
David C. Wyld et al. (Eds): NLP, MLTEC, CLBD, SEAPP, NeTIoT, VLSIE, ITCS, ARIA, DMS - 2021

pp. 161-175, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.112313

ANEC: ARTIFICIAL NAMED ENTITY

CLASSIFIER BASED ON BI-LSTM FOR AN
AI-BASED BUSINESS ANALYST

Taaniya Arora, Neha Prabhugaonkar,

Ganesh Subramanian and Kathy Leake

Crux Intelligence, New York City, New York, USA

ABSTRACT

Business users across enterprises today rely on reports and dashboards created by IT

organizations to understand the dynamics of their business better and get insights into the

data. In many cases, these users are underserved and do not possess the technical skillset to

query the data source to get the information they need. There is a need for users to access

information in the most natural way possible. AI-based Business Analysts are going to

change the future of business analytics and business intelligence by providing a natural

language interface between the user and data. This natural language interface can

understand ambiguous questions from users, the intent and convert the same into a

database query. One of the important elements of an AI-based business analyst is to

interpret a natural language question. It also requires identification of key business entities

within the question and relationship between them to generate insights. The Artificial
Named Entity Classifier (ANEC) helps us take a huge step forward in that direction by not

only identifying but also classifying entities with the help of the sequence recognising

prowess of BiLSTMs.

KEYWORDS

Named Entity Recognition System, Natural Language Processing , Business Analytics,

Question Answering Systems, Bi-directional LSTMs

1. INTRODUCTION

At Crux Intelligence, we envisage a break-through in the analytics industry by building an AI

based business analyst (ABBA) [1] that performs the functions of a business analyst. The main
aim of ABBA is to create a Natural Language interface between the user and the data. This not

only helps simplify data access, but also brings the user closer to the data.

Analyza [2], discusses some of the challenges faced while developing such systems. The paper
also highlights why Structured Query Language despite being a widely accepted database access

tool, is not user friendly and requires far too much knowledge of the physical layout of the

database. Thereby it substantiates the use of Natural Language interfaces for such applications.

The most crucial role in such interfaces is played by Question Interpreter which performs the job

of understanding user questions and tries to extract structured data from it.

http://airccse.org/cscp.html
http://airccse.org/csit/V11N23.html
https://doi.org/10.5121/csit.2021.112313

162 Computer Science & Information Technology (CS & IT)

1.1. AI-based Business Analyst

An ABBA supports business leader(s) to make effective decisions. They know the discipline of

analytics, understand the data, know how to access and absorb the data and help in decision
making. A human business analyst also helps leaders take the right decisions by understanding

the business problem, running relevant analysis and producing reports which are easy to consume

for the user.

At Crux Intelligence, we are building an ABBA which will help in enhancing the capabilities of a

human business analyst and help in making better decisions. Its key component is a question

answering system which understands business queries of users and analyses enterprise data to
generate appropriate answers. The input to the system is a question entered by a user in natural

language. The question is analysed and processed, and the output is an answer, or a list of

answers in the form of trends, bar graphs, tables, and numbers. The ABBA is capable of
answering the following range of questions:

• Data retrieval questions: Direct questions related to entities and metrics. For example,

‘What is the sales in New York?’.

• Comparative questions: Questions involving more than two entities, time periods, etc.
For example, ‘Shipment in Jan vs Feb’, ‘East vs West’.

• Conditional questions: Questions having conditions on entities, for example, ‘Cities

having sales > 3M and < 8M’.

• Questions with filters: Question with filters like Top/Bottom, for example, ‘Top 5 stores
in Texas’.

• Incomplete and non-elucidated questions: For example, ‘Sales’, ‘Last Month’.

• Questions with complex periods: For example, ‘MTD sales for last 3 years for East’,

‘Daily sales from Jan to March 15, 2021’.

The main task of ABBA is to automatically find the right answer by identifying the entities and

intents from the question. Classification of entities is a non-trivial task due to ambiguities present

in a user question which may result in classifying an entity into multiple entity categories and

hence may lead to different interpretations within the Question Interpreter. We describe this in
detail in subsequent sections.

1.2. Named Entity Recognition

Named Entity Recognition (NER) task aims to identify entities in text and classify them into

entity categories. It plays a key role in many Natural Language Processing Tasks including
Question Answering. Typical examples of entities and entity categories are listed in Table 1.

