
Secure Cloud Key Management based on

Robust Secret Sharing

Ahmed Bentajer1, Mustapha Hedabou2, Sara Ennaama1, and Abderrahim
Tahiri1

1SIGL LAB., ENSA of Tetouan, University Abdelmalek Essaadi Tetouan,
Morocco

2UM6P Benguerir, Morocco

Abstract. The aim of this paper is to propose a model to strengthen the security of key man-
agement in cloud computing, where the model is shared or entirely controlled by a non-trusted
third party provider. Key management is not a straightforward matter for IT-teams, in addition
to critical issues related to properly managing and securing the keys on providers’ infrastructures,
they have to deal with concerns specific to multi-cloud key management. Hardware Security Mod-
ule (HSM) solution that offers a secure on-premise encryption key management turned out be
impracticable for widespread cloud deployment. HSM as a Service seems to be the best approach
for key management in multi-cloud, but the service is wholly owned and managed by another cloud
provider. In This paper, we present an efficient and secure cloud key management that fulfills the
requirements of multi-cloud deployment. The proposed design splits the key into a blinded version
of n shares that will be stored in encrypted format at the cloud provider side. To demonstrate
the efficiency of the proposed design, we implement a fully featured prototype and evaluate its
performance. Results analysis shows that the proposed design is highly efficient and can serve as
a groundwork for using secret share as a way to protect keys in a multi-cloud environment.

Keywords: Key Management Security, Secret sharing, MultiCloud , Cryptography, Security and
Privacy

1 Introduction

According to a study by the International Data Group, 81% of organizations have at
least one application or a portion of their computing infrastructure in the cloud [1].
This is due to the economic nature of cloud computing, which can reduce the cost
and complexity of owning and managing internal infrastructure in an on-demand
and pay-as-you-go metric. However, its adoption lead to data control loss to an un-
reliable Cloud Service Provider (CSP). The main concerns are about confidentiality,
integrity and privacy of the outsourced data [2, 3]

CSPs are leveraging cryptography as lever for mitigating security concerns in
order to strength confidence of end users on their services. Cryptography can be
involved in two major levels of security, namely secure storage [11, 4–7] and secure

David C. Wyld et al. (Eds): ITCSE, ICDIPV, NC, CBIoT, CAIML, CRYPIS, ICAIT, NLCA - 2021
pp. 149-161, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.110913

https://doi.org/10.5121/csit.2021.110913
http://airccse.org/csit/V11N09.html
http://airccse.org/cscp.html

computation [12–15]. Recently, some commercial offers of secure storage services
with encrypted data were implemented in cloud infrastructures. The most known
secure storage services, which encrypt data on the client side prior to outsourcing
it, are Spideroak and Dropbox.

As for On-premise infrastructure, protecting digital assets and secure commu-
nication depend mainly on cryptography, the increasing of cyber attacks led the
management of cryptographic keys more important than the key itself. This means
that companies need to be more vigilant in key management at the cloud level.
Depending on the type of cloud service in use, most key management functions
are partially or fully controlled by the cloud providers. For PaaS and SaaS service
delivery, the major part of the key management is processed internally by the cloud
providers. Even for IaaS model, keys used for signing virtual machine template are
internally managed [8].

Key management encompasses operations like keys generation, storage, archiv-
ing, distribution and destruction at the end of their life cycles. Due to their sensi-
tivity, keys must be handled with care. Keys must be generated in a random way,
stored in a very safe place and exchanged via secure protocols [8, 9]. Very likely,
this is done by making use of hardware facilities. For particular users, smart card
or TPM [20] can be applied, whereas HSM can fit more companies and government
needs. Needless to say that HSM has been developed before the advent of cloud
computing paradigm, therefore they must go along with a key management system
as it occurs on-premise infrastructures.

To alleviate cloud users from managing keys, which are their main goal of em-
bracing cloud services, cloud providers offer HSM as a service. With AWS CloudHSM,
Amazon provide HSM appliances in data centers as a service to users [16]. Undoubt-
edly, the physical HSM limitations related to lack of elasticity and operability have
been addressed by HSM as-service, still there is need for software infrastructure,
owned and procured by cloud services providers, to drive HSM as service. In a
nutshell, HSM as-service has brought some desired security and easy management
properties, but the HSM technology was not originally developed for cloud and still
presents limitations from cloud users perspective.

