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Abstract

It has long been known that cryptographic schemes o�ering provably unbreakable security exist,
namely the One Time Pad (OTP). The OTP, however, comes at the cost of a very long secret key
- as long as the plain-text itself. In this paper we propose an encryption scheme which we (boldly)
claim o�ers the same level of security as the OTP, while allowing for much shorter keys, of size
polylogarithmic in the computing power available to the adversary. The Scheme requires a large
sequence of truly random words, of length polynomial in the both plain-text size and the logarithm of
the computing power the adversary has. We claim that it ensures such an attacker cannot discern the
cipher output from random data, except with small probability. We also show how it can be adapted
to allow for several plain-texts to be encrypted in the same cipher output, with almost independent
keys. Also, we describe how it can be used in lieu of a One Way Function.
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1 Introduction

Most existing encryption schemes work by identifying some suitable family of bijective
functions, one for each potential secret key, from the universe {0, 1}n of plain-texts to the
universe {0, 1}m of cipher outputs. In this paper, we, the author, take a di�erent approach
by supplementing the input with a large, truly random sequence. This sequence, with only
a few minor, hopefully undetectable, changes is then outputted as the result of encryption.
The core idea is the following: we will partially permute the words in the truly random
sequence based on the plain-text and the short secret key. The main ingredient to security
lies in using the elements of the random sequence itself to determine which positions to
exchange. The assumption on which our security claims are based is that the partial
permutation determined by our method will appear random to any adversary having less
computing power than allowed. More precisely, no algorithm of running time less than
exponential in some arbitrary chosen security parameter should be able to distinguish the
cipher output from random, even when the plain text is known or can be chosen.

From the ancient polyalphabetic substitution cyphers, the idea of employing random
decision making in the encryption method is not new. The security of a scheme depends,
however, on how randomness is employed precisely. The scheme we propose paves the way
to a plethora of similarly-built ciphers, all relying on the same core ideas we present in this
paper. As such, it can be regarded as being the �rst specimen from a newly introduced
class of encryption methods.
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The proposed scheme is intended to be cryptographically secure. All of the au-
thor's knowledge of �elds such as computability (e.g. Kolmogorov complexity), complexity
(e.g. NP-Completeness), [CS]PRNGS ([Cryptographically Secure] Pseudorandom Number
Generators) as well as knowledge of existent schemes such as AES [2] and RSA [3], to-
gether with the assumptions on which their security claims are based, played a role in
developing the current proposal. The claim that the proposed scheme is cryptographically
secure is thus intended to be taken as an educated statement, not a mere shot in the dark.
Furthermore, the scheme can be adapted for use in lieu of a One Way Function (which
is something actively sought by researchers, consisting of an easy to calculate function,
whose inverse is computatinally hard to determine - see [1]), for most scenarios.

1.1 Prior work

To the best of our knowledge there is no public body of literature pertaining to
encryption schemes which involve making small changes to a large volume of random data,
based on the secret key and the plain text as well as on said random data. Nevertheless, we,
the author, strongly suspect that non-public research, by people such as Marius Zimand
(see [4] and [5]), Leonid Levin (see [1]) and others who have a competent scienti�c interest
in randomness, Kolmogorov complexity and the like, exists which includes ideas similar to
those in this paper. Nevertheless, to the best of our knowledge, such research, if it exists,
is not public. Chaos Theory has played a role in the development of some ideas in this
paper. Its applications in encryption, in the form of Chaos Machines, are best described
by Armour in [6]. Such machines can easily be employed to augment the security of the
proposed encryption scheme.

1.2 Overview of this paper

The rest of the paper is organized as follows. In Section 2 we present the proposed
Encryption Scheme, including an abridged version of its pseudocode. We include a brief
natural language description of its steps and also very brie�y discuss the theory behind
it, before making bold claims regarding its cryptographic security. We provide no formal
proofs, but, instead, claim that such exist. We conclude by analyzing the performance of
the proposed algorithm. In Section 3 we present some important ideas on further increasing
security, while in Section 4, we tackle the opposite tradeo�, by presenting a practically
feasible, simpli�ed version of the Scheme. Section 5 discusses performance considerations
for the simpli�ed scheme. In Section 6, we present an idea on how such ciphers can
be modi�ed to allow multiple, independent plain-texts to be encrypted within the same
cipher output, using almost independent keys. In Section 7, we show how the scheme can
be used in lieu of a one way function. Section 8 is dedicated to practical considerations.
Conclusions are drawn in Sections 9 and Acknowledgments o�ered in Section 10.

For considerations of brevity, this paper includes an abridged version of the pseu-
docode of the proposed Scheme, su�ciently comprehensive nevertheless to illustrate it
properly.

Appendix A contains proofs for theorems in this paper. The appendix is included at
the end of this paper, with separate references.

2 The Encryption Scheme

In this section we proceed to describe the proposed encryption scheme. For lack of a
better name, we shall call it Short Key Random Encryption Machine or SKREM in short.
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2.1 The Encryption Scheme SKREM

The scheme takes the following inputs for encryption:

1. Three sequences M1,M2 and M3, of su�ciently large size, consisting of m indepen-
dent, uniformly distributed, truly random w-bit words each. We call these grand
master tables. When it is obvious to which we refer, we use the notation M . These
are unique to a particular encryption and are never reused.

2. The plain text P consisting of n bits which need to be hidden. It can be arbitrary.

3. A sequence T of su�ciently large size, consisting of independent, uniformly dis-
tributed, truly random w-bit words, to be used for random decision making. This
sequence is discarded after use (and never reused). We call it the randomness well.

4. A relatively short list of secret key elements, K_small[], consisting of uniformly
distributed, independent, truly random bits. This is the secret key which needs to
be provided at decryption.

5. Two equally sized lists of secret key elements K1_large[] and K2_large[], consisting
of uniformly distributed, independent, truly random bits. We call these, the large
secret keys. These are to be discarded after use (and never reused).

SKREM also incorporates a number of security parameters, grouped in the pseu-
docode in the parameters_∗ structures which are an integral part of the scheme. Their
values can be adjusted to obtain other SKREM-like schemes, however they are required
to be identical at both encryption and decryption. The secret key and large secret keys
can just as well be generated using the randomness well and provided as output, when no
speci�c secret key generation method is required.

The �rst half of each grand master table is conceptually split into a number of smaller
master tables, of equal size, to allow locations from it to be sampled using a lesser number
of bits. The second half is used for replenishing values consumed from the �rst half. Each
secret key element incorporates a few small numbers (called key atoms) which are used
to generate a single location within a small master table.

The cipher output produced at encryption by the scheme, consists of the three, slightly
modi�ed, grand master tables M1,M2 and M3. The Decrypt routine, as expected, takes
as input the output from the Encrypt and produces the original plain text.

Consider the following abridged version of the pseudocode for the SKREM encryption
scheme.

Algorithm 1. Abridged version of the pseudocode of the Encryption Scheme SKREM.

