

David C. Wyld et al. (Eds): ITCSE, ICDIPV, NC, CBIoT, CAIML, CRYPIS, ICAIT, NLCA - 2021

pp. 117-129, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.110911

AN INTELLIGENT MOBILE APP TO
DETECT DROWSY DRIVING WITH

ARTIFICIAL INTELLIGENCE

Thomas Xiao1 and Yu Sun2

1Yorba Linda High School, Yorba Linda, CA 92886
2California State Polytechnic University, Pomona, CA, 91768

ABSTRACT

Drowsy driving is lethal- 793 died from accidents related to drowsy driving and 91000

accidents related to drowsy driving occurred [1]. However, drowsy driving and accidents

related to drowsy driving are preventable. In this paper, we address the problem through an

application that uses artificial intelligence to detect the eye openness of the user. The

application can detect the eyes of the user via computer vision. Based on the user’s eye
openness and frequencies, the sleepy driving condition can be inferred by this application. We

applied our application to actual driving environments on the highway, both day and night, as

well as within a normal control situation using a qualitative evaluation approach. The result

shows that it is 88% effective during the day and 75% effective during nighttime. This result

reveals effectiveness and accuracy of detection during daytime application under controlled

testing, which is more flexible and efficient comparing to previous works. Effectiveness and

accuracy for nighttime detection and detections with the presence of other distractions can be

further improved.

KEYWORDS

Drowsy driving, Mobile Application, Artificial Intelligence, Driving Safety.

1. INTRODUCTION

Drowsy driving, as simple as it sounds, is driving while sleepy [10, 11, 12]. Drowsy driving is an

acute problem. It can occur with any driver of any age group around the world, affecting millions

even if they are not behind the wheel. The Centers for Diseases control and Prevention (CDC)
once estimated that 1 in 25 adult drivers report having fallen asleep while driving in the previous

30 days [1]. Drowsy Driving often ends in accidents with a variety of effects: car crash, injury,

destruction of interstates and roads, and in the worst-case scenarios, death. In fact, the National

Highway Transportation Safety Authority estimated that there were 72,000 crashes, 44,000
injuries, and 800 deaths related to drowsy driving in 2013, and some believe even this is

underestimated [2]. In California alone, in 2016, 2% of traffic accident deaths were caused by

drowsy driving [3]. Each one of these numbers represent human lives, and there are ways to
prevent all these avoidable injuries and deaths. Those who are injured badly by car accidents

often end up in the ICU, which is even more dangerous during the Coronavirus Pandemic. When

people are sleepy behind the wheel, they tend to display certain eye patterns that are
recognizable. With a functioning app that can detect and notify the user of drowsy driving, many

lives could be saved.

http://airccse.org/cscp.html
http://airccse.org/csit/V11N09.html
https://doi.org/10.5121/csit.2021.110911

118 Computer Science & Information Technology (CS & IT)

There are not many technological techniques to detect drowsy driving. However, the most
advised technique for drivers to prevent drowsy driving is to rest well before driving and stop

driving immediately when feeling drowsiness; this method has many flaws since many people do

not have enough conscientiousness to first consider rest. For example, most drivers would not

want to rest in the middle of a trip. Other examples would be commercial drivers whose job is to
drive for most of their days. There are different methods developed by universities, such as the

research conducted by H.J Dikkers and M.A. Spaans from Delft University of Technology [6,

13]. Their research conducted on drowsy driving detection depended on facial expression
detection. Facial expression detection requires three steps of detection, which are: Facedetection,

Facial expression data extraction, and facial expression classification [4]. Although this method

can be extremely accurate, it was tested on a computer with an old-style recording camera. The
results were accurately collected but have never been projected onto the UI of a mobile

application. Their method has never been tested on a modern-day cell phone and is too complex

to run in real time on a phone, so is therefore not suitable as a mobile phone app. Also, the

algorithm required facial expression detection, which means that facial hair or face coverings on
the subject’s face may produce inaccurate or false results, which is extremely unhelpful during

Covid-19.