Recently, another approach achieving effective cloud key management, based on
the use of homomorphic encryption, was put forward. It was dedicated expressly to
cloud services and was designed in such a way to meet the five characteristics of the
cloud computing paradigm including elasticity, On demand self service and avail-
ability. The solution is already integrated with Web Services (AWS) and RedHat,
but it works with any cloud platform.

Security can only proved in semi-honest model. The solution provider, namely
Porticor, must be trusted to implement the protocol as specified and cloud providers’
platforms executing the implementation to have a neutral behavior. Semi-honest
models are believed to be non-trivial task and thus may undermine the security

Computer Science & Information Technology (CS & IT)150

gain provided by the solution. The lack of detailed technical information about the
solution and about the span of its adoption by final cloud users make the final
statement very difficult.

This paper introduces a new design for secure and efficient software cloud key
management system. Based on (t, n) robust secret sharing mechanism, the proposed
design splits up the master key on n servers hosted on cloud computing providers
side that communicate on asynchronous private and authenticated channels. The
design tolerates up to (n − t − 1) faulty servers. In addition, the storage of public
information, namely the Lagrange coefficients, speeds up the computation of the
secret (master key) reconstruction making the design more efficient. Furthermore,
we construct a formal model of our design and prove its security in semi-honest
model and finally we report on a prototype of implementation along with the per-
formance study. Well established trusted computation and execution facilities will
be leveraged to share, store and securely compute the key shares and reconstruction

The remainder of this paper is structured as follows. Section 2 presents prelimi-
naries and basic design. Section 3 aims to present each protocol in the design, while
section 4 presents the design implementation, security analysis and performances.
Finally, we come-up with our conclusions and assumptions

2 preliminaries

2.1 Secret Sharing

The secret sharing theory is a very attractive research field. It has many applica-
tions, multiparty computation is by far the most relevant one. In this paper, we
focus on particular Shamir based secret sharing schemes [10]. We assume that a
dealer wants to share a secret s amongst n parties so that no less than t+ 1 parties
can recover the secret, whereas it can easily be recovered by any t + 1 or more
parties. This is refereed to as (t, n) secret sharing. Shamir based secret sharing
scheme is built upon polynomials over finite field F , with |F | > n. For the sake of
correctness and simplicity, we suppose that F = Fp with p > n.

Whereas it can easily be reconstructed from any t+1 or more shares. Both of
these facts are proved using Lagrange interpolation.

Shamir’s early idea [10] of distributing shares of a secret as evaluations of a
polynomial has become a standard building block in threshold cryptography. The
scheme is based on polynomial interpolation. Given k couples (xi, yi), with distinct

x’
i s , there is one and only one polynomial q(x) of degree k−1 such that q(xi) = yi

for all i. This basic statement can be proved by using Lagrange interpolation.
Without loss of generality, we can assume that the secret s is (or can be made) a
number. To divide it into pieces [s]i, we pick a random k − 1 degree polynomial
q(x) = a0 +l x+ · · ·+ atx

t in which q(0) = s , and evaluate:

Computer Science & Information Technology (CS & IT) 151

s1 = q(1) · · · si = q(i) · · · sn = q(n).

Given any subset of t + 1 of these [s]i values (together with their identifying
indices), we can find the coefficients Li of q(x) by interpolation, and then evaluate

s = q(0) =
i=t+1∑
i=1

Li[s]i, where Li =
∏
j 6=i

(
xj

xj − xi
)

The basic secret sharing scheme will have some flaws if some participants are
dishonest [17]. For withstanding malicious participants, a new type of secret sharing
scheme was proposed by Fieldman [18], called the verifiable secret sharing (VSS)
scheme. The coefficients of this polynomial hidden in the exponent of the generator
of a group in which the discrete-log assumption holds, are published. This allows
that the participants can validate correctness only of their own shares distributed
by the dealer in the distribution phase. In [19], Stadler introduced the publicly
verifiable secret sharing (PVSS) scheme that allows that anyone can verify the
validity of shares without revealing any secret information.