1: STRUCT params_normal
2: reqsec← 256{Security strength parameter: Logarithm of computing power available
to an adversary}

3: dmod← 0{Used to specify direct mode of key extension, using only one round}
4: vrfy ← 1{Speci�es whether to return an error in case the security parameters do not
o�er the speci�ed security strength}

5: mtsize← 85{Used to determine the size of one small master table}
6: secrbase← 4{Number of additional secret bits hidden in each key element to be used
as base during key extension}

7: secrtwo ← 1{Used to specify that an additional random exponent is to be sampled
from the grand master table, during key extension}

8: secrbpp ← 256{Length in bits of the o�set used to select a random prime. Must be
≤ reqsec.}
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9: secrbpb ← 9{Number of bits, whose XOR is used to represent 1 emitted bit, during
key extension}

10: secrbpn← 9{Number of bits, whose XOR is used to represent 1 bit of plain text}
11: ppx← 9{Number of key atoms per secret key element}
12: w ← 8{Number of bits in a word in M and T}
13: bopf ← 2{Multiplication factor for the number of bits in a number l, necessary to

sample it with (almost) uniform distribution from uniformly distributed individual
bits}

14: END
15: METHOD Encrypt(P,K1_large[], K2_large[], K_small[],M1,M2,M3, T )
16: Use BasicEncryptDecrypt() to encrypt the two large keys, K1_large[] and

K2_large[] into M3, with secret key K_small[].
17: Use the randomness well T to generate an OTP for the plain text P .
18: Use BasicEncryptDecrypt() to encrypt the OTP intoM1, with secret keyK1_large[],

and its XOR with the plain text in M2, using secret key K2_large[].
19: return The modi�ed grand master tables M1,M2 and M3 as the cipher output.
20: END
21: METHOD Decrypt(M1,M2,M3, n, szLKey,Ksmall)
22: Use BasicEncryptDecrypt() to retrieve the two large keys, K1_large[] and

K2_large[] from M3, using key K_small[].
23: Use BasicEncryptDecrypt() to retrieve the OTP from M1, using secret key

K1_large[] and its XOR with the plain text from M2, using secret key K2_large[].
24: return The XOR of the two bit sequences obtained above, as the original plain text.
25: END
26: METHOD BasicEncryptDecrypt(mode, n, P,K[],M, T, t, params)
27: {Performs encryption of P into M based on K[] or decryption from M into P based

on K[], depending on mode}
28: {Initializations}
29: Initialize some constants based on the input and the security parameters. Of particular

interest are the following. The values for when dmod = 1 di�er slightly, but their
semantics remains the same.

30: k ← (secrbase∗ (1+secrtwo)+(ppx)∗mtsize∗ bopf +secrbpp)∗ bopf +secrbpp {Size
of a key element in bits}

31: f ← 1 + ([1/((1 − 1/2w))] − 1) ∗ 10 {Number of pairs of words su�cient to generate
one random bit}

32: reqBitsPerKey ← k ∗8∗ (1+secrtwo)∗secrbpb {Number of bits required by a single
key element, for extension}

33: reqWords ← (reqBitsPerKey ∗ (secrbpn/ppx) ∗ n/7 + secrbpn ∗ n) ∗ 2 ∗ f {Total
number of words consumed by the algorithm}

34: keyExtFactor ← 8 {Number of new key elements to which a single old key element
is extended}

35: mtSize ← Min(maxMTsize,NextPrime(2mtsize)) {Size of a small master table.
Chosen to be a prime number, around 2mtsize}

36: noMTs ← Min(b m/2
mtSize

c, 2 ∗ f ∗ reqBitsPerKey) {Total number of small master
tables}

37: for i = 0 to noMTs ∗mtSize− 1 do
38: Perm.Add(i) {Initialize Perm to be the identity permutation}
39: end for
40: {Security Parameters Validations}
41: if vrfy = 1 then
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42: Ensure that the following constrains are respected.
43: ppx ∗K[].Count ∗mtsize ≥ reqsec+mtsize
44: ppx ∗K[].Count ∗ 4 ≥ reqBitsPerKey/ppx
45: mtsize+ (mtsize− 1) ∗ 2 + 3 ≥ reqsec
46: maxMTsize ≥ NextPrime(2mtsize)
47: noMTs ≥ 2 ∗ f ∗ reqBitsPerKey
48: end if
49: {Key Extension}
50: while There are ≤ secrbpn ∗ n key elements do
51: for All old key elements and for increasing indexes of atoms within a key element

and of small master tables do
52: Use ExtractJthLocation() and GetLocation() to obtain two locations lp1 and lp2

within the permutation list Perm, using a single atom of a single old key element.
53: Use Perm to obtain two locations lm1 and lm2 in the grand master tableM form

lp1 and lp2.
54: Use BurnLocation() to mark the locations lm1 and lm2 as used, and replenish

Perm acccordingly.
55: Use GetBit() to obtain a random bit b2 from the values M [lm1] and M [lm2].
56: Distribute b2 to the appropriate old key element, to be used for its extension.
57: end for
58: if A su�cient number of bits has been emitted to allow for extension of all old key

elements then
59: XOR every secrbpb bits from those distributed to each key element for extension,

to obtain a usable bit.
60: Extend each old key element into keyExtFactor new key elements, using

ExtendKey(), thus concluding one key extension round.
61: end if
62: end while
63: {Getting Locations For Encryption}
64: Use the last round key elements to emit a number of secrbpn∗n bits from about twice

as many locations in M , keeping a record of both.
65: {Encrypt / Decrypt}
66: Use the XOR of every secrbpn from the emitted bits above to represent a single bit

of plain-text.
67: At encryption time, if this bit does not correspond to the desired one from P , swap

the values at a single, randomly chosen, pair of locations inM , from the secrbpn used
to generate it. Use the randomness well T to pick the exact pair.

68: {Return result}
69: return (P,M, t)
70: END
71: METHOD ExtendKey(K,ExtendBits, t, NewV als, k, count, params)
72: {Extends the key element K, by adding count new key elements to the NewV als list}
73: (_, KeyBits)← ExpandKey(K, k, params)
74: lp← 2k−secrbpp∗(bopf+1)

75: for i = 0 to count− 1 do
76: x← 17, y ← 14, v1← 17, v2← 28
77: q ← 0
78: (po, t)← BuildV alue(ExtendBits, t, secrbpp)
79: p← NextPrime(lp+ po)
80: (v1, q)← BuildV alue(KeyBits, q, secrbase)
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81: if secrtwo > 0 then
82: (v2, q)← BuildV alue(KeyBits, q, secrbase)
83: end if
84: (x, t)← GenerateRandomFromBits(ExtendBits, t, p, params)
85: if secrtwo > 0 then
86: (y, t)← GenerateRandomFromBits(ExtendBits, t, p, params)
87: end if
88: newK ← (20 + [(v1 + 14)28+x + (17 + v2)17+y + 11431]−1) mod p
89: newBits← ∅
90: GetBits(po, secrbpp, newBits)
91: GetBits(newK, k − secrbpp, newBits)
92: (genK,_)← BuildV alue(newBits, 0, k)
93: NewV alus.Add(genK)
94: end for
95: return t
96: END
97: METHOD ExtractJthLocation(K, k, j, params)
98: {Gets the value associated with the j-th atom used to index the small master tables,

from key element K}
99: static lastresult← 14 {Retains value between method calls}
100: (_, KeyBits)← ExpandKey(K, k, params)
101: p← NextPrime(2mtsize) {Gets the smallest prime larger than this value}
102: q ← secrbase ∗ (1 + secr_two) + j ∗mtsize ∗ bopf
103: (l,_)← GenerateRandomFromBits(KeyBits, q, p, params)
104: if lastresult < 2 then
105: lastresult← 28
106: end if
107: l← [17 + (lastresultl+28 + 14)−1] mod p
108: lastresult← [17 + (lastresultl+20 + 11431)−1] mod p
109: return l
110: END
111: METHOD BurnLocation(Perm, l,m, noMTs,mtSize)
112: {Marks the location Perm[l] from the grand master table as used and performs some