In this paper, we present a new approach to detect and curb drowsy driving. Our goal is to

develop an application with an algorithm that would use the detection of eye openness to

determine if the driver is driving under drowsy conditions. The method we have developed relies
on the collaboration of Google Firebase’s eye detection algorithm. This algorithm was written in

Dart language and utilizes the Flutter Camera package plug in to access the phone’s face cam [14,

15]. When the user clicks the start button of the application, the algorithm is programmed to

automatically take 10 photos per second. All the pictures taken are analyzed with Google
Firebase’s eye openness detection. The Google firebase eye detection can detect the eye openness

of a subject and returns a value from 0 to 1 based on how much their eyes are open (0 means

closed, while 1 means open). Based on the information returned by Google firebase, we can make
calculations of the value returned by Google Firebase to determine if the driver is driving while

drowsy. The algorithm determines when to notify the user that they are sleepy through a

specifically designed calculation, which will be discussed in the next section. There are some

good features present in the algorithm of this current app. First, the algorithm detects eye
openness without relying on facial expression. This would be extremely helpful because facial

hair and other face coverings may affect the accuracy of results or return a false result to the user.

Second, this method has a complex algorithm (a multiple step calculation shown in the third
section) to determine if the driver is drowsy when driving. This ensures the data is returned

accurately and there are no false alarms [9].

To evaluate the accuracy of our method, we tested the accuracy of the application’s design within

different situations that drivers can experience in real life. The factors that we decided to test

include Day time without glasses vs with glasses, nighttime without glasses vs with glasses,

shade without glass and with glass, location of the phone glass vs without glass. Within each trial,
we observed if the detection would trigger a warning. The results of these real-time detection

proves to be effective overall.

The rest of the paper is organized as follows: Section Two gives the details on the challenges that

we met during the experiment and while designing the sample; Section Three focuses on the

details of our solutions corresponding to the challenges mentioned in Section Two; Section Four
presents the relevant details of the experiment, followed by the related work in Section Five.

Finally, Section Six gives concluding remarks, as well as the future work of this project.

Computer Science & Information Technology (CS & IT) 119

2. CHALLENGES

A few challenges arose while developing this application, as follows.

2.1. Which Part of the Face to Detect

There are multiple parts of our face we can monitor for drowsy driving, such as eyes, mouth,

facial expression, or all of them. Each detection has its own benefits and downsides. We can use
eyes because if we close our eyes too frequently or our eye openness becomes too small, we can

assume the user is tired. We can also use facial expression because when people are tired, they

tend to have certain facial expressions. It would be an extremely accurate detection if we could

use all the mechanisms concurrently, yet we are developing an application that runs on a cell
phone so the algorithm cannot be overly complicated such as could be run on a computer. Each

type of detection has its downside, e.g., you cannot determine the drowsiness of a user through

eye detection if the driver is wearing sunglasses [4].

2.2. Unprecedented Challenges

An algorithm that can accurately detect drowsy driving is the key to developing a successful

application. But there are not many previous works or methods from which we may gain insight.

All previously published works involved data analyzed on a computer, not a smartphone. These
previous apps were never intended to be an algorithm used by a phone application. We are trying

to develop an application that runs on a phone in which the app’s algorithm correctly detects and

warns the user of drowsy driving, so we are coming up with our own unique algorithm suitable to

run on a phone. We were also faced with the challenge of how the app would be able to gather
data constantly and automatically from the user through the phone’s camera.

2.3. Designing an Effective Algorithm

As stated earlier, the core of the application is an effective and accurate algorithm. There are

many different algorithms we can implement for this app. However, since this app is going to be
used on real roads by real drivers, there are many unpredictable factors that we need to consider.

We also need to determine what is the most effective way to gather data from the user and how to

calculate a value to determine if the user is sleepy. We will need an extremely effective and
accurate way of collecting data on the user’s face movements. We also need to consider the most

accurate algorithm to determine when to notify the user.

3. METHODOLOGY

An overview of the system is presented in Figure 1. The user would first have to choose a sound

(input) they would like to play for the detection (input by user). Then when the user starts the

detection, the phone’s face camera would gather the value for each of the eyes with the help of
Google firebase eye detection. After gathering the data of the user’s eyes, the algorithm would

then determine if the value collected is considered closed or open. Then the value would be

passed on to two calculations. One for the eye opened, one for the eye closed. The calculated
value would then determine when the notification sound would be played. At the same time, a

timer also records how long the user has been detecting. While detecting, the user can choose to

pause the detection at any time. When the detection is done, the user interface would display the

overall status of the user- in this case sleepy or not- and the time they have been using the
detection.

120 Computer Science & Information Technology (CS & IT)

Figure 1. Schematic of system

Figure 2. System in use

[image 1] Note the progress bar, first calculation.