2.2 Model and assumptions

In this paper, we are dealing with scenarios where a software key management
system Following the BYOK (Bring Your Own Keys) model is deployed in the
cloud providers side as an ad-on facility to an existing on-premise key management
system. The keys are managed on the on-premise side, following best practices,
keys are exported, stored and handled in the cloud provider sides in a secure way.
While they are in transit, conventional and well established techniques, including
SSL, SSH DH key exchange are leveraged to achieve security. In the cloud providers
side, keys are stored in a distributed way through n servers S1, S2, · · · , Sn. Latter,
keys are reconstructed and their integrity is verified by using secure computation
approaches. The proposed protocol can be modeled as follows:

– Secure storage. During the lifetime of the application, all servers possess some
sensitive information to be stored in a secure and authenticated way. This could
be shares of the keys or pieces of MAC’s.

– Secure computation. The n servers S1, S2, · · · , Sn are involved in some secure
computation phase taking place in the cloud providers side.

– Online and Offline phases. The protocol goes through periods where servers
are active and other where they are idle. In the active periods, the servers are
requested to send back their keys and MAC’s shares to a dealer who conduct
the secure computation for reconstructing and checking the validity of recovered
keys. These periods, called on online phases, alternate with other where the
servers are inactive. The latter periods are called Offline phases. The Offline and

Computer Science & Information Technology (CS & IT)152

Online phases must be synchronized in order to switch between these Offline
and Online periods.

As for on-premise settings, the proposed key management system is imple-
mented as a stand-alone application. The servers in cloud computing sides are fully
autonomous, that is they can switch between offline and online phases without any
interactions with outside the cloud instances. The servers can only communicate
with each other in order to conduct the whole process. In other words, the only
players involved are the servers themselves. This model comes with a limited level
of confidentiality, availability that can be provided. This level is tightly related to
the number of servers required for restoring the secret key without the leakage of
any information about it.

The confidentiality threshold can be defined as the minimal number Confmin

of server an adversary can break into to learn the secret key, whereas the availabil-
ity threshold Availmin as the minimal number of uncorrupted server that should
be available for restoring the key. In a fully autonomous scenario, the number of
malicious servers n-Availmin must be at most n/2 for ensuring confidentiality and
availability of the protocol. This limitation which is mainly due to the requirement
that servers are not allowed to communicate with any instance from outside the
cloud. The requirement about the number of malicious servers can be relaxed by
limited interaction with on-premise key management system.

We make standard assumptions about the well established cryptographic tech-
niques regarding the ability of an adversary to undermine their security. The tech-
niques used for establishing secure and private channels or for authenticating par-
ties, including SSL, SSH, DH key exchange are assumed secure in standard models.

2.3 Basic Design

We here give an informal description of our protocol that implement cloud key man-
agement system based on Robust Verifiable Secret Sharing with fully autonomous
servers. The protocol consists in three main phases. A set up phase where the on-
premise key management system computes the shares of the master key and the
MAC and communicates them to the main instance (dealer) in cloud provider side
trough a secure channel. The second phase is where the servers enter into an offline
period after receiving their shares and the final one consisting in conducting secure
computation to reconstruct the secret key after they return to online period. The
two subsequent phases are launched by the main instance.

Our protocol for key management in cloud computing, denoted cloudKMS con-
sists of three main components, namely the key management system on-premise,
an appliance acting as the dealer and n servers S1, S2, · · · , Sn. The appliance and
servers, owned and managed by cloud users, are located in cloud side. We assume
that the appliance is a trusted component. It is a semi-honest component (pas-
sive), which means that it behaves as prescribed by the protocol. This goal can

Computer Science & Information Technology (CS & IT) 153

be achieved by issuing remote attestation for its software. The protection against
passive attackers (an eavesdropper) is provided by a leveraging a trusted execution
mode such as SGX enclave and by using standard cryptographic tools like SSL,
SSH.