minor shu�ing of Perm, based on l}
113: q ← bl/mtSizec
114: j1← b q

2
c

115: j2← q + bnoMTs−1−q
2

c
116: l1← j1 ∗mtSize+ b l

2
c

117: l2← j2 ∗mtSize+ l + bmtSize−l
2
c

118: Perm[l1]↔ Perm[l2]
119: Perm[l]← m− 1
120: m← m− 1
121: return m
122: END
123: METHOD GetLocation(l, x, noMTs, orgNoMTs,mtSize, params)
124: {Gets a location in Perm based on location index l in a small master table of size

mtSize and a value x, with 0 ≤ x < orgNoMTs}
125: END
126: METHOD ExpandKey(K, k, params)
127: {Expands key element K into its constituent parts so they can be used directly. These
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parts are the prime modulus used and the bits which represent all the atoms}
128: END
129: METHOD GetBit(w1, w2)
130: {Returns a uniformly distributed bit based on two random, but potentially not uni-

formly distributed, words w1 and w2}
131: if w1 = w2 then
132: return null
133: end if
134: if w1 < w2 then
135: return 0
136: end if
137: return 1
138: END
139: METHOD GenerateRandomFromBits(Bits, t, l, params)
140: {Returns an almost uniformly distributed value between 0 and l − 1 based on some

uniformly distributed random bits found in the sequence Bits, starting at index t}
141: a← GetReqGenerateBits(l, params)
142: x← 0
143: for i = 0 to a− 1 do
144: x← x+Bits[t] ∗ 2i

145: t← t+ 1
146: end for
147: step← 2a/l {Noninteger value with double precision}
148: q ← bx/stepc
149: if r 6= q and q < l and (q + 1) ∗ step− x ≥ x− q ∗ step then
150: q ← q + 1
151: end if
152: return (q, t)
153: END
154: METHOD GenerateRandomBitsFromP(a, p, l)
155: {Returns the bits of an almost uniformly distributed value between 0 and 2a−1 based

on some uniformly distributed value, between 0 and l − 1}
156: The method proceeds analogously to GenerateRandomFromBits.
157: END
158: METHOD GetReqGenerateBits(l, params)
159: {Returns the number of uniformly distributed random bits required to generate an

almost uniformly distributed value between 0 and l − 1}
160: return bopf ∗ dlog(l)e
161: END
162: METHOD GetBits(val, noBits, Bits) {Adds noBits bits from val to a bit list}
163: METHOD BuildValue(Bits, t, noBits) {Builds a value from a bit list}
164: METHOD NextPrime(val) {Returns the smallest prime number ≥ val}

Discussion: The values 14,28,20,11431, and 17 were chosen to be arbitrary beautiful con-
stants ≥ 2, which are used in such a way so as to have no impact on the security of the
scheme. They can be replaced with anything else the reader �nds more to his tastes, if
desired.

SKREM proceeds as follows. It encrypts the two large keys K1_large[] and
K2_large[] using the secret key K_small[]. This step is performed in order to allow
for shorter keys in practice. SKREM then proceeds to encrypt the plain text, split in two
via an OTP, into grand master tables M1 and M2. Each of these is, in e�ect, when taken
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alone, truly random.
Actual encryption is performed in BasicEncryptDecrypt(). The security strength

parameter - commonly identi�ed with the key length in bits in most other ciphers - is
reqsec. This must be taken such that 2reqsec steps is beyond what is tractable by any
adversary, within the intended lifetime of the cipher text. The security constrains put in
place, and enforced via validation, are rather stringent. They are meant to be generously
su�cient to allow us claim that SKREM can be proven to o�er unbreakable security.

Encryption proceeds as follows. Firstly, a key extension stage takes place, where the
number of available k-bit key elements is extended to secrbpn∗n. Finally, each atom of the
resulting last key elements is used to determine an unused location within the grandmaster
table. The values at these locations are than altered to represent the plain text, encoded
in the pair-wise relative order of consecutive such. A number of secrbpn bits, represented
by secrbpn pairs of locations are XORed together to encode a single bit of P . When the
existent bit does not correspond to the desired one, any of these pairs, randomly chosen,
will have its values switched. Knowledge of the plain text could potentially be speculated
only starting at the last stage, where actual encryption takes place. All transformations
performed until then by SKREM are fully independent from it: the list of potential pairs
of swappable locations fromM is the same for any plain-text. As such, adaptive plain text
attacks, as well as chosen cipher text attacks, should o�er no noteworthy added bene�t
whatsoever, over simple known plain text attacks.

During the key extension round, the following occurs. Each old key element is pro-
cessed by ExtractJthLocation (which uses some modular algebra to spice the result up a
bit) to obtain a number of ppx locations between 0 and the size of a small master table.
Each such location is used to reference 2 ∗ f ∗ reqBitsPerKey locations from the grand
master table M , using GetLocation and the indirection vector Perm. Each successive
pair of locations in M encode 1 (truly random) bit, with probability (1 − 1/2w), failing
1/2w of the time, when the sampled values are equal. In order to ensure with reasonable
probability that we obtain the required number of reqBitsPerKey from each key atom,
the number of pairs of words is increased by a factor of f , which is taken to be close to
the inverse of the former. The exact probability of failure for the entire process was not
computed, but is instead left for further research.

Once reqBitsPerKey bits are generated for each of the new key elements (by all
of the old key elements together), they are used to expand each such original key, into
keyExtFactor (8) new ones. The bits used for extension, while generated by locations
determined deterministically from original key K_small and the grand master table M ,
are understood to appear truly random and independent to the adversary: since M is
truly random, unless we got astronomically unlucky for it to be something predictable
(e.g. all 0s), the distribution of values across almost all of its permutations should be just
as random. Do note, however, that the entropy (in terms of Shannon Entropy [7]) of the
ensuing permutation of M will also never exceed the entropy of the secret key (which is
large enough to exclude brute force guessing, fortunately).

The manner in which a single k-sized key element K is extended is as follows. At least
1 (potentially 2) k-sized, random values x, y, are generated based on the grand master
table M , and on part of the key atoms from the other key elements, excluding itself. We
expect each of these 8-16 values to be, e�ectively, indistinguishable from random by the
adversary. The exact extension formula consists of the exponentiation of some primitive
of GF (p) to a random exponent based on the x,y values, thus producing a random result,
regardless of the base used. The summing of two such exponentiations, as well as of the
beautiful o�set 11431 are meant to prevent a sequence of operations from simplifying to
just one. Finally, the modular inverse operation was employed, given its apparent even-
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today-valid strength with regard to cryptographic usages. It is known that the AES [2]
scheme relies fundamentally on it. Given the OSINT available to the author, it seems the
security of modular inversion holds in practice. We chose to work in GF (p) (the Galois
Field of order p) with varying, (almost) truly random primes p-s, of suitable length, rather
than GF (2c) for some �xed c for three reasons. Firstly, we feel that the structure of GF (2c)
might be the object of intense study and precomputations, particularly given its popular
usage in cryptography. By choosing to work in a large number of simple �elds, we preempt
such possibilities. Secondly, the structure of GF (p), simple as it may be, appeals more
to us than the potential unknowns hidden by GF (2c). Thirdly, a primitive of GF (p) is
very be easy to �nd: any value ≥ 2 will do. The above formula produces a random result
whenever x is random, regardless of the other values.