[image 2] Note that nothing shows in the progress bar, eyes are open, second calculation is
conducted.

[image 3] Progress bar more than halfway, which means “closed_to_total” is greater than 0.5,

notification sound is played.

Computer Science & Information Technology (CS & IT) 121

3.1. Camera

To be able to collect the user's eye value, we need to use the user's face cam to get the value. We

were able to do this by first implementing a camera package. First, we add camera to the
pubspace.yaml file. Then we import the camera package. Finally, we set up the camera, so the

camera usage of this app is through the face camera.

Figure 3. Set up

Figure 4. Set up code

3.2. GoogleFirebase (ML core)

We implemented Google firebase face detection. The face detection can return values for the

user’s eyes positions and eye openness. For this application, we need the data collection of the

eye openness value. We allow the app to retract eye openness values of the user by adding

122 Computer Science & Information Technology (CS & IT)

Google-service.json file to the app’s source (src) folder, which would enable us to use its face
recognition service. We need another class file specifically in the lib folder along with other

codes in order for the Google-service.json file to work perfectly alongside of other aspects of the

app and to implement a face detector. After adding the Google-service.json file, we were able to

utilize and design an AI eye detection system with the help of basic Google firebase face
recognition system. The picture below is how we utilized the face detection code originally given

and added in some of our codes to retrieve the eye value. With this code, the app can work

perfectly with other parts of the program:

Figure 5. Adding code to retrieve eye values

The AI face detector will be used alongside later in many places. The image above is the basic

codes of the face detector.

3.3. Detection Algorithm

The most important part of this app is the detection algorithm. We show all the logic gates that

would trigger the system to notify the user being sleepy. The previous two sections (Camera and

Google Firebase) are just setting up the basics for this detection. This part is when we put

everything together. To be able to run the detection well, we need to first set the camera to be
able to continuously take pictures and for the Google firebase to detect the face. The camera is

automatically set to take one picture every minute during detection. The detection begins with the

algorithm taking one image of the user. If nothing goes wrong with taking the image, the
algorithm will go on and construct a path to store the image in a temporary directory and then use

the path-provider plugin (plugin for finding commonly used locations on the filesystem) to locate

it [5]. Then, the new image path taken would be stored and the old image path deleted. After the
image has been temporarily stored in the path, the face detector mentioned previously would

determine if there are any faces. If there are, then it would retrieve the user’s eye value. Then, the

Computer Science & Information Technology (CS & IT) 123

eye value retrieved would be entered into the following calculation. We defined any value below
0.3 as sleepy. If the eye value is smaller than 0.3, a variable named “closed_to_total” starting

with an initial value of 0 would be going through this formula:

The calculation is done this way because we would like the progress bar (shown below) to

increase not linearly or exponentially. This is designed to quickly notify the user if the detection
detects that he/she is sleepy. If the retrieved eye value is greater than 0.3, then the following

calculation would be conducted:

This would decrease the progress bar much slower than when the bar is increasing. It is done this
way to let the user go to rest quickly and let the notification sound keep playing. The

“closed_to_total”variable determines when the app would play a notification sound. If the

“closed_to_total”value is greater than 0.5, then the notification sound would be played. The
sound would keep playing(as a loop) unless closed_to_total is smaller than 0.5. The image below

shows the user interfaces when the first calculation is conducted and when the second calculation

is conducted. It also shows when the notification sound is played.

Figure 6. code for “closed_to_total” values and sound notification

124 Computer Science & Information Technology (CS & IT)

3.4. AI and algorithm integration

As shown above, we used artificial intelligence eye and face recognition to first detect the face

currently in the camera’s frame and the eye values on the face. After the AI face recognition
retrieves the eye’s data, we use these data and put them through the calculation and decide when

to notify the user of being sleepy.

4. EXPERIMENT

To evaluate the accuracy of our method, we decided to conduct experiments in real-life driving

situations. We decided to test the accuracy of this application’s design in many situations that

drivers can experience in real life. The factors that we decided to experiment include Day time
Without Glasses vs Glasses, Nighttime Without Glasses vs Glasses, Shade Without glass and

with glass, location of the phone glass vs without glass. For the first three experiments, the phone

is set up at 70 cm from the tester (just as the image below) while for experiment four, the phone
is set up at 87cm from the user. Within each trial, we are going to see if the detection would

trigger a warning. The accuracy of each detection would be determined as follow: if the test

subject’s eyes are closed and no alarms have sounded, then the accuracy is 0%. But if the test

subject’s eyes are open and the alarm goes off, then the accuracy level is 100%. For example, if
the detection is done accurately three times out of the four times, it would be a 75% accuracy.