Table 1. Entity Categories.

Entity Category Entities

Location New York, Chicago, Hong Kong

Date Wednesday, January

Person Albert Einstein, Mahatma Gandhi

Organization Google, Tesla, UNESCO

Cuddle.ai [1] describes the role of Question Interpreter in the system and challenges faced during

interpretation. One of the tasks within the interpreter is entity extraction, where, for a question,

Computer Science & Information Technology (CS & IT) 163

“How many cars were sold in New York?”, ‘cars’ is an entity of category ‘Product’ and ‘New
York’ is an entity of category ‘Region’. It also encounters ambiguities in user questions due to

closed domain terminologies where an entity can be classified into multiple entity categories in

different contexts. The ability to find correct and relevant answers relies heavily on the Named

Entity Recognition task performed on the users' questions.

Several high quality NERs such as those by Stanford, [3] and Spacy, [4] are available. Since

these models are targeted at an open domain, they could not be used to meet the special needs of
a closed domain system. A major limitation of using such NERs is that they typically classify

proper nouns and sometimes numbers or alphanumeric entities like dates as entities. Business

entities like ‘sales’ or ‘number of cars sold’ will remain unrecognized while using such NERs.
One of the major reasons of this limitation is that entities in closed domain are not always proper

nouns. They can be verbs or even adjectives.

Another approach for identifying entities is by using part of speech tags (POS). In such a
scenario, the accuracy of the question interpreter is largely dictated by the accuracy of the POS-

Tagger, which is sensitive to case types and the domain on which it was trained. For example, for

question, “What is the sales of Greater Cincy East?”, where ‘Greater Cincy East’ is a location.
POS Taggers would easily identify ‘Greater’, ‘Cincy’ and ‘East’ as three proper nouns.

However, for question, “What is the sales of greater cincy east?” we would find that the token

‘east’ has been marked as an adjective. Such cases are important to handle in closed domain
system where the question is either typed or converted from speech.

Therefore, it is important to have an intelligent domain agnostic model which can also support

the specific scenarios discussed earlier. We used BiLSTM architecture to identify entities and
classify them into entity categories. The detailed architecture is described in the subsequent

sections.

Entity disambiguation becomes even more challenging when the user questions are shorter in

length and when an entity gets mapped to multiple categories due to insufficient context in the

question. A system to use external knowledge was proposed by Feng [5], where they used a

knowledge enhanced Named Entity Disambiguation model which involved using a factual and a
conceptual knowledge graph to improve named entity disambiguation for short and noisy texts.

We have also used knowledge to further improve our disambiguation performance in the form of

custom knowledge dictionary with a different approach which we will describe in section 3.

1.3. LSTMs for Named Entity Recognition

LSTMs [6] are exceptionally capable of learning sequences. Their sequence learning capability

find extensive use in NLP. A bidirectional LSTM [7] is even more potent as it makes two passes

of the same sequence. Therefore, while tagging an element in a sequence, a BiLSTM not only
keeps in mind the past elements but also the elements ahead of it. More advanced neural models

have been created for open domain systems using a combination of BiLSTMs with CNNs [8] and

CNN along with CRF [9].We chose to use just the BiLSTM model for our named entity
classification task as our system deals with a closed domain. The actual meaning of the token has

a lower importance in our system in comparison to the sequence it is a part of.

The rest of the paper is organized as follows. We describe various entity categories in section 2,
data preparation steps in section 3 and describe the system architecture in section 4. The

evaluation procedure is described in Section 5 and the results and error analysis is detailed in

Section 6 followed by conclusion.

164 Computer Science & Information Technology (CS & IT)

2. ATTRIBUTES

The process of extraction of structured data from a user question requires us to have certain

structured headers under which we categorize the data. We use the term Attribute to refer to an

entity identified in a question and attribute class to refer to its category. We will also use these

terms in subsequent references. The term Entity signifies a different meaning in ANEC which
will be discussed in this section.

The five important attributes considered for named entity classification task are as follows:

• Entity: Examples include IDs of Regions, Stores, Brands and actual names like New York,

Delhi, Texas.

• Entity Type: This refers to the type of entities. For example, New York has entity type

City as well as State, Delhi has an entity type of Region. Coca Cola is a brand whereas
Diet Coke is of type sub-brand.

• Metric: A metric is a countable concept as captured in the enterprise database. The derived

word ‘sold’ corresponds to Sales metric.