The method used for bit emission, by some key atom A, is designed to deny the at-
tacker the possibility to guess more than a single one for any new key atoms, resulting
from extension, by making some guesses about as many old key atoms as his computing
power allows. We claim that no succinct characterization or useful property can be deter-
mined (except with astronomically low probability) by the adversary, with regard to the
relationship between the set of new atoms and the set of old ones. This claim rests on
the fact any such relationship will need to depend heavily on the existence of structure
and order within M itself - which is, by the de�nition randomness involving constructive
martingales, excluded (except with astronomically low probability).

Guessing all the mtsize bits of the location represented by an atom, could, under
some pessimistic scenarios, potentially be used to determine one bit for all new atoms
in an extension round. An attacker would then be able to take ≈ 22∗(mtsize−1) random
guesses for all the remaining bits (of which there are at least mtsize− 1 per atom - and
this value could be increased as per the ideas in Section 3), in order to know with 1σ
con�dence (≈ 68.5%) if he had guessed right (see [8]). Each time such an experiment is
performed, the set of plausible initial guesses (2mtsize) is reduced to the corresponding
fraction (e.g. 0.3% for 3σ). We consider that the security check requring mtsize to be no
lesser than ≈ reqsec/3 is su�cient from a theoretical perspective to allow for the desired
level of voracity in our claims that SKREM o�ers security that can be formally proven to
be unbreakable. Note that any speculated (guessed) property of any round's set of atoms
will be impossible to verify before the very last stage, where actual plain text encryption
occurs.

At the encryption stage, the attacker is faced with a set of O(n) key elements, which,
by the prior arguments, he should not be able to characterize in any useful manner.
Each group of secrbpn key elements are used to encode a single bit of plain text. For
secrbrb >= ppx (which is the case in SKREM), an intractable number of locations would
need to be guessed, for the attacker to be able to constrain the last-round key elements
universe to account for even just 1 bit of plain text. The attacker should, thus, be unable
to deduce any useful properties of this set, allowing him to characterize the original key
K[] or discover some yet-unknown bit of plain text. In e�ect, the last round keys function
like a practical OTP for the plain text (not an actual OTP since its entropy is limited to
about reqsec). By introducing uncertainty about which pair of locations had its values
changed inM , we feel we have made most attacks seeking a useful representation of the set
of last round key elements, reduce to the counting problem #SKREM instead of merely
the decision one. The counting problem is generally considered harder than the decision
problem, as the di�erence in tractability between 2CNF-SAT and #2CNF-SAT illustrates
[9].

Other, less crucial, decisions add some additional uncertainty over the entire exe-
cution of the algorithm. For example, the simple shu�ing of just 2 locations used in
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BurnLocation(), we expect to cause the indirection arrangement Perm to stray, before
the start of the encryption stage, pretty signi�cantly from anything which is very simple
to describe. The usage of non-constant base in ExtractJthLocation(), based on e�ec-
tively all the atoms encountered during the entire course of execution of the algorithm
also complicates matters notably.

The method used by GenerateRandomFromBits() and
GenerateRandomBitsFromP () to convert from one uniform probability distribu-
tion to another merits some attention. It involves dividing the source universe into even
slots, each having an associated value from the target universe. This conceptual division
entails non-integer, rational thresholds. Since each threshold is a rational number, it may
fall between integers. Occasionally a value at a border between two slots is encountered.
Since determining the true correspondent would require more precision than available,
we simply employ some smart rounding. As such, each value in the target universe may
have its distribution altered (increased or decreased) by inclusion / exclusion of a small
part of it, situated around the two thresholds of the interval which represents it. Each
such amounts to less than 0.5 (thanks to rounding), bringing the total to at most 1 value

from the 2bopf∗log(l)

l
= 2(bopf−1)∗log(l) representing it, thus making the suggested bopf = 2

overly generous. This method, along with the one in GetBit(), were discovered by the
author in the context of this paper. Nevertheless, we strongly suspect the likes of Marius
Zimand or Leonid Levin are also aware of them.

Decryption is identical to encryption, save the lack of need to switch values in the
grand master tables. It warrants no separate discussion. Armed with the insights discussed
above, we make the following claims.

2.2 Claims

Claim 1. Any classical computer algorithm, using less running time than 2reqsec, has a
probability of less than a value below that corresponding to 1σ (≈ 68.5%) of determining
whether SKREM was used to encrypt some known, arbitrarily chosen plain text P .

Discussion: Essentially, we claim that SKREM o�ers security reqsec against a clas-
sical computer. Note that this is a bit less than the size of the secret key, K_small[]
(by no more than a polynomial factor). Also note, importantly, that the claim asserts an
would-be attacker, not only is unable to characterize or determine the original key - or
predict the unknown part (if any) of the plain text, but also that he is unable to discern
the cipher text from random.

Claim 2. Any quantum computer algorithm, using less running time than 2reqsec/2, has a
probability of less than a value below that corresponding to 1σ (≈ 68.5%) of determining
whether SKREM was used to encrypt some known, arbitrarily chosen plain text P .

Discussion: The reason for the reduction in the security strength against a quantum
computer is obviously Grover's Algorithm [10]. If there was any doubt left, the discussion
by Bernstein in [11] clari�ed this need. Although our key size is more than double reqsec,
we choose to be conservative and consider the security strength of the secret to be just
reqsec. Given Bennet et all [12], Grover's algorithm is asymptotically optimal for an
arbitrary black box function - which is what we consider SKREM to be. Thus a reduction
factor of 2 in the claimed strength should su�ce. We, the author, consider humanity's
current understanding of quantum physics incomplete and partially �awed. We believe
it possible for physical phenomena to exist which allow computers, o�ering exponential
speed-ups in �nding feasible arguments to black boxes, to be built. This is adds on top of
speed-ups possible under existing theory, such as taking refuge near the event horizon of a

Computer Science & Information Technology (CS & IT)172



black hole until a classical computer �nishes breaking the encryption key, or sending the
computer itself to a place where time �ows relatively much faster. We believe that new
encryption techniques will need to be developed, once this understanding is perfected.
This highly speculative discussion is, however, outside the scope of the current paper.

In the �good old fashioned� practice of cryptology works, we provide no formal proofs
of our claims. We do however claim that such formal proofs exist, which is, we believe, a
far stronger assertion than simply saying they are true.

Claim 3. There exists a formal proof of Claim 1.

Claim 4. There exists a formal proof of Claim 2.

2.3 Performance Analysis of SKREM

Theorem 1. The performance characteristics of SKREM are as follows:

� Total number of random words required: O(n ∗ reqsec).

� Minimum size of secret key: O(reqsec2)

� Space complexity: O(n ∗ reqsec).

� Running time complexity: Õ(n ∗ reqsec7)

Proof. The proof is included in Appendix A, as Lemma 1.

Discussion: The running time is thus polynomial in the security strength parameter
and the plain text size and linear in just the latter. The required minimum secret key
size is only quadric in the security strength parameter, which is O(1) with regard to
plain text size. The extra space required, besides the output and randomness well, can be
implemented to go as low as the O(2mtsize ∗ 2 ∗ f ∗ reqBitsPerKey). This is no more than
2O(reqsec), which is O(1) with regard to the plain text size.

