
David C. Wyld et al. (Eds): MLDS, NECO, SEMIT, IBCOM, SPPR, SCAI, CSIA, ICCSEA - 2021

pp. 69-81, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.111807

SURVEY ON SOME OPTIMIZATION

POSSIBILITIES FOR DATA PLANE

APPLICATIONS

Gereltsetseg Altangerel, Tejfel Máté

Department of Programming Languages and Compilers, ELTE,

Eötvös Loránd University, Budapest, Hungary

ABSTRACT

By programming both the data plane and the control plane, network operators can customize

their networks based on their needs, regardless of the hardware manufacturer. Control plane

programming, a major component of the SDN (Software Defined Network) concept, has been

developed for more than 10 years and successfully implemented in real networks. Efforts to

develop reconfigurable data planes and high-level network programming languages make it

truly possible to program data planes. Therefore, the programmable data planes and SDNs

offer great flexibility in network customization, allowing many innovations to be introduced on

the network. The general focus of research on the data plane is data-plane abstractions,

languages and compilers, data plane algorithms, and applications. This paper outlines some

emerging applications on the data plane and offers opportunities for further improvement and

optimization.

KEYWORDS

Data plane, load balancing, in-network caching, in-network computing, in-network data

aggregation, INT.

1. INTRODUCTION

Efforts to create fully programmable networks have been going on for a very long time. SDN

technology is part of this long history. Many factors in business and technology have led to the

creation of SDNs and fully programmable networks. In the case of a technological view, the main

difficulty of traditional networks is a proprietary system, so the introduction of new technologies

and protocols is very slow, and network management is complicated. From a business

perspective, network operators needed to reduce investment and operation costs, and take full

control of their networks: defining their own control plane and data plane algorithms.

To meet these requirements, the SDN defines two important features: first, separate the data

plane and control panel, and second, the controller platforms can control multiple forwarding

elements using a well-defined API (Application Programming Interface), such as OpenFlow, one

of the successful protocols. Not only do they simplify network management, but they also open

up development gateways to each control plane and data plane, allowing for many network

innovations.

So far, SDN has made significant strides in the industry and has conducted extensive research on

the control plane. For instance, commercial switches have supported OpenFlow, and a variety of

http://airccse.org/cscp.html
http://airccse.org/csit/V11N18.html
https://doi.org/10.5121/csit.2021.111807

70 Computer Science & Information Technology (CS & IT)

controller platforms have emerged, based on which several control plane applications have

developed and implemented in the major data centers such as Google.

A fully programmable network has two pillars: a programmable data plane and a programmable

control plane. The data plane programming began to be discussed in the 2000s with the advent of

the merchant chip, but it became a reality in 2015, and research in this area is in great demand

today [1].

In recent years, researches on developing data plane programming languages, creating

programmable switching architecture, and improving the performance of programmable switches

have become more mature. Thanks to the success of these fundamental studies and

implementations, data plane applications are evolving, and some are entering production and

beginning to bear fruit.

The general focus of research on the data plane is data-plane abstractions, languages and

compilers, data plane algorithms, and applications [2]. This paper summarizes the research of

some data plane applications and provides some ideas in detail on how to improve and optimize

these applications.

The rest of this survey paper is organized as follows. Section 2 provides background information

on data plane programming, Section 3 describes the data plane applications and future

optimization ideas, and the final section presents conclusions and future work.

2. BACKGROUND

2.1. Data plane programmability

Network devices process packets with the help of control plane and data plane algorithms. Data

plane algorithms define the forwarding behaviour of a network device (packet processing stages,

tables, and so on), while control plane algorithms define rules for manipulating a packet in the

data plane, sense network, detect network failures, and update packet processing rules [3]. In the

SDN network, the control plane algorithms running on the controller platform (e.g., server)

manage the data plane. For example, routing algorithms in the control plane define packet

forwarding rules based on the destination IP address. These rules are installed in the routing table

of the data plane via API.

As a result of many years of research and improvement on SDN, the control plane can be flexibly

programmed by the end-user (network operator). The data plane also needed to be programmed

by the end-user to introduce innovations quickly in the network. In a traditional network, the

implementation process of a new feature [4] or protocol goes through many stages, from software

developer to standard organization and chip designer. For example, as a result of this process, it

took 4.5 years for the VxLAN protocol to the network from the first proposal [5]. This can be

seen as one of the critical reasons why internet architecture has not changed for many years. If

the data plane is flexible enough, both the end-user and hardware vendor can quickly deploy the

new features [3].

The following research works have been taken to make the data plane programmable:

1. Developing data plane programming languages: Domain-specific programming

languages for defining data plane algorithms and functionalities (forwarding behaviour)

are being developed. Examples include FAST [6], Domino [7], Protocol-Oblivious

Forwarding [8], and NetKAT [9], P4 [10], with P4 being the most successful.

