronized block header, if it is equal, proceed to the second step, otherwise
resynchronize the block and check again. 2) Check Merkle path form transaction to TMR and

Merkle path from TMR to MMR Peaks, if so, the verification is passes or succeeds, otherwise the

verification fails.

Algorithm 3 Timely Proof Verify

Input:

𝑏𝑙𝑜𝑐𝑘𝑛 accumulator 𝐴𝑛;

𝑏𝑙𝑜𝑐𝑘𝑚 accumulator 𝐴𝑚;

timely proof 𝑡𝑓𝑚(𝑥𝑛);

transaction 𝑥𝑛.

Output:

Verify result 𝑡𝑟𝑢𝑒 𝑜𝑟 𝑓𝑎𝑙𝑠𝑒.

1: 𝑥𝑛 ← 𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑟𝑖𝑚𝑒(𝑥𝑛)

2: 𝑎, 𝑏 ← 𝑡𝑓𝑚(𝑥𝑛)

3: return 𝑑𝑥𝐴𝑚
𝑏 == 𝐴𝑛

Timely Verify:

The user receives the timely proof 𝑡𝑓𝑚(𝑥𝑛) and the block header where 𝑥𝑛 is located, and the

existence proof of 𝑥𝑛 has been verified by validity verify. We extract the accumulator field

STXO_C 𝐴𝑛 from the block header, the latest block STXO_C 𝐴𝑚, timely proof 𝑡𝑓𝑚(𝑥𝑛)and the

transaction 𝑥𝑛 that needs to be verified as parameter inputs, as shown in Algorithm 3. The

Δ𝑡𝑓𝑚(𝑥𝑛) can be verified similarly, but the input block header is 𝑏𝑙𝑜𝑐𝑘𝑛−Δ rather than 𝑏𝑙𝑜𝑐𝑘𝑛 .

5. COST ANALYSIS AND EVALUATION

5.1. Experiment Settings and Parameters

Based on the source code of RSA-Accumulator9, Merkle Tree10, and Merkle Mountain Range, we

implemented a prototype of NVBD, DNS Bridge, and Clien11t with Python language. We use the

9https://github.com/oleiba/RSA-accumulator
10https://github.com/Tierion/pymerkletools
11https://github.com/jjyr/mmr.py/blob/master/mmr/mmr.py

12 Computer Science & Information Technology (CS & IT)

RSA accumulator with 3072 bit-modulus, 128 bits prime representative, and the Merkle root is
set to 32 bytes. All these parameters are considered to be safe enough in the field of

cryptography. We run all our experiments on our desktop computer equipped with one 3.7 GHz

Intel Core i9 processor, 64 GB RAM, and perform 10 runs and report their average for each data

point of running time. We test the performance of the accumulator update, proof generation and
update, proof verification. We also find the problem that timely proof generation time is a little

high and we give our solution. It should be noted that our LEA-DNS is an extension based on

DNS. We don’t care about the specific performance or implementation of the public blockchain,
such as throughput, confirmation time, network structure, etc. We only consider the additional

consumption when the public blockchain supports timeliness verification, which may be a

limitation of this paper.

We denote that the interval between block generation is 𝑇, the size of the block header is 𝑆ℎ , the

average size of transactions is 𝑆𝑡 . For convenience, we assume that each transaction will consume

one input (UTXO) and generate two outputs (UTXOs). Denote 𝑚 as the average number of

transactions per block. The average number of UTXOs consumed per block will be 𝑚/2, and the

average number of UTXOs generated per block will be 𝑚. Suppose 𝑛 is total the number of

UTXOs and 𝐿 is the length of the current blockchain state.

5.2. NVBD Extra Cost

NVBD’s full node requires additional work to add to the original Bitcoin node to update the

accumulator STXO_C and update TXO_C. The accumulator needs to be updated for each

transaction in the block, and the time complexity of the update is O(m). The update of the

accumulator in a block can be divided into the process of calculating the product of all
transactions using the HashToPrime function and the process of product modular exponentiation.

The experimental results are shown in Figure 6, where the time grows linearly with the number of

transactions in the block.

Figure 3. Performance of Accumulator Update Per Block.