3 Further Strengthening Security

In this section, we present a few important ideas to further strengthen security. We
consider these to hold signi�cant value with regard to any SKREM-like cipher, including
the simpli�ed version presented in Section 4. Consider the following.

1. Pepper the plain text with random changes, making use of error-correction
codes. First, transform the plain-text into a redundant form by encoding it using
error-correction codes. We suggest using simple codes, like Reed-Solomon [13], and
quadrupling the size of the plain text with error correction data. After this, the
randomness well T can be used to randomly alter a large portion of the words from
the transformed plain text. Using Reed-Solomon codes should allow for modi�cations
in about 30% of the data and still ensure it can be deciphered correctly. Not knowing
where exactly a modi�cation has taken place complicates the ability of an adversary
to exploit any potential known plaintext advantage.

2. Permute the indirection list Perm using a more sophisticated approach.
For example, a longer permutation, determined by the sequence of burned locations,
could be applied instead one involving a single swap currently used. One idea for such
is to choose a �xed permutation of large order and to raise it to a power determined
by the burned location before every application to Perm.
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3. Perform Key Extensions / Refreshes between encryption of successive
plain text bits. Refreshing some key elements (having them generate 1 new element
instead of 8) after encoding each bit of plain text could add further uncertainty.

4. Encrypt the plain text and / or the master tables using an existing sym-
metric cipher like AES beforehand. This is a relatively common idea to any
cipher. In our context, it can be regarded as a mean to degrade the capacity of the
adversary to know the actual plain text. Like with any new scheme, the security of
SKREM and SKREM-like ciphers should not rely on the security of this additional
cipher. AES encryption is regarded in this context as mere obfuscation. Nevertheless,
the design of SKREM allows such additional ciphers to be applied to both the plain
text and the master tables safely, without degradation of security.

5. Use a Chaos Machine or a CSPRNG instead of, or along side, modular al-
gebra. Currently, the transformations performed by ExtendKey() are algebraically
simple. However, SKREM could be altered to PUSH all emitted bits in a round into
some Chaos Machine (see [6]). Whenever a certain value needs to be generated, its
seed could simply be PULLed from this machine. If a full Chaos Machine is too slow,
a di�erent CSPRNG can employed in lieu of it.

6. Change the location sampling method to something more sophisticated.
Currently, once the �rst location has been extracted from an atom, a simple, pre-
dictable, linear probing method is employed. However, a more sophisticated approach
could be taken in GetLocation() to translate l and x into an index in Perm. This
could, for example, take the form of modular algebra again, combining the two in a
manner similar to the expression in ExtendKey(). Alternatively, Chaos Machines,
CSPRNGs or di�erent one way function candidates (like the one in [1]) could be em-
ployed. Additionally, the size of one atom can be increased to something more suit-
able, irrespective of the size of a small master table, changing ExtractJthLocation()
accordingly. The current approach was chosen �rstly to prevent the arguments per-
taining to the security of SKREM depend on the security of this additional enhance-
ment, which we feel is besides the core of the proposed scheme. Secondly, we wanted
a practically feasible version to be easy to describe and understand, thus prevent it
from resorting to sophisticated hacks and optimizations.

Finally, the following salt generation idea presents signi�cant value, especially when
secure transmissons are envisioned (rather than mere secure storage or computations):
Transmit some number of grand master tables M - say 28. Among them, include the
M1, M2 and M3 generated by Encrypt(). Each of these grand master tables will appear
indistinguishable from truly random at any inspection (since indeed they are each actually
truly random, taken apart) - for example when crossing a national border. The receiver

will then try out all the
(
28

3

)
≈ 2.7 ∗ 106 triplets and discover the correct plain-text,

reasonably fast. For an attacker without knowledge of the secret key, discerning even if a
single triplet is non-random is a very hard (claimed insurmountable) task. Performing this
computationally expensive operation more than 2.7 million times should prove intractable.

4 Improving Performance

As powerful as SKREM is, its complexity (space in particular) - makes it impractical.
In this section we present simpli�ed version, resulting from choosing non-default values
for the security parameters, meant to drastically improve performance characteristics.

Computer Science & Information Technology (CS & IT)174



It comes at the cost of only a constant factor reduction in the voracity with which we
assert our educated security claims 1 and 2 (although we expect �nding a formal proof
for them to be harder). For lack of better name, we call it SKREMS (Short Key Random
Encryption Machine Simpli�ed). It is intended to be just an example of how practically
feasible SKREM-like ciphers can be derived. We aim to provide 100-year security against
the top existing conventional supercomputer, as of 2019. Based on publicly available
statistics, this constrains the value of the security strength parameter to about log(1030) ≈
100. Modifying SKREM to allow for defending against a quantum super-computer (thus
requiring doubling this value) is possible, but it entails resorting to some re�nements and
hacks which are outside the scope of the current paper. Consider the following.

Algorithm 2. Changes to SKREM entailed by the Encryption Scheme SKREMS.

1: STRUCT params_normal
2: reqsec ← 100; dmod ← 0; vrfy ← 0; mtsize ← 33; secrbase ← 4; secrtwo ← 0;
secrbpp← 20; secrbpb← 5; secrbpn← 6; ppx← 2; w ← 8; bopf ← 1.1

3: STRUCT params_short : params_normal
4: dmod← 1; secrtwo← 1; ppx← 5;

Theorem 2. The performance characteristics of SKREMS are the following.

� Total number of random words required for each of M1, M2 and M3: 9030 ∗ n,
9030 ∗ n and 234 respectively.

� Minimum size of secret key: 231 bits.

� Space complexity: 18060 ∗ n+ 234.

� Running time complexity: O(n), using about n ∗ 130/7 CPU modular algebra op-
erations over 127 bit numbers and about 18060 ∗ n + 234 disk and main memory
operations.

Proof. The proof is included in Appendix A, as Lemma 2.

Discussion: Given than n is actually the number of bits, not bytes of plain text, the
actual byte of storage per byte of plaintext is in fact ≈ 9030 ∗ 8 ≈ 71GB/MB. Note that
the secret key is just a factor of 2.31x larger than the theoretical minimum for this security
strength. Also, note that it can be coded using about 42 alphanumeric characters. With
some special training and a bit of practice such a key can be stored in a human brain.

As per the detailed discussion in the section below, based on performance data from
[14] and [15], using two, commercially available, portable SSD drives of 2 TB each, one
could encrypt about 28 MB (which is su�cient to contain about one minute of video, not
to mention the full text of this paper) in about 1 day, using high-end, but still commodity
hardware. The CPU running time can be reduced by a factor of ≈ 107, using super-
computer grade hardware, allowing the entire process to complete in about 3 minutes.

The above illustrates that practically feasible SKREM-like schemes exist. Ideas to
further signi�cantly improve performance also exist. Two, immediately obvious ones, in-
volve using a hardcoded, precomputed list of primes of all required sizes (e.g. the �rst
prime above 2k + 11431 ∗ x for increasing values of x) or performing algebraic operations
in GF (px) for some �xed small prime p (which we strongly dislike).

Finally, note that splitting the plain-text into blocks - one of the worst practices ever
adopted in cryptography - is not required by SKREM-like ciphers: their complexities are
linear in the plain text size. As such, problems associated with chaining methods (such as
XTS [16]) are fully avoided. We strongly dislike having block ciphers be used to encrypt
large plain-texts, as we feel chaining methods conceptually open up the output to code
book attacks of various sorts, like the watermarking attack for CBC [17].
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5 Performance considerations of SKREMS using commodity

hardware

Using commercially available storage hardware, consisting of 6 interconnected 120 TB
hard-disks, providing 720 TB of volume, which, as of 2019, would cost around $80,000,
one could encrypt up to 5 GB of plain-text, with a careful implementation. This is the
equivalent the capacity of about 1 DVD.