Computer Science & Information Technology (CS & IT) 71

2. Creating data plane architectures: To map the data plane algorithm defined by

domain-specific language to the switch ASIC hardware, the hardware vendor must

provide the data plane architecture (programmable building blocks and data plane

interface between them)[11]. This architecture is also called a data plane model or

hardware abstraction in some literature. For example, architecture for Tofino

programmable switches is protocol independent switching architecture (PISA) and based

on this architecture, data plane algorithms can be defined in P4.

3. Improving performance of programmable switch: The belief that the performance of a

programmable switch cannot reach the performance of a fixed-function switch is

obsolete, and thanks to numerous studies and technologies, the performance of a

programmable switch has approached/same as that of a fixed-function switch [12].

4. Defining API: Providing an interface for connecting the control plane and the

programmable data plane. For example, the P4 compiler creates an API that connects the

data plane to the control plane [11].

2.2. P4 language

P4 is a domain-specific programming language for defining packet processing algorithms on the

data plane of a programmable network device (target)[11]. This section briefly describes the P4

language, its advantages, programmable packet processing components that can be defined in P4,

and how to run P4 code on the target.

P4 is currently one of the most popular and well-defined languages and has two main advantages:

target and protocol-independency, so a lot of data plane applications currently in development are

on P4. Target-independency means that P4 program can run on any type of target. To ensure this

feature, the hardware vendor must implement a generic architecture and a compiler backend fora

given target: provide them to the P4 developer [13] and so, the P4 program is easily mapped to

the target with help of these. Protocol-independency means that P4 developers can define their

rich set of protocols and data plane behaviour/functionalities.

According to the architecture, the main blocks that can be programmed on P4 are packet parser,

match-action units (one or more), and deparser. The general data plane architectures of P4 for

research purposes are V1 and Portable Switch Architecture (PSA) [14] and, optimization of the

P4 data plane application has been doing based on these architectures. Figure 1 describes basic

pipeline in V1 model architecture. Parser recognizes incoming packets and extracts headers and

fields from the packet. After this, the match-action pipeline processes extracted packet headers. A

match-action unit contains one or more tables and actions. For example, the IPv4 routing table

showed in Figure 2 can be created here, and the match key is the destination IP address and based

on which, corresponding actions such as drop or forward are performed. In this stage, the header

can be added, subtracted, and modified. The deparser builds the outgoing packet by assembling

the processed headers and the original packet payload [10]. In the case of PSA architecture, it is

possible to define more detailed pipelines with more than one pair of parser and deparser for

ingress and egress. Also, the match-action tables and external functions can be determined

between parser and deparser.

72 Computer Science & Information Technology (CS & IT)

 Figure 1. Abstract packet forwarding in P4 Figure 2. IPv4 table example

3. DATA PLANE APPLICATIONS AND OPTIMIZATIONS

Developing novel and optimal applications on the data plane are one of the interesting areas of

data plane research. The general directions of applications are in-band telemetry, load-balancing,

in-network computation, deployment of consensus protocols, congestion control, queue

management and traffic management [2]. This section describes some of these applications, their

motivation, approach, challenges, and future improvement and optimization possibilities.

3.1. In-band Network Telemetry (INT)

One of the foundations for effective network management and control is network measurement.

More accurate, precise, real-time measurements are considered good. Traditional measurement

and monitoring methods are active methods (ping, traceroute), passive methods based on traffic

mirrors, and hybrid method -a combination of these [15]. These are simple to deploy, but the

downside is that they put extra load on the network during monitoring, so they can't be much

precise in some cases. In other words, the process of measuring the network itself can affect the

state of the network.

With the advent of programmable data planes, the In-band Network Telemetry framework, a

more direct network measurement, is originated on a data plane without the involvement of a

control plane. The basic idea is to collect the status of network devices (metadata) using a normal

packet or probe packet (INT packet) that is transmitted over the network. Intermediary devices

embed their own metadata into the INT packet. Therefore, it does not create a much more

additional load on the network compared with traditional measurement. Also, it is more detailed,

accurate and near-real time. One disadvantage is that metadata is limited by packet’s maximum

transmission unit (MTU). INT instructions (header) on what to collect from the devices are added

to packet at the source INT node and then that packet is transmitted through network for

collecting device’s state. The metadata and INT header is removed from packet on the edge

device (INT sink node). The sink node then performs the appropriate monitoring or actions, for

example, it forwards the collected report to another external device or server for further

monitoring [16].