Computer Science & Information Technology (CS & IT) 13

The update of TXO_C is in two steps: the first step is to insert the new TMR to the MMR with a

time complexity of 𝑂(𝑙𝑜𝑔(𝐿)). The second step is to construct the MMR Peaks into TXO_C via

the Merkle structure. Since the number of MMR Peaks is ⌈𝑙𝑜𝑔(𝐿)⌉, the time complexity of

constructing TXO_C from MMR Peaks is 𝑂(𝑙𝑜𝑔(𝐿)). Thus the time complexity of TXO_C

update will be 𝑂(𝑙𝑜𝑔(𝐿)). By the blue curve in Figure 6, even when the block height 𝐿 grows to

224, the time to insert the TMR into the MMR is still less than 1ms.

5.3. DNS Bridge Cost

Firstly, DNS Bridge needs to synchronize all the data of NVDB with 𝑆𝑡𝑚 + 𝑆ℎ scale each block

generation, so the synchronization bandwidth between DNS Bridge and NVBD must be at least:
(𝑆𝑡𝑚 + 𝑆ℎ)/𝑇. if we use the Bitcoin parameters, it only needs about 2Kb/s bandwidth. However,

it needs to provide service for clients with high bandwidth.

Validity Proof Generation:

After data synchronization, DNS Bridge needs to construct a validity proof of transaction,

construct a Merkle tree of new transactions to the TMR, and insert the TMR into the MMR. After
the MMR tree is updated, the Bridge only needs to provide the Merkle path from the updated

MMR each time clients request validity proof, and the time complexity is 𝑂(1). Therefore, the

time complexity for DNS Bridge to update the validity proof is 𝑂(𝑚) + 𝑂(𝑙𝑜𝑔(𝐿)). By the

orange curve in Figure 6, it takes only about 0.06ms to generate a TMR to TXO_C proof even

when the block height grows to 224.

Figure 4. Perfomance of the MMR Operation With the Blockchain Growing.(Based on the first TMR).

Timely Proof Generation:

When the Client requests a timely proof of a DNS response, the timely proof needs to be

generated if the transaction is newly generated. From Algorithm 1, the time complexity of timely

proof generation is 𝑂(𝑚) for a block. And the time complexity of generating a ∆𝑡𝑓𝑚(𝑥𝑛) is

∆𝑂(𝑚) . If the transaction’s timely proof already exists, then it needs to be updated or

14 Computer Science & Information Technology (CS & IT)

reconstructed. For each update from ∆𝑡𝑓𝑚(𝑥𝑛) to ∆𝑡𝑓𝑚+1(𝑥𝑛) , the time complexity is (∆ +
1)𝑂(𝑚) , which is the same as reconstructing a timely proof. However, we don’t need to cache

the previous STXO’s prime products when using update operation. As we can see from the

Figure 8, when the number of blocks (transactions) grows, the time it takes for timely proof to be

generated will gradually increase. To keep the time within an acceptable range, we propose the

idea of phase validation: the DNS Bridge provides only ∆𝑡𝑓𝑚(𝑥𝑛), rather than full timely proof,

where ∆ has a limitation. A timely proof ∆𝑡𝑓𝑚(𝑥𝑛) will be validated by many Clients and

submitted to NVBD if an error is found, so outdated proofs(𝑡𝑥 ∉ 𝑆𝑇𝑋𝑂𝑛:𝑚−Δ) can be omitted

and we just need to keep the recent ∆ range of proofs reliable if the error can be advertised to all

the Clients during ∆ blocks time. From the Figure 8, we can see that the timely proof generation

will cost much time(second level), so DNS Bridge can also provide the 𝑡𝑓𝑚−1(𝑥𝑛)proof to ease

the pressure of computing. The proof generation can also be easily accelerated by parallel
computation.

Figure 5. Performance of the Timely Proof Generation (∆𝑡𝑓𝑚(𝑥𝑛), Δ = 10).