• Temporals: Temporals refer to time and period values. For example, this week, July, from

Jan 31 2020 to Dec 31 2021 and January 2018. It also includes business specific temporals
and its abbreviations such as YTD (Year to Date), Q1 (Quarter1), JFM (JanFeb-Mar) and

MTD (Month to Date).

• Conditions and Filters: Conditions and filters include words like highest, top-K and any

other conditions that the user wants to apply on the attributes of the question.

3. DATA PREPARATION

The input to the Question Interpreter (QI) is a user question. Two modules within the QI, namely
Period Identifier and Condition and Filter identifier, identify Temporals and Condition and Filter

attributes from the question respectively. These attributes along with the question are sent as

input to ANEC which further identifies and classifies other attributes in the question using

knowledge dictionary.

3.1. Knowledge Dictionary Creation

We created three knowledge dictionaries, one each for Entity, Entity Type and Metric attributes.

Each dictionary contains words corresponding to its attribute type. Another separate dictionary

contains words that occurred across multiple dictionaries. For example, ‘Customer Segment
Sales’ where ‘Customer Segment’ was an Entity Type, ‘Customer 01’ an Entity and ‘Sales’ as a

Metric.

3.2. Data Augmentation

Historical dump of the question database was taken and a total of 1,442 questions were retrieved.
The dump consisted of questions, Entity, Entity Type and Metric tokens present in each question.

Templating was performed to generate more questions. Each question in the question dump was

taken and its attributes were replaced with their respective placeholders. A few complex
templates were also generated synthetically. The method used for templating is illustrated in

Figure 1.

A few examples of questions generated via templating are illustrated in Table 2. While using the
actual IDs in the placeholder for the Entity, the Entity Type was mentioned along with it.

Computer Science & Information Technology (CS & IT) 165

Figure 1. Templating of questions

Table 2. Replacing placeholders with corresponding attributes

Template What is the METRIC and METRIC of Entity Type - Entity

Metric 1 Sales

Metric 2 Target

Entity 90

Entity Type Store

New Question What is the sales and Target of Store 90

Template What is the METRIC and METRIC of Entity Type - Entity

Metric 1 Sales

Metric 2 Discount

Entity East

Entity Type Region

New Question What is the Sales and Discount of East

Template METRIC of (Entity Type – Entity) vs (Entity Type - Entity)

Entity 1 Region West

Entity 2 Region

Entity 9

Entity Type Region

Metric Sales

New Question Sales of Region 9 vs Region West

However, in case of the actual names of entities, the Entity Type placeholder was dropped. The

Entity and Metric dictionaries were iterated over, and the placeholders were replaced with tokens
from respective dictionaries. In total 11,27,571 questions were generated using templating

approach.

4. SYSTEM ARCHITECTURE

The overall architecture of ABBA is represented in Figure 2. In QI, the user question is first

passed through Period Identifier, then Condition Identifier and Filter Identifier modules which

identify Temporal, Conditions and Filter attributes from it respectively. A detailed architecture of
QI including ANEC is illustrated in Figure 3. The question from QI is then tagged with POS tags

using Stanford POS tagger [10]. The POS tagged question is converted into a feature matrix

which is then sent as an input to the BiLSTM model as highlighted in Figure 4.

166 Computer Science & Information Technology (CS & IT)

Figure 2. AI-based business analyst

Figure 3. Question Interpreter

4.1. Feature Vector

The default tagset used for Stanford's English POS tagger is Penn Treebank Tagset [11] for POS
tagging. These tags were grouped into 8 classes. In addition to these, 4 more classes were defined

based on the knowledge dictionary in which each word or its lemma is found in.

Figure 4. ANEC System Architecture

Computer Science & Information Technology (CS & IT) 167

Figure 5. Feature Vector of a word

Classes 9 to 11 are based on the 3 knowledge dictionaries namely - Entity, Entity Type and
Metric. Class 12 indicates whether the word is a padding, punctuation or an unknown input. The

12 classes are listed in Table 3 and together they form a feature vector for each word as

illustrated in Figure 5.