INT operation can be divided into 3 phases:

table ipv4_lpm {
 key = {
 hdr.ipv4.dstAddr: lpm;
 }
 actions = {
 ipv4_forward;
 drop;
 NoAction;
 }

Computer Science & Information Technology (CS & IT) 73

Figure 3. INT phases

3.1.1. Recent optimization works around INT

Optimization on phase 1: The most important thing to consider when collecting network status

via INT is not to compromise the performance of the network, intermediary devices, and the

monitoring servers. To fulfill this requirement, it is important to determine the proper size and

structure of the INT packet within the MTU, minimize the number of flows/packets for telemetry,

filter unimportant telemetry information, and choose optimal collection mechanisms. Some

studies around these are:

 Optimizing telemetry data: It can be optimizing number of monitored network

elements, not including the INT header in all flow packets [17], sampling packets for

monitoring, and using threshold to identify in-band monitored flow. For example, P4-

based INT doesn’t support sampling; therefore, adding an INT header to all incoming

packets will create high network overhead in a large scale network. One of the works on

this [18] suggests sampling strategies based on rate and event. In the rate based strategy,

the INT source node inserts the INT header into every Rth packet, where R is a

configurable parameter. Another work [18] bound the amount of information added to

each packet.

 Intelligent trigger: Fault detection platform with event-based and policy-based trigger

is considered intelligent mechanism. The event can be detected by data plane or

monitoring server. This solution [17] offloads event detection from monitoring server to

an in-network P4 application and it reduces network overhead and monitoring server

load. KeySight [19] suggested event-triggered fault detection platform based on Bloom

filter. PAINT [20] offers policy based detection (by monitoring system): network

operators use Service Provisioning Language (SPL) to define and deploy in-band

network telemetry services. PAINT automatically parses service policies.

Since the network device and the monitoring node (server, sink, and analyser) both have limited

processing capabilities, it is important to determine whether it is optimal to detect the event with

either a network device or a monitoring server. In addition, event-based and policy-based

detection algorithms themselves are one thing to optimize.

Optimization on phase 2: To make monitoring more effective, it is being combined with

machine learning methods. The machine learning part of the monitoring system is called the

knowledge plane in some works [21] or the knowledge-defined network. An example of these

solutions is Barefoot Deep Insight [22], which is the world’s first commercial-level packet-by-

P
h

a
se

1

Collecting:

Delay, available
bandwidth, link
utilization, queue
occupancy and
packets with
abnormal
characteristics
(microbursts or heavy
hitters) can be
collected and
identified through
INT.

P
h

a
se

2

Analysing:

Collected metadata
is analysed
manually by the
network
administrator or
automatically by
the monitoring
system
with/without
machine learning
algorithms.

P
h

a
se

3

Responding:
Appropriate actions
based on analyzes:
-resource planning
-optimisation
-performance
management
-advanced
congestion control
-advanced routing
-traffic
management and
so on.

74 Computer Science & Information Technology (CS & IT)

packet status monitoring system. Combined with machine learning technologies, Barefoot Deep

Insight can realize automatic abnormality monitoring of network performance at nanosecond

time, including microburst detection, abnormal packet loss detection, abnormal queue detection,

and so on.

Optimization on phase 3: The applications such as congestion control and advanced routing

based on INT should be efficient. For example, the efficiency of congestion control is evaluated

based on the congestion detection, and the resolving time. There are congestion control

mechanisms on different INT characteristics such as link load based [23], rate-based [24], and

queuing and processing delay based congestion control [25]. The efficiency of these solutions

should be determined by performance evaluation.

Therefore, in addition to the optimization ideas mentioned at each of the above INT stages, there

are opportunities for further research to develop solutions for other types of networks, such as

adapting or expanding the in-band telemetry system in a wireless sensor network (WSN) and

Internet of Things (IoT) data network. For example, IoT packets are too small, making it difficult

to identify abnormal behaviour of packet [26].

3.2. In-Network Computing

Traditional network devices often focus on achieving high throughput, so processing is limited on

transmitted data. With the advent of flexible programmable networking devices, it has become

possible to perform more computations on network devices (in-network computations) without

reducing packet processing rates. In other words, it means that a set of computing operations on

an end-server and middlebox can be offloaded to a network device. This has the following

advantages.

 Higher layer functionalities, such as transport and application layers, are processed at line

rate, reducing latency and increasing throughput.

 Reduces traffic, thereby reducing network congestion, which is one of the factors

degrading application performance.

 Saving energy by running servers [27].

First of all, it is important to determine what type of computation operations are most optimal to

run in-network. According to the studies, the most feasible applications are in-network packet

aggregation, in-network caching and applications alleviating control plane load [1]. Since data

centres are early adopters of the SDN network, most of these applications are currently designed

for data centre networks.

3.2.1. In-Network Packet Aggregation

The group of applications with partition/aggregation patterns in the data centre network includes

search, query processing, dataflow computing, graph processing, and stream processing, and deep

learning frameworks. During the partitioning phase, job requests are divided into sub-tasks,

which are executed in parallel on different worker servers and each worker server produces

partial results. In order to obtain the final result, the partial results are collected and aggregated at

the aggregation stage. During the aggregation phase, data (e.g partial results) must be transmitted

between a large numbers of workers, which puts a heavy load on the network. For example, a

trace of Facebook's data center shows that 46 percent of all traffic is generated during the

aggregation phase. Furthermore, it leads to network bottleneck [28].