5.4. Cilent Cost

Client will get <tx, blockheadern , valid proof, timely proof> from DNS Bridge and

blockheaderm from NVBD as a response. Suppose 𝑚 < 210 , 𝐿 < 220 , Δ = 10 and each

transaction is assumed to be 300 bytes. Client also need to get the latest MMR Peaks when you

first start, they are less than 32 ∗ 20 = 640(𝑏𝑦𝑡𝑒𝑠). The blockheader adds two accumulators

(STXO_C and Pre_STXO_C) and TXO_C compared with the original Bitcoin, and its size is

assumed to be 80(Bitcoin blockheader)+2*384(RSA accumulator)+32(TXO_C) = 880(bytes).The

spatial complexity of validity proof is 𝑂(𝑙𝑜𝑔(𝑚)) + 𝑂(𝑙𝑜𝑔(𝐿)), so the size of validity proof
size is at most 32 * (10 + 20) = 960(bytes).The size of timely proof is fixed to two constants, and

the total size is 416 bytes. The blockheaderm size is 496 bytes. Therefore, each time you interact

with DNS Bridge, the size of the validation data is less than:

300 + 880 + 960 + 416 + 496 = 3052(bytes)

Computer Science & Information Technology (CS & IT) 15

The local data that needs to be maintained is all the MMR Peaks, with its spatial capacity scale

being 𝑙𝑜𝑔(𝐿) and the latest blockheaders from blockheaderm−Δ to blockheaderm. At the first

time when the client starts, the data size for synchronization will be less than:

640 + 10 ∗ 880 = 9440(𝑏𝑦𝑡𝑒𝑠)

Validity Verify Time:

Firstly, client need to insert TMRm into MMR to update the local MMR Peaks, the time

complexity is 𝑂(𝑙𝑜𝑔(𝐿)) . Next, generate Merkle root from all MMR Peaks, and compare

whether it is equal to TXO_Cm, whose time complexity is also 𝑂(𝑙𝑜𝑔(𝐿)). Verifying the path

from transaction tx to TMRnhas a time complexity of 𝑂(𝑚), followed by verifying the path from

TMRn to MMR root, which has a time complexity of O(log(L)). Therefore, the time complexity

of each validity verify is 𝑂(𝑚) + 3𝑂(𝑙𝑜𝑔(𝐿)) which includes TMR insert time and verify proof

time in Figure 7. The insert time is less than 0.14ms by the blue curve and the verify proof time is

about 0.06ms through the green curve. So, the total time is less than 0.2ms when L grows to 224.

Figure 6. Performance of the Timely Proof Verify.

Timely Verify Time:

Timely proof only needs to perform a 𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑟𝑖𝑚𝑒 and a modular exponentiation operation,

thus the time complexity is 𝑂(1). From experiments, the timely verify time is less than 10ms

through the Figure 9, which is almost no burden to the Client. We conclude with a summary of

the temporal complexity of three components and the time cost level, as show in Table 1.

16 Computer Science & Information Technology (CS & IT)

Table 1. Time complexity and cost for NVDB full node, DNS bridge, and Client every block or transaction

generation round.

Part Time Complexity Cost Time Level

NVBD Acc Update O(m) second

MMR Insert O(log(L)) millisecond

DNS
Bridge

Validity Proof O(m)+O(log(L)) millisecond

Timely Proof Δ𝑂(𝑚) second

Client Validity Verify O(m)+O(log(n)) millisecond

Timely Verify O(1) 10 milliseconds

Message Size < 3.052Kbytes

Storage Size < 9.44Kbytes

6. CONCLUSIONS

This paper proposed a blockchain-based decentralized naming system called LEA-DNS to solve

the centralization problem and data authenticity problem. We find the problem of record
obsolescence in the blockchain when DNS <name, value> has been changed and propose our

solution. LEA-DNS enables name owners to apply domain names and maintain authoritative

server information on blockchain in a decentralized manner which mainly consists of NVBD,
DNS, and Clients. The UTXO mechanism, RSA accumulator, and Merkle Mountain Range have

been used for the blockchain design called NVDB. DNS Bridge will generate the validity proof

and timely proof for the verifiable DNS request and the response size is only a few hundred

bytes. Clients will verify the response with little time. Our simulated results show that the Clients
will only need storage no more than 9.44Kb data locally, the overhead of verification message is

less than 3.052Kb and the verification time is below 10ms. LEA-DNS is also compatible with

current legacy DNS architectures. In the future work, we will deploy this system in a real
network to further test its performance.