The following is the result experiment accuracy data is as follows: 88% effective during day

time and 75% effective during night time. Here is a picture of the experiment set up:

Figure 7. Experiment set up

4.1. Experiment on Daytime Facing Sun Without Glasses Vs With Glasses

For this experiment, the glass used in the experiment is an ordinary correctional lens. We are

facing the sun during this experiment and sitting in the car. We decide the accuracy of the

algorithm through a simple test: if I close my eyes and no alarms, then the accuracy is 0%. But if
I close my eyes and the alarm goes off, then the accuracy level is 100%. The following is the

result experiment accuracy data is as follow:

Computer Science & Information Technology (CS & IT) 125

Figure 8. Data table for Experiment 1

Figure 9. Accuracy rate of detection: Daytime

Based on the results, we can see this algorithm has a 100% accuracy when detecting during

daytime with no glasses and a 75% accuracy rate with glasses. The overall accuracy rate for
daytime detection when facing the sun is 88%.

4.2.Experiment on night without Glasses vs Glasses

For this experiment, the glass used in the experiment is an ordinary correctional lens. We

conducted this experiment during nighttime and sitting in the car. We decide the accuracy of the
algorithm through a simple test: if I close my eyes and no alarms have sounded, then the accuracy

is 0%. But if I close my eyes and the alarm goes off, then the accuracy level is 100%. The

following is the result experiment accuracy data is as follow:

Figure 10. Data table for Experiment 2

126 Computer Science & Information Technology (CS & IT)

Figure 11. Bar chart of nighttime accuracy

Based on the results, we can see this algorithm at night has a 100% accuracy with no glasses and
a 50% accuracy rate with glasses. The overall accuracy rate at night is 75%.

4.3. Experiment on Sunshade with and Without Glass

For this experiment, the glass used in the experiment is an ordinary correctional lens. Our backs

are facing the sun during this experiment and sitting in the car. We decide the accuracy of the
algorithm through a simple test: if I close my eyes and no alarms have sounded, then the accuracy

is 0%. But if I close my eyes and the alarm goes off, then the accuracy level is 100%. The

following is the resulting experiment accuracy data:

Figure 12. Data table for Experiment 3

Computer Science & Information Technology (CS & IT) 127

Figure 13. Bar chart of daytime accuracy (not facing sun)

Based on the results, we can see the algorithm has a 100% accuracy when detecting during the
daytime with no glasses and a 50% accuracy rate with glasses. The overall accuracy rate for

daytime detection when our back is facing the sun is 75%.

4.4.Experiment on Phone at a Further Distance and Glasses

For this experiment, we have decided to place the phone 87 cm from the user’s eyes. (In the
previous three experiments, the phone was placed 70cm from the user.) This experiment is

conducted under daytime conditions with the sun facing from the back and with variables of

wearing and not wearing glasses. The experiment is conducted in a car. We decide the accuracy

of the algorithm through a simple test: if I close my eyes and no alarms have sounded, then the
accuracy is 0%. But if I close my eyes and the alarm goes off, then the accuracy level is 100%.

The following is the resulting experiment accuracy data:

Figure14. Data table for Experiment 4

128 Computer Science & Information Technology (CS & IT)

Figure 15. Bar chart of daytime accuracy (phone 87cm from user)

Based on the results, we can see the algorithm has a 75% accuracy when placed at 87 cm from

the eyes with no glasses and a 25% accuracy rate with glasses under the same conditions. The
overall accuracy rate for daytime detection when the phone is placed at 87cm is 50%.

In conclusion, our method proves to be effective overall. But under certain conditions, the
algorithm is not effective. We can improve the algorithm’s accuracy under certain conditions,

especially nighttime detection. One of the uncontrollable factors is light reflection on the user’s

glasses. Another uncontrollable variable that can improve the efficiency is setting the phone
closer to the user; this is up to the user. In general, our approach to solving this problem is proven

to be effective within different experimental conditions.