Computer Science & Information Technology (CS & IT) 75

Data aggregation functionality is usually performed at the application layer. If it is done on the

network path, traffic load can be reduced. Other reasons for in-network aggregations are that

behind these functions are usually simple arithmetic logic operations, so placing them on a switch

is simple, and since these algorithms are communicative associative functions, there is no need to

pay attention to the packet sequence. DAIET [27] which is built in P4 is an in-network

aggregation prototype solution for machine learning and graph analytics applications. However,

the solution is generic enough and can be used in various partition/aggregation data centre

application.

The next effective segment to use in-network aggregation is to combine small-sized and large

numbers of packets. The idea has existed for a very long time, but there is no real

implementation. This kind of packet aggregation/disaggregation has many important benefits.

For example, aggregating multiple, and small-sized IoT packets into one transmission unit can

reduce the additional overhead associated with each transfer. Wang et al. [29] introduce proof-

of-concept designs and implementations on IoT packet aggregation and disaggregation purely in

P4 pipelines of the switching ASIC.

3.2.2. Applications alleviating control plane load

It is now technically possible to offload most of the tasks on a control plane to a data plane. The

main benefit of this is that it can accelerate the control plane. However, some tasks are not

optimal to run on data plane because they require a lot of resources. Therefore, research on what

tasks should be offloaded on the data plane is one of the interesting topics in the future.

The case study on [30] suggested how to perform key control plane tasks such as failure

detection, and notification, connectivity retrieval, and computation on a data plane, and

implemented the proposed algorithms in BMv2 P4 software switch. It also discussed the

advantages and disadvantages of implementing control plane tasks on a data plan. Another case

study in this topic is the implementation of Time-synchronization Protocol (DPTP) on the Tofino

programmable switch with P4 pipeline [30]. Global time-synchronization on the data-plane is

very much necessary for supporting distributed applications. The key research questions around

this are, first, to determine what types of control plane tasks can be optimally deployed on the

data plane and how to overcome hardware constraints in deployment.

3.2.3. In-network caching

Modern network services such as search engines, social networking e-commerce are used by

billions of users and generate huge amounts of traffic on the network. To view a single web page,

you may need to access hundreds or thousands of storage servers in the background [31]. One

mechanism to deliver these services to users with high throughput and low latency is caching,

which is a crucial way to improve the performance of a storage system. The idea is that to

retrieve items on the storage system more quickly, high-access items (hot items) must be

temporarily stored in the cache and the cache should be updated regularly based on hot items.

The hot items can be changed abruptly, and most users like to access that hot items, which can

lead to an imbalance in network traffic. For example, 60-70 percent of Facebook users access 10

percent of the total content [32]. Therefore, when building a caching system, these issues need to

be considered.

Traditional networks use flash-based caches, disk-based caches, and server-based caches, and

data plane programming provides new opportunity to create in-network caching. This means that

it is possible to create a cache on a programmable network device. Because network devices

naturally placed on the path between the client and server, creating a cache on the path can

76 Computer Science & Information Technology (CS & IT)

further reduce latency. The key-value store data structure is used to build the database in the

cache because it is general and widely used by applications. It is used as a basic interface to the

caching[33].

Netcache [34] is new key-value store architecture by leveraging flexibility, and the power of a

modern programmable switch to handle queries on hot items of the storage server. It is built on

top of rack (ToR) switch in the data centre network. Therefore, ToR switch plays important role

and has 3 main modules: L2/L3 routing, on-path caching for key-value items, and query statistics.

The Query statistic module identifies the hot items, and based on these statistics, the controller

updates the cache. The core of Netcache is packet-processing pipeline which detect, index, store

and serve key-value items. For example match-action table classify key on packet header and

values are stored in register array, on-chip memory in programmable switch. One ToR switch can

cache items on a storage server only connected to it, and cannot work with other ToR switches in

a coherent way.

IncCache [35] is another in-network, key-value store system built in a programmable data plane.

What distinguishes it from Netcache is that it is implemented in the core, aggregation and ToR

switch of the data centre network, as well as end-host server, and maintains the cache coherence

using a directory-based cache coherence protocol.

These works are good start for in-network caching and both reduce latency by a certain

percentage. The Netcache architecture was created on a Tofino and commodity server-based

switch with a P4 pipeline, while IncCache was developed on Cavium XPliant switch and the

forwarding plane was defined in a proprietary language.

According to the discussion on those works, the following questions can be open in the future:

Mostly network requests (read) are processed from the cache. So, can write/delete requests be

processed from cache? Do you need compression to reduce the cache size? , and so on.