The protocol cloudKMS assume that a key management system is already active
on the user side (on premise). The KMS is responsible for generating the keys that
will be used on the cloud computing side following the model BYOK. For the sake
of simplicity, we assume that we are dealing with a single key, the master key
K. The protocol cloudKMS can be conducted in three sub protocols. A Set up
protocol generating the public parameters and computing the shares of the key k,
denoted [s]i. The sub protocol Sharing delivers the shares [s]i to the servers Si in
a confidential and authenticated way. The last sub protocol Reconstruction allows
to get back the share and to conduct computations and reconstruct the master
key. We now introduce the formal model of our protocol cloudKMS following the
model BYOK (Bring Your Own Keys). As mentioned above, the protocol consists
of three sub protocols.

– Protocol Setup(k): executed by the key management system on-premise, it takes
the security parameter k.The protocol outputs the corresponding MAC of k
denoted γ, the finite field Fp and the public shares [s]i of the master key along
with the public shares of the MAC γ′i for i = 1, · · · , n.

– Protocol Sharing(γ, [s]i, γ
′
i): Executed by the trusted appliance, it takes shares

of the master key and MAC along with value of the MAC. The protocol deliv-
ers/retrieves the shares [s]i, γj , for i, j ∈ {1, · · · , n} to/from the servers. The
value of the MAC γ is stored by the trusted appliance.

– Protocol Reconstruction([s]i, γ
′
i) takes as inputs the shares of the master key

and the MAC. The protocol executed by the trusted appliance outputs the mas-
ter key s. We note the protocol recover the MAC from its sharing and compares
it with the public value γ stored by trusted appliance before reconstructing the
master key

3 The proposed protocol

In this section we describe the main 3 sub protocols of our cloud key management
system cloudKMS , namely SetUp, Sharing and Reconstruction.

We denote the number of servers by n and the security parameter (master key)
by k. We assume that there is one k from which we derived the specific shares. The
k will be used during the life of the system. As mentioned before, the traffic be-
tween the components of the system is encrypted and authenticated using standard
cryptographic tools.

Computer Science & Information Technology (CS & IT)154

3.1 SetUp protocol

To initiate the process, a user through the on-premise key management system de-
noted OKMS generates the master key k. Executed by an application on behalf of
the key management system on premise, it takes k.The protocol outputs the finite
field Fp, the public shares [s]i of k along with its MAC (γ) and the public shares
of the MAC γ′i for i = 1, · · · , n. The algorithm 1 depicts the implementation of the
protocol.

Algorithm 1 Sub protocol Setup
1: function SetUp(OKMS , A)
2: Compute the MAC γ ←MACk
3: Sample random number a1, · · · , an ∈ Zp and b1, · · · , bn ∈ Zp

4: Set a0 ← s and b0 ← γ
5: Set q(x)←

∑i=t
i=0 aix

i and p(x)←
∑i=t

i=0 bix
i

6: Compute [s]i ← p(i) and γ′i ← q(i) for i = 1, · · · , n
7: Send to appliance A: γ and ([s]i, γ

′
i) for i = 1, · · · , n

3.2 Sharing

This protocol is executed with SetUp and Reconstruction protocols. It takes shares
of the master key [si] key and MAC γ along with value of the MAC γ′i. The protocol
delivers/retrieves the shares [s]i, γj , for i, j ∈ {1, · · · , n} to/from the servers. The
value of the MAC γ is stored by the trusted appliance. (Algorithm 2).

Algorithm 2 Sub protocol Sharing
1: function Sharing(A, S)
2: Store the MAC γ
3: Send each servers Si: ([s]i, γ

′
i) for i = 1, · · · , n

3.3 Reconstruction

Takes as inputs the shares of the master key and the value of γ′1. The protocol
executed by the trusted appliance outputs the master key s. We note the protocol
recover the MAC from its sharing (γ′i) and compares it with the public value γ
stored by trusted appliance before reconstructing the master key.

Computer Science & Information Technology (CS & IT) 155

Algorithm 3 Sub protocol Reconstruction
1: function POST(S, A)
2: number share Integer ← 1
3: Compute Li ←

∏
j 6=i(

xj

xj−xi
)

4: Compute s← q(0)←
∑i=t+1

i=1 Li[s]i
5: Compute γ = p(0)←

∑i=t+1
i=1 Li[γ

′]i
6: if γ == q(0) then
7: compute k
8: else
9: PickAnotherShare number share← 0

10: if number share == 0 then
11: Print : A share has been compromised

4 Security Analysis and Performance Evaluation

Figure 1 shows a presentation of how tests were conducted and where the shares
were stored/retrieved.