On the other hand, using two commercially available, portable SSD drives, of 2 TB
each, one could encrypt about 28 MB, which is su�cient to contain about one minute of
video, not to mention the full text of this paper.

Consider the information in [14] - stating that about 150∗103 modular exponentiations
can be performed per second, using 1024 bit numbers. Based on it, we expect at least
1500 ∗ 103 modular operations per second to be achievable, for 127 bit numbers. The
total delay thus introduced for the 28 MB example above, using two cores, will be <
28 ∗ 223 ∗ 130/7/(1500 ∗ 103) ≈ 2908 seconds, or ≈ 49 minutes. The disk operations,
involving processing ≈ 71 ∗ 28 + 16 GB on two SSDs in parallel, could take up 1 year if
random reads are allowed. However, a careful trick exists which allows for only sequential
external reads to be performed. The total running time for disk operations thus becomes
(28 ∗ 71 + 16) ∗ 230 ∗ 62 ∗ 10−12 ≈ 134 seconds (based on data from [15]), which is a
bit over 2 minutes. Additional memory operations should take between (28 ∗ 71 + 16) ∗
230 ∗ 100 ∗ 10−9 ≈ 216 ∗ 103 (about 60 hours) and 1/25x times this value (about 2.4
hours) over two cores of commodity hardware (based also on data from [15]). Overall, we
expect encryption/decryption of the 28 MB to complete within about a day, using high-
end, but still commodity hardware. According to public statistics, using super-computer
grade hardware available as of 2019 will decrease CPU running time by a factor of 107,
making the entire process complete in less than 3 minutes (running time dominated by
disk accesses).

6 Hiding Multiple Plain-Texts In The Same Cipher Output

While SKREM-like schemes, including SKREMS consume O(n) space, the constant
factors are rather large. However, of the total space used, only a small portion, wf , is ever
changed, namely 2 ∗ f ∗n words in total. For SKREMS wf ≈ 0.03%, with only ≈ 2.08 ∗n
words changing from the total of 9030 ∗ n. The fact wf � 1 can be used to encrypt more
than one plain text into the same master table. Consider q plain texts, each of length n,
to be encrypted in the same master table M . Let m denote the minimum size of a grand
master table required for encryption of a single one. Decryption of each plain text will
succeed so long as all the locations which are �touched� at encryption are left unmodi�ed
by the encryptions of the others.

Consider the following approach for achieving this desiderate, making use of a Univer-
sal Perfect Hashing (see [18]) scheme to avoid writing to forbidden areas. Two hashtables
H1 and H2 are used, with |M | available slots each. They associate to each of their slots a
distinct location in M . After the encryption of the i-th plain-text, for all locations {loc}
touched during encryption, the values {(j, loc)|i < j < q} are removed from H1, resulting
in some up to j slots becoming unavailable. Similarly, all write-zone locations touched,
{locw} have the corresponding values {(j, locw)|i < j < q} removed from H2. During key
extension of the i-th plain-text, whenever a reference to a location loc in M is made, it
is interpreted to mean location H2[(i, loc)] instead. Furthermore, (i, loc) is removed from
both H1 and H2 in BurnLocation(). During the encryption stage, a reference to loca-
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tion locw is interpreted to mean location H1[(i, locw)]. Thereafter, (i, locw) is similarly
removed from both H1 and H2. This way, all q plain texts will write to disjoint zones, and
they will all read from unaltered locations. If removal from H2 fails, a di�erent random
seed is retried for both hash tables and the process starts over (from the �rst plain-text).
If a collision occurs for H1, it can be ignored: the slots must have already been invalidated
by some prior plain-text. It is crucial however, that there be no collision at all between
the values (i, 0) . . . (i,m) in either H1 or H2, for any i. This can be checked before the
�rst encryption starts. The probability of collision for H2 should be rather small, since
only q ∗ 2 ∗ f ∗ n = O(q ∗ n) locations are removed. Having |M | > O(m + wf ∗ q ∗ m)
should su�ce to get the probability of successful encryption for all q plain texts large
enough. We leave calculation of the actual factor by which M needs to be increased to
allow, with high probability, for precisely 0 collisions to occur in H2, for further research.
Note that the hash tables H1 and H2 need to be common to all q plain-texts. The length
of the random seed, needed for the theory of Universal Perfect Hashing to work, consists
of just a few RAM words (over no less than log(|M |) bits). As such, it can be encrypted
alongside each pair of large secret keys using the respective plain text's K_small. The
secret key size thus increases with only log(q) bits, required to describe the index (or ID)
i of the each plain text, from among the q possible.

We believe that a moderately ingenious application of the above could be used to
modify SKREMS to allow it to encrypt 10-100x larger volumes of data using the same
amount of space. We consider employing the above as a means to ensure �plausible denia-
bility�, of little practical value, both as a legal defense and as a defense against a torturous
interrogator, considering that the cipher output, as per Claims 1 and 2 will appear ran-
dom to an adversary anyway. Potentially, having it represent more than one plain text
could play a role in informative intoxication operations involving double agents.

7 Usages In Lieu Of A One Way Function

Consider the transformation, de�ned using any SKREM-like scheme, including
SKREM and SKREMS themselves, mapping a secret key K_small to a plain text P
resulting from decryption of a �xed, a priori chosen, cipher output M . For lack of bet-
ter name, we shall call it SKREMOW (SKREM One Way). It is de�ned as follows:
SKREMOWM : {0, 1}k → {0, 1}n, where n = |P |, an arbitrary chosen size for the
plain text (small enough to be encryptable inM), k is the size of the secret key |K_small|
and let m = |M | be the size of the three grand master tables M1, M2 and M3 combined
(chosen to be of the minimum size, required for the speci�c plain text size n). Note that
for a �xed key size k (chosen large enough to satisfy the security requirements for a speci�c
reqsec security strength parameter) and a �xed plain text length n, SKREMOW actu-
ally de�nes a family of transformations: one for each of the 2m possible cipher outputs.
Reversing a function in this family is claimed to be, with high probability, provably im-
possible for any adversary having less computing power than 2reqsec (2100 for SKREMS).
SKREMOW thus �ts the security requirements for almost all practical applications of one
way functions.

There are two aspects preventing us from being able to formally consider
SKREMOWM a one-way function. Firstly, it is one way only with high probability:
in cases where M is chosen in an astronomically unlucky manner (for example it is all
0-s), it can be that SKREMOW−1

M could be easily computed. Discerning if a certain M
is suitable (the quality of its randomness is su�cient) is a di�erent, not at all trivial, task
in itself. Secondly, the hardness of computing its inverse is only with regard to an ad-
versary with a �xed, constant amount of computing power available (namely 2reqsec). For
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a su�ciently large constant (2reqsec su�ces), a simple O(m) (linear in input) algorithm
exists computing SKREMOW−1

M for any M . Although such an algorithm is intractable
in practice, for a constant security strength parameter, SKREMOW−1 does not meet the
complexity class requirements of a one way function. This second aspect could be remedied
by taking reqsec to be a Ω(n). However, this would make the key size for SKREMOW
too large for some practical applications.