3.2.4. Consensus protocols (in-network)

Running some application-level protocols on the data plane is another interesting topic: for

example, the implementation of consensus protocols for distributed networks in the data plane.

Paxos is popular consensus protocol used in fault-tolerant networks and is commonly used in data

center applications. Implementing this in the data plane will improve the performance of the

protocol itself and the performance of applications based on this protocol service [36]. Data plane

programmability allows for tight integration between the application and the network but, the

developers should always consider how network-level optimization affects the top level.

3.3. Load Balancing Applications

The main purpose of the load balancer is to efficiently distribute the load over multiple pieces of

network infrastructure in order to maximize throughput, minimize response time, and prevent

overloading of single resource. The data centre network has redundant resources, so load

balancers play an important role in the optimal use of these resources. Data centre networks

perform load balancing in more than one way. The L3 load balancer(s) selects one of the many

equal-cost paths that can route the packet, while the L4 load balancer(s) chooses the one of

serving instances (servers) for the incoming service request [37].

Layer 3 load balancing mechanisms in the Data Centre network and Internet try to choose the

congestion-free and optimal path from the multiple paths, so that bisection bandwidth can be used

more efficiently. Layer 3 load balancing mechanisms are usually implemented on the data plane.

Computer Science & Information Technology (CS & IT) 77

The most commonly implemented method is the Equal-Cost Multi-path Routing(ECMP) and the

per-flow based load balancing mechanism, which randomly assigns one of the equal cost paths to

each flow. Because the flow is distributed randomly, performance may be reduced if two

elephant flows are allocated in the same path [38]. In addition, it is the congestion-oblivious

mechanism that does not track the over-utilized path.

Conga [39] was improved ECMP, and it is a congestion-aware mechanism and maintains the

congestion status of each path on the leaf/spine switch in the data centre network. However, due

to the limited memory of the switch (leaf), it is not possible to scale this mechanism as the

network grows. In addition, because Conga is implemented on custom hardware, it is costly to

redesign (requires modification on chip architecture), which means that network operators cannot

change the mechanism to suit their network.

With the advent of the programmable data plane, it became possible to develop a customizable

load balancing mechanism on the programmable data plane. HULA [40], programmed in P4 is

the first load balancing mechanism explicitly designed for the programmable switch architecture

and it is scalable and congestion-aware. Conga centralizes the congestion track at one point (leaf

switch), while HULA does it in a distributed manner. Each HULA switch maintains only the

congestion state for the best next hop to reach the destination, not the congestion state for all

paths to the destination. Therefore, each HULA switch makes a local decision when selecting a

path, while the CONGA depends on the leaf switch. By tracking congestion in this distributed

way, scalability is better than CONGA. In addition, it can automatically detect network failures.

Therefore, this work inspires network operators to create a more optimal load balancing

mechanism for their network in a programmable data plane.

The layer 4 load balancers could be hardware, cluster of servers and commodity server, and they

are usually implemented on the commodity server in data center. It is also called software load

balancers (SLB). Thanks to data plane programmability, they can also be developed on the

switching ASIC. When designing a Layer 4 load balancer, the following two are important. First,

the incoming connections to the servers must be very well-tuned to the bisection bandwidth of the

physical network (uniform load distribution of the incoming connections across the network and

servers). Second, providing per connection consistency (PCC): the ability to map packets

belonging to the same connection to the same server, even if there are presence changes to the

active servers and load balancers. But, meeting both these requirements at the same time has been

an elusive goal [41].

It was not easy to ensure the PCC because the switching ASIC doesn't have enough memory to

store a large number of connection states. However, with the continuous increase in memory size,

it is possible to implement the L4 load balancer on the switch. The main advantage of

implementing it on switch is that there is no additional software load balancer in between

application traffic and application server. This allows balancing load at line rate. SilkRoad [35]

was proposed as a load balancer on a programmable switching ASIC and implemented using 400

lines of P4 code. The performance measurement on SilkRoad show that it can balance 10 million

connections at line speed.

SHELL [42] tried to implement a stateless load balancer on P4-NetFPGA programmable switch,

and it is easier to deploy on a network device than a stateful solution. Moreover, SHELL is

application-agnostic and load-awareness.

The above descriptions provide examples of implementing L3 and L4 load balancers on a

programmable switch. Network traffic is constantly changing, so load balancing mechanisms

need to be congestion-aware, dynamic, and with low latency. The results of empirical analysis of

78 Computer Science & Information Technology (CS & IT)

these implementations seem reasonable. In the future, the researchers can do an analytical study

in terms of optimality and scalability on these in order to look for opportunities improving

dynamic nature.