Fig. 1. General Schema

We implemented our 3 protocols with Java 1.8 using a 64 bits Windows op-
erating system with i7-8565 (1.8 GHz) processor and 16Go installed RAM. The
Sharing protocol has been developed using JCraft library which is a pure Java im-
plementation of SSH2 that is known to have more defensive mechanisms to avoid

Computer Science & Information Technology (CS & IT)156

vulnerabilities. Experiments are performed on different key size (AES-128, AES-
192, AES-256, RSA-1024, RSA-2048 and RSA-4096) while the t and n of shamir
secret sharing were t = 3 and n = 9.

We measured the performance of the proposed protocol using our developed
prototype. We divided the overhead time of each measurement into :

– SetUp and Share : The split of secret into shares, MAC computation and the
Upload time to Servers;

– Share and Reconstruction : The download time from Server, computation of
MAC and reconstruction of secret

Tables 1 and 2 show the results of the running time for computation and file
upload/download in seconds.

Table 1. SetUp and Share protocols performances

Key Size SSS Computation Upload Total Latency Upload

AES-128 0.005 18 18.005 ± 0.8
AES-192 0.005 18 18.005 ± 0.8
AES-256 0.005 18 18.005 ± 0.8
RSA-1024 0.03 18 18.03 ± 0.8
RSA-2048 0.03 18 18.03 ± 0.8
RSA-4096 0.03 18 18.03 ± 0.8

Table 2. Share and Reconstruction protocols performances

Key Size SSS Computation Download Total Latency Download

AES-128 0.04 7.86 7.9 ± 0.43
AES-192 0.04 7.86 7.9 ± 0.43
AES-256 0.04 7.86 7.9 ± 0.43
RSA-1024 0.07 7.86 7.93 ± 0.43
RSA-2048 0.07 7.86 7.93 ± 0.43
RSA-4096 0.07 7.86 7.93 ± 0.43

Analysis proves that data transmission is a dominant factor while shares compu-
tation do not heavily penalize the performance of the proposed design for different
key size (Figures 2 and 3). The latency time depends mainly on network quality
for file transfer and also the time taken by the appliance to authenticate to servers.

It is obvious that the proposed protocol adds a new security layer for the secret
key confidentiality. Based on our proposed design security threats may be a :

– Malicious insider user who may attempt to gather information through side
channel attacks

Computer Science & Information Technology (CS & IT) 157

Fig. 2. SetUp and Share Time Fig. 3. Share and Reconstruction Time

– Malicious external attacker who may try to intercept communication and steal
the shares.

The secret share addresses the specific need to enhance the security of the key during
its lifetime. The use of secret share schema establishes a mechanism of sharing
sensitive data securely amongst an untrusted network. Besides, our proposed design
inherits some properties related to Shamir’s (k, n) thresholds as:

– The system is Information-theoretic security meaning that an attacker with
high computational power cannot break the secret without having minimum
number of thresholds required to reconstruct the key.

– The system is extensible, where ki could be dynamically added/removed without
affecting other shares

– The size of each share does not exceed the size of the original data

However, during the upload/download of the shares it was noticed that the
system freezes or takes longer than usual to upload or download the shares, this is
usually due to the network connection and/or the interactions of the Appliance with
the servers to authentication management. In addition, if a share is compromised,
it will be difficult to know which part was affected.

The mere fact that the Appliance is hosted in on-premise does not mean that it
is completely trusted. A malicious insider can still tamper with the application. This
issue depends mainly on the organization hosting the KMS it self. Intel SGX may
be leveraged to offer hardware-based memory encryption and isolates the running
Appliance code and data in memory from processes running at a higher privilege
level.

5 Conclusion and future work

In this paper, we proposed a secure cloud key management based on the robust
secret share. The protocol is based on Shamir secret sharing that securely distribute
fragments of secret key amongst a different distributed cloud server. We have also

Computer Science & Information Technology (CS & IT)158

implemented a prototype of our proposed prototype to demonstrate its practicality.
The results are promising, the computation of shares and MAC are very negligible
compared to data transfer. In the future, we plan to improve the proposed Appliance
through the use of Intel SGX which will give it more protection from disclosure or
modification. And implementing a sub-Appliance that will split the share of a server
into other shares in order to improve the security of the secret.