Also note that SKREMOW is not bijective. When n is too small, the same plain
text P could be decrypted using several secret keys - making SKREMOW non-injective.
When n is large enough, there will exist bit sequences from {0, 1}n which do not admit any
key to decrypt them from the chosen, �xed cipher output M , thus making SKREMOW
non-surjective. Nevertheless, taking n to be large enough, and restricting the codomain of
SKREMOW to its image ImSKREMOWM

, makes it become, with high probability, bijective.
The above construction su�ces for almost all scenarios where one way functions are

required in practice, even though SKREMOW is not, per see, a one such itself.

8 Practical Considerations

We include some remarks, pertaining to practical usages of SKREM-like encryption
schemes, such as SKREMS. Do note that implementation and actual usage pattern can
make all the di�erence between perfect, unbreakable security and no security at all, for any
scheme. The following is not intended to be even an exhaustive enumeration of potential
pitfalls related to SKREM speci�cally. Nevertheless, we recommend paying particularly
close attention to the following, before anything else.

Firstly, consider truly random numbers. As cryptologists, we love them, we hate them,
we need them - all at the same time. The security of SKREM relies on the high quality
of the randomness of the grand master table M and of the randomness well T . These
should be harnessed from nature, rather than merely pseudo-randomly generated from a
short seed. We can suggest the following as potential sources of entropy: (i) measuring the
value of a single qubit passed through a single Hadamard gate on any quantum computer
(and repeating the experiment for the number of bits required), (ii) sampling the phase
of inbound solar radiation; (iii) measuring the interval between successive alpha-particle
emissions during radioactive decay of certain atoms (if one such radioactive source is
available to the user); (iv) sampling mouse gestures provided by the human user using a
mouse; and (v) sampling a compressed, large patch of random text, provided by the human
user using the keyboard. The output from several such sources should be combined using
a Kolmogorov extractor (see [5]). Finally, automated statistical tests should be performed
both on the originally sampled bits and on the cipher output, to detect cases of obvious
de�ciencies in the quality of the randomness.

Note that SKREM-like schemes can be used to create encrypted volumes - that is
they allow for the plain text to be accessed randomly and even changed on the �y, given
the secret encryption key. When used in this scenario, once any cipher output has been
revealed to an attacker, the volume should be considered read-only. Generally speaking,
the grand master tables and the randomness well should never be reused once a cipher
output generated using them has been revealed, just as with an OTP.

All randomness used in the scheme, including the discarded randomness well T and
the original grand master tableM , must be kept secret. Revealing the grand master table
to an adversary marks the moment he can start to preprocess it. A simple side by side
comparison of the original master table and the cipher output will reveal the locations
used to encrypt the plain text. Thus, the original sources of entropy used, as well as their
outputs, must not become available to the attacker.
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We are aware of several types of attack against some practical usage scenarios and
implementations of SKREM-like ciphers, which do not break the encryption scheme itself.
We, the author, choose not to share them as part of this paper, as being outside its scope.

Of particular concern can be that we, the author, suspect that it is possible for
the laws of physics concerning quantum phenomena to allow for a particular kind of
quantum computer to be build which allows for exponential speedups in search over a
the universe given by the preimage of a function (thus being exponentially faster than
Grover's algorithm). We fear that, an implementation of such, might, someday, exist,
which would allow for an arbitrary circuit with imposed output to be modeled using a
quantum computer. Such a theoretical computer would then be run to determine its input.
While processing, we fear it might be possible for all non-feasible states to essentially
�fade out of existence� (e.g. have cumulative probability < 1/3 of describing a particular
evolution of the quantum system). Thus, such a theoretical computer would be able to
provide, with high probability, a feasible input to the arbitrary circuit in a single run
(although the universe of possible inputs can be exponential in the size of the circuit).
While existing quantum computer models cannot, to the best of our knowledge, come
even close to such a feat, physical phenomena might exists which allow it. The quantum
phenomenon called �path-of-minimum-energy�, believed to be involved in photosynthesis,
and harnessed by some for optimal route computation, is a particular inspiration for this
concern of ours.

Finally, no encryption scheme, no matter how secure - even provably unbreakable -
can protect against spyware installed on the devices where the encryption key is entered,
or on the machines which perform actual encryption / decryption. Given that the we,
the author, have used a personal, commercially available, not particularly secured, laptop
to write this paper, we expects that there is a high probability some foreign intelligence
services had already gained access to this research, by the time it was released by us.

9 Conclusions And Further Research

We have proposed two encryption schemes, which we claim o�er the same level of
security as the OTP in their strength parameter, while allowing for keys of constant size
with regard to the plain text. For one of them, we further claim that formal proofs for
these claims exist. Both schemes are claimed to make encrypted data indiscernible from
random to any attacker having less computing power than 2reqsec for some �xed, arbitrary
parameter reqsec, thus achieving the main desiderate of encryption.

In the �good old fashioned� tradition of cryptography works, we o�er $17 to the �rst
9 people who present an argument falsifying Claims 3 or 4 and an additional $14 to the
�rst 28 people who present an attack falsifying Claims 1 or 2.
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A Proofs of the theorems

This appendix includes proofs of the theorems stated throughout the paper.

Lemma 1. The performance characteristics of SKREM are as follows:

� Total number of random words required: O(n ∗ reqsec).

� Minimum size of secret key: O(reqsec2)

� Space complexity: O(n ∗ reqsec).

� Running time complexity: Õ(n ∗ reqsec7)

Proof. Consider the encryption using large keys �rst. Each key element has at most k =
(secrbase∗(1+secrtwo)+(ppx)∗mtsize∗bopf+secrbpp)∗bopf+secrbpp bits. During key
extension, precisely this many bits are required to be emitted for the each of the 8x new
key elements, times (1 + secrtwo) - the number of secret exponents per new key element.
Finally, for each useful bit required, scrbpb bits need to be emitted. This brings the total
to [(secrbase ∗ (1 + secrtwo) + (ppx) ∗ mtsize ∗ bopf + secrbpp) ∗ bopf + secrbpp] ∗ 8 ∗
(1 + secrtwo)∗ secrbpb required bits to be emitted by each old key element. For each such
required bit, 2 ∗ f words are consumed from M .

The total number of key expansions occurring is no more than the sum

(1 + 8 + 16 + . . .) =

log(secrbpn∗n)/log(8)−1∑
x=1

8x

. The upper bound is given by the need to have secrbpn ∗ n last-round key elements, for
representing the n bits of plain-text. This resolves to (secrbpn ∗ n)/7.

During encryption, no key extensions occur. However, an extra secrbpn ∗ n bits are
emitted. For each such bit, 2 ∗ f locations in M are used. Finally, one time more the full
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number of words consumed need to remain untouched at the end, doubling this value. The
grand total number of locations used by a large key is thus: [[(secrbase ∗ (1 + secrtwo) +
(ppx)∗mtsize∗bopf+secrbpp)∗bopf+secrbpp]∗8∗(1+secrtwo)∗secrbpb∗(secrbpn)/7+
(secrbpn)] ∗ 2 ∗ f ∗n ∗ 2. All the values in this rather long expression are constants, except
mtsize which is constrained by the security validations to be at O(reqsec). In terms of
this parameter and n, the expression becomes O([[(O(1) + O(reqsec) + O(1)) ∗ O(1) +
O(1)] ∗O(1) +O(1)] ∗O(n)). This resolves to O(n ∗ reqsec), representing the total for the
grand master table.