3.4. General factors for optimizing the data plane applications

Each application use case has its own optimization factors, which are described above. In this

section, we described the general factors of optimization. What application will be on the data

plane, and what kind of application optimization is needed generally depend on the type of

network, such as local area network (LAN), wide area network (WAN), data centre network,

industrial network, time-sensitive network, etc. For example, load balancing, traffic management,

and congestion control applications play an important role in a data centre, but may not apply to

other types of networks. Subsequent optimization factors may include network topology, traffic

types, and so on. These are explained in a little more detail with the specific example as in the

followings:

Figure 4. Optimization factors

4. CONCLUSIONS AND FUTURE WORKS

With the advent of data plane programming, applications such as network monitoring, traffic

aggregation, caching, and load balancing are being redesigned on the data plane. A lot of

applications are developed on P4. Some solutions implemented on a BMv2 P4 prototype switch

are not a guarantee that the solution will work effectively on real equipment in the production

network, but it is a good start to design and promote innovation. Some are implemented on

hardware switches such as FPGA and Tofino but have not been fully tested in the actual network.

So there is a lot of work to be done to improve and optimize these solutions. However, it should

be noted that the P4 application working group has developed some cases that can be used in the

production network.

Topology-based optimization: in case of a load balancing application,
aim to balance the use of bisection parts in the data centre network.

Device position-based optimization: determining which device on the
network is the best place for aggregation when implementing data

aggregation.

Hardware-based optimization: application might be optimized for
saving memory and processing resources.

Network policy-based optimization: each type of traffic may have
different treatment options because of policy, for example, some traffic
such as banks, need more secure, and reliable channels and processing.

Traffic type-based optimization: for example, considering how to treat
management and data traffic.

Application-specific optimization: The above sections described it for
each application case.

Computer Science & Information Technology (CS & IT) 79

Many of these solutions are currently for data centers and promise to significantly improve the

data center network. Similarly, there are many opportunities to develop new application cases in

the data plane for other types of networks in the future. For example, the main requirement of an

industrial network is reliability, low and predictable latency. Data plane programmability helps to

reduce latency in the industrial network, and some prototype implementations such as in-network

sensor monitoring, data caching for industrial automation, and in-network robotic control

applications are made in BMv2 switch [43][44]. In addition, some solutions are emerging as the

prototype for time-sensitive networks, such as in-network time synchronization. Furthermore,

these kinds of studies can be well developed and optimized in the real network.

Also, it is possible to combine these applications and develop effective solutions. Therefore, the

researchers can determine which combination of applications is the most optimal. For example,

according to the INT specification, network troubleshooting, advanced congestion control,

advanced routing, and network data plane verification can be made based on INT monitoring.

Other topics to consider about optimization are that developer needs to think how network

optimization is related (or irrelevant) to transport-level optimization [45]. Current in-network

works are mainly focused on optimizing the network layer. However, transport protocols will

affect the performance of any in-network solution. In addition, programmable switches do not

support floating point calculations used in more complex operations, such as artificial intelligence

(AI) and machine learning (ML) algorithms. For example, AI-enabled analysis can be used to

understand network problems caused by managing the complexity, scale, and dynamics of

modern networks [46].

In the future, the development and optimization of a data plane program should take into account

the general factors, and specific factors identified for each case used in our paper. This paper not

only gave a better understanding of the data plane applications but also offered specific ideas

about what can be done in the future.

ACKNOWLEDGEMENTS

The research has been supported by the project "Application Domain Specific Highly Reliable

IT Solutions" implemented with the support of the NRDI Fund of Hungary, financed under the

Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Sub programme)

funding scheme.

REFERENCES

[1] “IEEE ICC 2018: Keynote by Nick McKeown, Programmable Forwarding Planes Are Here To Stay.”

[Online]. Available:

https://www.youtube.com/watch?v=8ie0FcsN07U&list=PLCn7fbhhPRgRGjLTn4ISi6v3hZu1AHT3

T&index=14. [Accessed: 22-Apr-2021].

[2] R. Bifulco and G. Retvari, “A survey on the programmable data plane: Abstractions, architectures,

and open problems,” IEEE Int. Conf. High Perform. Switch. Routing, HPSR, vol. 2018-June, 2018,

doi: 10.1109/HPSR.2018.8850761.

[3] F. Hauser et al., “A Survey on Data Plane Programming with P4: Fundamentals, Advances, and

Applied Research,” 2021.

[4] G. Altangerel, E. Tsogbaatar, and D. Yamkhin, “Performance analysis on IPv6 transition

technologies and transition method,” in Proceedings - 2016 11th International Forum on Strategic

Technology, IFOST 2016, 2017, doi: 10.1109/IFOST.2016.7884155.

[5] M. Budiu and C. Dodd, “The P416 programming language,” Oper. Syst. Rev., vol. 51, no. 1, pp. 5–

14, 2017, doi: 10.1145/3139645.3139648.

80 Computer Science & Information Technology (CS & IT)

[6] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, “Flow-level state transition as a new

switch primitive for SDN,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 377–378,

2015, doi: 10.1145/2740070.2631439.