References

1. IDG, ”IDG Cloud Computing Survey”, IDG (2020). https://www.idg.com/tools-for-
marketers/2016-idg-enterprise-cloud-computing-survey/

2. P. J. Sun, ”Security and privacy protection in cloud computing: Discussions and
challenges”, Journal of Network and Computer Applications 160 (2020) 102642.
doi:10.1016/j.jnca.2020.102642.

3. A. Bentajer, M. Hedabou, K. Abouelmehdi, Z. Igarramen, S. El Fezazi, ”An IBE-
based design for assured deletion in cloud storage”, Cryptologia 43 (3) (2019) 254-265.
doi:10.1080/01611194.2018.1549123.

4. A. Bentajer, M. Hedabou, K. Abouelmehdi, S. Elfezazi, CS-IBE : AA data confidentiality
system in public cloud storage system, in: Procedia Computer Science, Vol. 141, Elsevier B.V.,
2018, pp. 559-564. doi:305 10.1016/j.procs.2018.10.126.

5. Z. Igarramen, M. Hedabou, FADETPM: Novel approach of file assured deletion based on trusted
platform module, in: Lecture Notes in Networks and Systems, Vol. 49, Springer, 2019, pp. 49-59.
doi:10.1007/978-3-319-97719-5 4.

6. J. Xiong, Y. Zhang, S. Tang, X. Liu, Z. Yao, Secure Encrypted Data with Authorized Dedupli-
cation in Cloud, IEEE Access 7 (2019) 75090-75104. doi:10.1109/ACCESS.2019.2920998.

7. R. Chandramouli, D. Pinhas, Security Guidelines for Storage Infrastructure, Tech. rep.,
National Institute of Standards and Technology, 315 Gaithersburg, MD (oct 2020).
doi:10.6028/NIST.SP.800-209.

8. R. Chandramouli, M. Iorga, S. Chokhani, Cryptographic Key Management Issues and Chal-
lenges in Cloud Services, Tech. rep., National Institute of Standards and Technology, Gaithers-
burg, MD (sep 2013). doi:10.6028/NIST.IR.7956.

9. Bentajer A, Hedabou M, Chapter 6. Cryptographic Key Management Issues in Cloud Com-
puting, in: Victoria M. Petrova (Ed.), Advances in Engineering Research, 34th Edition, Nova
Science Publishers, Inc., 2020,

10. A. Shamir, How to share a secret, Communications of the ACM 22 (1979) 612-613.
doi:10.1145/359168.359176.

11. W. Shi, T. Liu and M. Huang, ”Design of File Multi-Cloud Secure Storage System Based
on Web and Erasure Code,” 2020 IEEE 11th International Conference on Software Engi-
neering and Service Science (ICSESS), Beijing, China, 2020, pp. 208-211, doi: 10.1109/IC-
SESS49938.2020.9237703.

12. Catrina O., Saxena A. (2010) Secure Computation with Fixed-Point Numbers. InProceedings:
Sion R. (eds) Financial Cryptography and Data Security. FC 2010. Lecture Notes in Computer
Science, vol 6052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14577-3 6

13. M. Nassar, A. Erradi, F. Sabry and Q. M. Malluhi, ”A Model Driven Framework for Secure
Outsourcing of Computation to the Cloud,” 2014 IEEE 7th International Conference on Cloud
Computing, Anchorage, AK, USA, 2014, pp. 968-969, doi: 10.1109/CLOUD.2014.145.

14. Q. Wang, F. Zhou, C. Chen, P. Xuan and Q. Wu, ”Secure Collaborative Publicly Ver-
ifiable Computation,” in IEEE Access, vol. 5, pp. 2479-2488, 2017, doi: 10.1109/AC-
CESS.2017.2672866.