5. RELATED WORK

Dikkers, et al. present using Face Recognition system for Driver Vigilance Monitoring. Dikkers,

et al. use facial expression to detect drowsy driving. They use many similar methods as ours,

including data extraction. One aspect that was different was that they tested their algorithm based
on facial expressions. Their methods have not been tested in real-life situations and haven't

proved to be runnable on mobile applications [6].

Assari, M.A. and M. Rahmati present using infrared lights to first clear out the visual interference
such as darkness or light reflections and use facial expression detection algorithms on the face in

the video frame. This method of using infrared light is smartly done. They have also tested their

model in real-life situations [7].

Xu, L. et al. presented a solution using the percentage of eyelid closure to detect drowsy driving.

They relied on factors including blink time and blink rate. The methodology contains many other

factors compared to ours and employs different calculations to determine what is considered
sleepy. Their methodologies have been tested in real-life situations and on a mobile application

[8].

Computer Science & Information Technology (CS & IT) 129

6. CONCLUSION AND FUTURE WORK

In conclusion, we were looking for a solution for drowsy driving through an app that uses an

algorithm that can accurately and effectively detect drowsy driving or sleepiness based on the

user’s eyes that is optimizable on a modern-day smartphone. We decided to use Google firebase’s

face recognition algorithm and tweak it to extract the eye data from the user. We would then use
the eye detector algorithm we developed to extract data from the user's eye. When the value is

returned, it is passed down into a chain of calculations to determine if the alarm should go off.

We applied this method to four different experiments that are closely related to four scenarios
drivers would most likely encounter in real-life driving situations. The experiment results show

promising accuracy for most conditions but there are also places for improvement. Therefore, our

model can apply to everyday life and benefit a lot of people. Anyone from any age group can use

our solution to prevent drowsy driving. In the future, we would improve the accuracy for
detection when wearing glasses. The method stated in the paper can also be applied in

interdisciplinary studies relating to drowsy driving, including behavioral science. Other scientists

can utilize this model to further improve the current method of drowsy driving detection.

REFERENCES

[1] https://www.nhtsa.gov/risky-driving/drowsy-driving

[2] https://www.cdc.gov/sleep/features/drowsy-driving.html

[3] https://sci-hub.se/https://ieeexplore.ieee.org/abstract/document/6785367

[4] https://ieeexplore.ieee.org/abstract/document/1400934

[5] https://pub.dev/packages/path_provider

[6] Dikkers, H. J., et al. "Facial recognition system for driver vigilance monitoring." 2004 IEEE

International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583). Vol. 4.

IEEE, 2004.

[7] Assari, Mohammad Amin, and Mohammad Rahmati. "Driver drowsiness detection using face

expression recognition." 2011 IEEE International Conference on Signal and Image Processing

Applications (ICSIPA). IEEE, 2011.
[8] Xu, Lunbo, et al. "Sober-Drive: A smartphone-assisted drowsy driving detection system." 2014

International conference on computing, networking and communications (ICNC). IEEE, 2014.

[9] Pandit, Prajwal, et al. "VIVIFY: DRIVER'S DROWSINESS DETECTION AND ALARMING

SYSTEM." International Journal of Advanced Research in Computer Science 11 (2020).

[10] Vanlaar, Ward, et al. "Fatigued and drowsy driving: A survey of attitudes, opinions and

behaviors." Journal of safety research39.3 (2008): 303-309.

[11] Stutts, Jane C., Jean W. Wilkins, and Bradley V. Vaughn. "Why do people have drowsy driving

crashes." Input from drivers who just did 202.638 (1999): 5944.

[12] Tefft, Brian C. "Asleep at the wheel: The prevalence and impact of drowsy driving." (2010).

[13] Spaans, M. A., and H. J. Dikkers. "Facial recognition system for driver vigilance monitoring." Res.

Rep. No. LSS 169.03 (2003).

[14] Bracha, Gilad. The Dart programming language. Addison-Wesley Professional, 2015.
[15] Mikolaj, Miroslav. "Using Flutter framework in multi-platform application implementation."

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://www.nhtsa.gov/risky-driving/drowsy-driving
https://www.cdc.gov/sleep/features/drowsy-driving.html
https://sci-hub.se/https:/ieeexplore.ieee.org/abstract/document/6785367
https://ieeexplore.ieee.org/abstract/document/1400934
http://airccse.org/

	Abstract
	Keywords
	Drowsy driving, Mobile Application, Artificial Intelligence, Driving Safety.