[7] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, and H. Balakrishnan, “Packet

Transactions : High-Level Programming for Line-Rate Switches.”

[8] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN through a future-proof

forwarding plane,” HotSDN 2013 - Proc. 2013 ACM SIGCOMM Work. Hot Top. Softw. Defin.

Netw., pp. 127–132, 2013, doi: 10.1145/2491185.2491190.

[9] C. J. Anderson et al., “NetKAT: Semantic foundations for networks,” ACM SIGPLAN Not., vol. 49,

no. 1, pp. 113–126, 2014, doi: 10.1145/2578855.2535862.

[10] P. Bosshart et al., “P4: Programming protocol-independent packet processors,” Comput. Commun.

Rev., vol. 44, no. 3, pp. 87–95, 2014, doi: 10.1145/2656877.2656890.

[11] The P4 Language Consortium, “P4 16 Language Specification version 1.2.1,” pp. 1–163, 2020.

[12] G. Antichi1, T. Benson, N. Foster, F. M. V. Ramos, and and J. Sherry, “Programmable Network

Data Planes (Dagstuhl Seminar 19141),” 2019, doi: 10.4230/DagRep.9.3.178.

[13] P. Voros, D. Horpacsi, R. Kitlei, D. Lesko, M. Tejfel, and S. Laki, “T4P4S: A target-independent

compiler for protocol-independent packet processors,” IEEE Int. Conf. High Perform. Switch.

Routing, HPSR, vol. 2018-June, no. August, 2018, doi: 10.1109/HPSR.2018.8850752.

[14] The P4.org Architecture Working Group, “P4 16 Portable Switch Architecture (PSA) The P4.org

Architecture Working Group,” pp. 1–68, 2018.

[15] L. Tan et al., “In-band Network Telemetry: A Survey,” Comput. Networks, vol. 186, no. August

2020, 2021, doi: 10.1016/j.comnet.2020.107763.

[16] C. Systems, “In-band Network Telemetry (INT) Dataplane Specification,” pp. 1–55, 2020.

[17] J. Vestin, A. Kassler, D. Bhamare, K. J. Grinnemo, J. O. Andersson, and G. Pongracz,

“Programmable event detection for in-band network telemetry,” arXiv. arXiv, 26-Sep-2019.

[18] R. Ben Basat, G. Antichi, and M. Mitzenmacher, “PINT : Probabilistic In-band Network Telemetry,”

vol. 4.

[19] Z. Xia et al., “KeySight : A Scalable Troubleshooting Platform Based on Network Telemetry,” pp. 2–

3, 2018.

[20] Y. Tang, Y. Wu, G. Cheng, and Z. Xu, “Intelligence enabled SDN fault localization via

programmable in-band network telemetry,” IEEE Int. Conf. High Perform. Switch. Routing, HPSR,

vol. 2019-May, pp. 1–6, 2019, doi: 10.1109/HPSR.2019.8808121.

[21] J. Hyun and J. W. K. Hong, “Knowledge-defined networking using in-band network telemetry,” 19th

Asia-Pacific Netw. Oper. Manag. Symp. Manag. a World Things, APNOMS 2017, pp. 54–57, 2017,

doi: 10.1109/APNOMS.2017.8094178.

[22] “Barefoot Deep Insight.” [Online]. Available:

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html.

[Accessed: 22-Apr-2021].

[23] Y. Li et al., “HPCC: High precision congestion control,” SIGCOMM 2019 - Proc. 2019 Conf. ACM

Spec. Interes. Gr. Data Commun., pp. 44–58, 2019, doi: 10.1145/3341302.3342085.

[24] V. Jeyakumar, M. Alizadeh, C. Kim, and D. Mazières, “Tiny packet programs for low-latency

network control and monitoring,” Proc. 12th ACM Work. Hot Top. Networks, HotNets 2013, 2013,

doi: 10.1145/2535771.2535780.

[25] B. Turkovic, F. Kuipers, N. Van Adrichem, and K. Langendoen, “Fast network congestion detection

and avoidance using P4,” NEAT 2018 - Proc. 2018 Work. Netw. Emerg. Appl. Technol. Part

SIGCOMM 2018, pp. 45–51, 2018, doi: 10.1145/3229574.3229581.

[26] E. Tsogbaatar et al., “DeL-IoT: A deep ensemble learning approach to uncover anomalies in IoT,”

Internet of Things, vol. 14, no. March, p. 100391, 2021, doi: 10.1016/j.iot.2021.100391.

[27] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-Network Computation is a Dumb

Idea Whose Time Has Come.”

[28] P. Costa et al., “NetAgg : Using Middleboxes for Application-specific On-path Aggregation in Data

Centres,” pp. 249–261.