Computer Science & Information Technology (CS & IT) 159

15. A. Bilakanti, Anjana N.B., Divya A., K. Divya, N. Chakraborty and G. K. Patra, ”Secure
computation over cloud using fully homomorphic encryption,” 2016 2nd International Con-
ference on Applied and Theoretical Computing and Communication Technology (iCATccT),
Bangalore, 2016, pp. 633-636, doi: 10.1109/ICATCCT.2016.7912077.

16. X. Huang and R. Chen, ”A Survey of Key Management Service in Cloud,” 2018 IEEE 9th In-
ternational Conference on Software Engineering and Service Science (ICSESS), Beijing, China,
2018, pp. 916-919, doi: 10.1109/ICSESS.2018.8663805.

17. Schoenmakers B. (1999) A Simple Publicly Verifiable Secret Sharing Scheme and Its Appli-
cation to Electronic Voting. In: Wiener M. (eds) Advances in Cryptology — CRYPTO’ 99.
CRYPTO 1999. Lecture Notes in Computer Science, vol 1666. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-48405-1 10

18. P. Feldman, ”A practical scheme for non-interactive verifiable secret sharing,” 28th Annual
Symposium on Foundations of Computer Science (sfcs 1987), Los Angeles, CA, USA, 1987, pp.
427-438, doi: 10.1109/SFCS.1987.4.

19. Stadler M. (1996) Publicly Verifiable Secret Sharing. In: Maurer U. (eds) Advances in Cryptol-
ogy — EUROCRYPT ’96. EUROCRYPT 1996. Lecture Notes in Computer Science, vol 1070.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68339-9 17

20. M. Hedabou and Y. S. Abdulsalam, ”Efficient and Secure Implementation of BLS Multisig-
nature Scheme on TPM,” 2020 IEEE International Conference on Intelligence and Security
Informatics (ISI), Arlington, VA, USA, 2020, pp. 1-6, doi: 10.1109/ISI49825.2020.9280511.

Authors

Ahmed Bentajer received his M.S. degree in National School of Applied Sciences
from Cadi Ayyad University in 2012. In 2019, he received his Ph.D degree in com-
puter science from EST of Safi from Cadi Ayyad University, Marrakech, Morocco.
Currently he is a professor at ENSA of Tetouan. His area interest covers Information
Security, Security architecture, Identity based cryptography and cloud computing.

Mustapha Hedabou received his M. Sc degree in Mathematics from the univer-
sity of Paul Sabatier, Toulouse, France. In 2006, he received his Ph.D degree in
computer science from INSA de Toulouse, France. He was a professor at ENSA of
Safi, from Cadi Ayyad University Marrakech in Morroco, And now he is Associate
Professor at Mohammed VI Polytechnic University, Benguerir, Morocco. His area
interest covers Information Security, Public Key Cryptography based on Elliptic
Curves, Identity based cryptography and cloud computing.

Sara Ennaama Sara ENNAAMA completed her Master’s Degree in Business Intel-
ligence and Big Data Analytics from Chouaib Doukhali University in 2020. Before
that, she got her Bachelor’s degree in Mathematical and Computer Sciences from

Computer Science & Information Technology (CS & IT)160

Cadi Ayyad University. She is currently pursuing a PhD in Computer Science at
Abdelmalek Essaadi University and is passionate about cryptography, cloud stor-
age, secure deletion and cloud computing.

Abderrahim Tahiri Obtained the Engineer degree in Computer Sciences in 2000
from Abdelmalek Essaädi University (UAE) in Morocco and the Master degree in
Telematics Engineering in 2007 from Polytechnic University of Cartagena (UPCT)
in Spain, and the PhD degree in Computer Sciences from UAE and UPCT in 2009.
Currently he is professor at the National School of Applied Sciences in the UAE,
he is a full member of the Computer Sciences Engineering Department, specialized
in Internet object models and applications and a full member of Information Sys-
tem and Software Engineering Laboratory of UAE. His research interests include
software architecture integration and smart application models. He has cooperated
in, and coordinated several projects on national level and on European level. His
research output includes 35+ co-authored articles. He has been chair of multiple
conference tracks related to Information System Engineering and Wireless Sensor
Network.

Computer Science & Information Technology (CS & IT) 161

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons Attribution
(CC BY) license.

http://airccse.org