ACKNOWLEDGEMENTS

This paper is supported by the national Science Foundation of China, under the project

No.61472476.

REFERENCES

[1] Boneh, D., B¨unz, B., Fisch, B.: Batching techniques for accumulators with applications to iops and

stateless blockchains. In: Annual International Cryptology Conference. pp. 561–586. Springer (2019).

[2] Bunz, B., Kiffffer, L., Luu, L., Zamani, M.: Flyclient: Super-light clients for cryptocurrencies. In:

2020 IEEE Symposium on Security and Privacy (SP). pp. 928–946.

[3] Chen, H., Wang, Y.: Minichain: A lightweight protocol to combat the utxo growth in public

blockchain. Journal of Parallel and Distributed Computing 143, 67 – 76(2020).

[4] Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: A cryptocurrency with stateless transaction

validation. IACR Cryptol. ePrint Arch. 2018, 968 (2018).

[5] Fazio, N., Nicolosi, A.: Cryptographic accumulators: Defifinitions, constructions and applications.

Paper written for course at New York University: www. cs. nyu.edu/nicolosi/papers/accumulators.

pdf (2002).

[6] He, G., Su, W., Gao, S., Yue, J.: Td-root: A trustworthy decentralized dns root management
architecture based on permissioned blockchain. Future Generation Computer Systems 102, 912 – 924

(2020).

[7] Huynh, T.T., Nguyen, T.D., Tan, H.: A decentralized solution for web hosting. In: 2019 6th

NAFOSTED Conference on Information and Computer Science (NICS). pp. 82–87.

Computer Science & Information Technology (CS & IT) 17

[8] Jiang, Y., Bai, H., Yang, H.: The messaging model design based blockchain and edge computing for

the internet of things. In: 2019 IEEE 10th International Conference on Software Engineering and

Service Science (ICSESS). pp. 604–608.

[9] Jin, Y., Fujikawa, K., Harai, H., Ohta, M.: Secure glue: A cache and zone transfer considering

automatic renumbering. In: 2015 IEEE 39th Annual Computer Software and Applications
Conference. vol. 2, pp. 393–398.

[10] Jones, B., Feamster, N., Paxson, V., Weaver, N., Allman, M.: Detecting dns root manipulation. In:

International Conference on Passive and Active Network Measurement. pp. 276–288. Springer

(2016).

[11] Kalodner, H.A., Carlsten, M., Ellenbogen, P., Bonneau, J., Narayanan, A.: An empirical study of

namecoin and lessons for decentralized namespace design. In: WEIS. Citeseer (2015).

[12] Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In: Katz, J.,

Yung, M. (eds.) Applied Cryptography and Network Security. pp. 253– 269. Springer Berlin

Heidelberg, Berlin, Heidelberg (2007).

[13] Patsakis, C., Casino, F., Lykousas, N., Katos, V.: Unravelling ariadne’s thread: Exploring the threats

of decentralised dns. IEEE Access 8, 118559–118571 (2020).

[14] Ren, S., Liu, B., Yang, F., Wei, X., Yang, X., Wang, C.: Blockdns: Enhancing domain name
ownership and data authenticity with blockchain. In: 2019 IEEE Global Communications Conference

(GLOBECOM). pp. 1–6.

[15] Shi, P., Liu, H., Yang, S., Zhang, Y., Zhong, Y.: The inherent mechanism and a case study of the

constructional evolution of the jointcloud ecosystem. IEEE Internet of Things Journal 7(3), 1561–

1571 (2020).

[16] Trostle, J., Van Besien, B., Pujari, A.: Protecting against dns cache poisoning attacks. In: 2010 6th

IEEE Workshop on Secure Network Protocols. pp. 25–30.

[17] Yoon, W., Im, J., Choi, T., Kim, D.: Blockchain-based object name service with tokenized authority.

IEEE Transactions on Services Computing 13(2), 329–342 (2020).

AUTHORS

Ting Xiong received the bachelor’s degree from National University of Defense

Technology, Changsha, China, in 2019. He is currently pursuing the engineering degree

with the National University of Defense Technology, Changsha, China. His current
research interests include blockchain architecture, consensus algorithm, and application.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	Domain name system, Blockchain, RSA accumulator, Merkle Mountain Range.