[29] S. Wang, C. Wu, Y. Lin, and C. Huang, “High-Speed Data-Plane Packet Aggregation and

Disaggregation by P4 Switches,” vol. 4, 2019.

[30] P. G. Kannan, R. Joshi, and M. C. Chan, “Precise Time-synchronization in the Data-Plane using

Programmable Switching ASICs,” no. 2, pp. 8–20.

Computer Science & Information Technology (CS & IT) 81

[31] R. Nishtala et al., “Scaling memcache at facebook,” Proc. 10th USENIX Symp. Networked Syst. Des.

Implementation, NSDI 2013, pp. 385–398, 2013.

[32] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload analysis of a large-scale

key-value store,” Perform. Eval. Rev., vol. 40, no. 1 SPEC. ISS., pp. 53–64, 2012, doi:

10.1145/2254756.2254766.

[33] “Key–value database.” [Online]. Available: https://en.wikipedia.org/wiki/Key–value_database.

[Accessed: 22-Apr-2021].

[34] X. Jin et al., “NetCache : Balancing Key-Value Stores with Fast In-Network Caching,” no. Figure 1,

pp. 121–136.

[35] J. Nelson and L. Ceze, “IncBricks : Toward In-Network Computation with an In-Network Cache.”

[36] H. Tu, D. Daniele, M. Canini, F. Pedone, and R. Soul, “NetPaxos : Consensus at Network Speed.”

[37] A. Aghdai, C. Y. Chu, Y. Xu, D. H. Dai, J. Xu, and H. Jonathan Chao, “Spotlight: Scalable transport

layer load balancing for data center networks,” arXiv, 2018.

[38] J. L. Ye, C. Chen, and Y. Huang Chu, “A Weighted ECMP Load Balancing Scheme for Data Centers

Using P4 Switches,” Proc. 2018 IEEE 7th Int. Conf. Cloud Networking, CloudNet 2018, pp. 1–4,

2018, doi: 10.1109/CloudNet.2018.8549549.

[39] M. Alizadeh et al., “CONGA : Distributed Congestion-Aware Load Balancing for Datacenters,” pp.

503–514.

[40] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA : Scalable Load Balancing Using

Programmable Data Planes,” 2016.

[41] T. Barbette et al., “A high-speed load-balancer design with guaranteed per-connection-consistency,”

Proc. 17th USENIX Symp. Networked Syst. Des. Implementation, NSDI 2020, pp. 667–683, 2020.

[42] B. Pit-Claudel, Y. Desmouceaux, P. Pfister, M. Townsley, and T. Clausen, “Stateless Load-Aware

Load Balancing in P4,” Proc. - Int. Conf. Netw. Protoc. ICNP, vol. 2018-Septe, pp. 418–423, 2018,

doi: 10.1109/ICNP.2018.00058.

[43] F. E. R. Cesen, L. Csikor, C. Recalde, C. E. Rothenberg, and G. Pongracz, “Towards low latency

industrial robot control in programmable data planes,” Proc. 2020 IEEE Conf. Netw. Softwarization

Bridg. Gap Between AI Netw. Softwarization, NetSoft 2020, pp. 165–169, 2020, doi:

10.1109/NetSoft48620.2020.9165531.

[44] J. Vestin, A. Kassler, and J. Akerberg, “FastReact: In-Network Control and Caching for Industrial

Control Networks using Programmable Data Planes,” IEEE Int. Conf. Emerg. Technol. Fact. Autom.

ETFA, vol. 2018-Septe, pp. 219–226, 2018, doi: 10.1109/ETFA.2018.8502456.

[45] “In-Network Data-Center Computing.” [Online]. Available: https://tools.ietf.org/id/draft-he-coin-

datacenter-00.html. [Accessed: 22-Apr-2021].

[46] “Networking Technology Trends Report - Download - Cisco.” [Online]. Available:

https://www.cisco.com/c/en/us/solutions/enterprise-networks/networking-technology-

trends.html#~trends. [Accessed: 22-Apr-2021].

AUTHORS

Tejfel Máté received his B.Sc., M.Sc. and Ph.D. Degree in Computer Science, from ELTE,

Budapest Hungary. He is currently working as an Associate Professor in the Department of

Programming Languages and Compilers, ELTE. His research interest includes

programming languages, correctness check, Software Defined Networks, and network

optimization. For more information, visit his database at 0000-0001-8982-1398 orchid-id.

Altangerel Gereltsetseg received her B.Sc. & M.Sc. Degree in Information technology,

from Mongolian University of Science and Technology (MUST). She is currently a Ph.D.

student in the Department of Programming languages and compilers, ELTE under the

supervision of Professor Tejfel Máté. Her research interest includes Software-defined

Networks, deeply programmable network, and network optimization. For more

information, visit her database at 0000-0002-1594-8158 orchid-id.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Data plane, load balancing, in-network caching, in-network computing, in-network data aggregation, INT.