The required size of the large key is at most O(reqsec)/O(1) times k, which is O(k) ∗
O(reqsec) = O(reqsec) ∗O(reqsec) = O(reqsec2). We can assume n > reqsec2, since this
is trivially true in practice. The length of the plain text representing the two large keys,
encrypted by Encrypt is no more than O(reqsec2 ∗ reqsec) = O(reqsec3), when using
params_short no more stringent than params_normal, as is the case for the default
values in SKREM.

The total complexity in the number of words consumed is by SKREM for the master
tables is thus O(n∗reqsec)+2∗O(reqsec3) = O(n∗reqsec)+O(n∗reqsec) = O(n∗reqsec).

The randomness well is polled to determine the OTP used for P , consuming O(n)
words. Another up to 2 ∗ O(n) + 2 ∗ O(reqsec2) words are used to determine a value up
to secrbpn which describes which locations in the grand master table to switch, per bit of
plain-text encoded. The total required number of words for the randomness well is thus
O(n) +O(n) +O(reqsec2) = O(n).

The size of the secret key needs to be no larger than the size of a large key, which
was computed above to be O(reqsec2).

The operations performed in SKREM are either direct reads or writes from or to
one of M or T , temporary storage of bits emitted for either key extension or expansion,
some modular algebra on O(k) = O(reqsec) bit numbers and accessing the Perm indi-
rection vector. Since no super linear data structures are employed, the total complexity
is dominated by the amount of random words consumed, which is O(n ∗ reqsec).

Time complexity is as follows.
SKREM essentially consists of key expansions and extensions, plus a number of grand

master table accesses, only a constant factor times the total number of words consumed.
The latter is O(n ∗ reqsec). The total number of key extensions, as computed above is
O(n). The number of key expansions is less than the total number of words consumed,
thus only O(n ∗ reqsec). For all word accesses, at most a constant number of algebraic
operations are performed, with numbers of at most O(k) = O(reqsec) bits. These are
additions, subtractions, multiplications and division, modular exponentiation and mod-
ular inverse. Furthermore, for key extension, sampling a prime less than some value is
performed. The maximum total number of sampled values is secrbpp which is less than
reqsec, thus being O(reqsec). Additions and subtractions take O(k), multiplications takes
O(k∗ log(k)) using Fast Fourier Transformation (FFT), while divisions take O(k∗ log2(k))
using recursive division due to Brunikel and Ziegler [19]. Fast exponentiation involves at
most O(log(k)) multiplications and divisions, taking O(log(k)∗k∗log2(k))=O(k∗log3(k)).
Modular inverse can be computed in O(log(k)) using the Extended Euclid algorithm. Gen-
erating the �rst prime beyond or below some value can be achieved by brute force trial
and error, given the high density of prime numbers (established thanks to the Prime
Number Theorem). The number of trials required is logarithmic in the upper bound.
The probabilistic Miller-Rabin primality testing algorithm [20] can be used to obtain
a probable prime which can then be veri�ed using AKS algorithm [21]. Because AKS
has rather large - even if still polynomial - complexity, it is likely in practice this ver-
i�cation step will be skipped. Generation of a prime less than 2O(reqsec) bits takes no
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more than O(log(2O(reqsec))) = O(reqsec) applications of a prime testing algorithm on
O(k) = O(reqsec) bit numbers. If Rabin-Miller [20] is used with O(reqsec) rounds,

this adds up to Õ(reqsec ∗ reqsec ∗ reqsec2) = Õ(reqsec4), when using FFT for mul-
tiplications. There are no more than O(reqsec) rounds in total, thus a single prime

number generation takes no more than O(reqsec) ∗ Õ(reqsec4) = Õ(reqsec5) in total.

If AKS is used instead, this becomes Õ(reqsec7). The total running time complexity

is thus no more than O(n) ∗ Õ(reqsec7) + O(n ∗ reqsec) ∗ O(reqsec ∗ log(reqsec)3) =

Õ(n ∗ reqsec7) +O(n ∗ reqsec2 ∗ log3(reqsec)) = Õ(n ∗ reqsec7).

Lemma 2. The performance characteristics of SKREMS are the following.

� Total number of random words required for each of M1, M2 and M3: 9030 ∗ n,
9030 ∗ n and 234 respectively.

� Minimum size of secret key: 231 bits.

� Space complexity: 18060 ∗ n+ 234.

� Running time complexity: O(n), using about n ∗ 130/7 CPU modular algebra op-
erations over 127 bit numbers and about 18060 ∗ n + 234 disk and main memory
operations.

Proof. The total number of words used, expressed precisely in terms of the security pa-
rameters is given in the proof of Lemma 1.

Substituting the e�ective values used for the security parameters, results in getting
k < 127 and the total number of words consumed for each of the grand master tables M1
and M2 to be < 9030 ∗ n.

The minimum number of elements in each of the large keysK1_Large andK2_large,
required for them to satisfy security constraints is k ∗ 8 ∗ (1 + secrtwo) ∗ secrbpb =
127 ∗ 8 ∗ (1 + 0) ∗ 5 = 5080.

Thus, the total number of bits for a single large key is 5080∗k = 5080∗127 = 645160.
It is thus straightforward to note that the number of words complexity of encrypting

the two of large keys, the using dmod = 1 is: [[(secrbase∗ (1 + secrtwo) + (ppx)∗mtsize∗
bopf+secrbpp)∗bopf+secrbpp]∗ [secrbpn]/ppx∗(1+ two)∗secrbpb+secrbpn]∗2∗f ∗(2∗
655360)∗2 = [[(4∗(1+1)+5∗33∗1.1+20)∗1.1+20]∗6/5∗(1+1)∗5+6]∗2∗1.04∗2∗645160∗2.
This is < 234.

Each element of theK_small[] private key will have (secrbase∗(1+secrtwo)+(ppx)∗
mtsize∗bopf+secrbpp)∗bopf+secrbpp) bits, which is (4∗(1+1)+5∗33∗1.1+20)∗1.1+20) =
231 bits, with ceiling. Each such element represents 5 secret locations, over 33 bits each,
bringing the secret size beyond reqsec. Thus, we can allow K_small[] to contain only one
element. Its total size is thus just 231 bits.

As with SKREM, SKREMS uses no data structures of super-linear size. The space
consumed is thus expected to be only slightly above the 18060 ∗ n+ 234 words consumed
for the three master tables combined.

In terms of time complexity, SKREMS can be optimized to perform only a constant
number of modular algebraic operations per key, by using memoization. Doing so, will
bring the number of modular arithmetic operations to just a small constant factor (which
we estimate to be 10) times the total number of keys ever in existence. The number of key
expansions, was computed in the proof of Lemma 1 as (secrbpn ∗ n)/7, which, resolves
to n ∗ 6/7. An additional n + 1 key elements account for the initial and �nal stages,
bringing the total to about n ∗ 13/7, or n ∗ 130/7 considering the chosen constant factor.
The hardest operation performed is prime number identi�cation, taking O(k ∗ log3(k))
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using Rabin-Miller [20]. However, given the small seed of only 20 bits, these could be
all precomputed. The outstanding operations take at most O(k ∗ log2(k)) each. The time
consumed for performing modular algebra is added on top of the linear running time (with
a constant factor close to 1) in the total number of touched words (which is close to the
18060 ∗ n + 234 computed above), consisting of both disk and memory operations. The
total running time is thus O(n).
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