Table 3. Feature Vector class and their corresponding POS/Dictionary Tags

Feature Vector

class

POS / Dictionary Tag

Class 1 NNP (Proper noun, singular), NNPS (Proper noun, plural)

Class 2 NN (Noun, singular or mass), NNS (Noun, plural)

Class 3 VB (Verb, base form), VBD (Verb, past tense), VBG (Verb, gerund or

present participle), VBN (Verb, past participle), VBP (Verb, non-3rd person

singular present), VBZ (Verb, 3rd person singular present)

Class 4 JJ (Adjective), JJR (Adjective, comparative), JJS (Adjective, superlative)

Class 5 CC (Coordinating conjunction), DT (Determiner), EX (Existential there), FW

(Foreign word), IN (Preposition or subordinating conjunction), PDT

(Predeterminer), POS (Possessive ending), PRP (Personal pronoun), RB

(Adverb), RBR (Adverb,

comparative), RBS (Adverb, superlative), RP (Particle), TO (to) , UH

(Interjection)

Class 6 Alphanumeric and CD (Cardinal number)

Class 7 SYM (Symbol), LS (List item marker)

Class 8 WP (Wh-pronoun), WP$ (Possessive wh-pronoun), WRB (Whadverb), MD

(Modal), WDT (Wh-determiner)

Class 9 Entity

Class 10 Entity Type

Class 11 Metric

Class 12 Padding, Unknown, Punctuation

4.2. Output

The output for each token from the BiLSTM model is a vector having 6 classes which is reflected

in Figure 6. Each of these classes reflect the probability of a word belonging to a particular
category with respect to the named entity classification task. The word is tagged with the class

having the maximum probability.

168 Computer Science & Information Technology (CS & IT)

Figure 6. Output Vector of a word

4.3. Model Details

A Bi-Directional Recurrent Neural Network with Long Short-Term Memory units is used to

predict the named-entity classes from the feature vector. The output of each network for each

token passes through a softmax layer to give a probability for each named-entity class. An
overview of the flow of data is highlighted in Figure 7.

Figure 7. An overview of a question going through BiLSTM Model

Figure 8. Network Model

The model was implemented in Keras [12] with a TensorFlow [13] backend. The network model

is highlighted in Figure 8. The training and hyper-parameters are highlighted in Table 4.

Computer Science & Information Technology (CS & IT) 169

4.4. Knowledge Query

Knowledge Query refers to a query made to the Knowledge Dictionary for linking attribute

tokens with their labelled entries in the database.

As mentioned, the output from the BiLSTM model is a vector having 6 classes, each of which

reflects the probability of a word belonging to a particular category with respect to the named
entity classification task. It is difficult to form a relation between collocated attribute words

classified by the BiLSTM model as they have no significant meaning of their own in the absence

Table 4. Model Hyper-Parameters

Parameter Value

Learning rate 0.001

Epoch 40

Batch Size 32

Dropout 0.2

LSTM Units 128

LSTM layers 1

of any link with the knowledge base. This can be explained with two following scenarios:

• Scenario 1: For multiple consecutive words ‘United’, ‘States’ and ‘America’, individually

identified as attribute of type Entity, the challenge is to determine that the three Entities

occur together as a phrase and refer to a nation.

• Scenario 2: In some cases, the same word may refer to different attributes in the
knowledge dictionary. For example, the word ‘sales’ can refer to a metric ‘Items Sold’ as

well another metric ‘Unit Sales’. Hence, for disambiguation and to establish a relationship

with other attributes, we need to perform a Knowledge Query.

Figure 9. Identifying actual entities in the database from Attribute tokens

An example of the Knowledge Query process is highlighted in Figure 9. The highlighted words

refer to the named entities identified by the BiLSTM model as belonging to an attribute class.
The 3 steps involved in this process are:

• Grouping

• Disambiguation

• Query

170 Computer Science & Information Technology (CS & IT)

In grouping, the tokens belonging to the same attribute category are grouped together as one and
successive knowledge queries are performed to extract entity names for the group of tokens.

Primary assumptions in grouping process are:

• Successive words labelled with the same attribute class are grouped together. For example,
‘Greater’, ‘Cincy’, and ‘East’ are all entities. If they occur consecutively as ‘Greater

Cincy East’ in a sentence, they would be grouped together.

• Successive words of the same attribute class, when separated by a single non-named entity,
will also be assigned the same group. For example, ‘Portland, Oregon’ (Entity) and

‘Number of Cars Serviced’ (Metric). This helps account for presence of punctuation marks

and stop-words in labels of attributes. One limitation of this assumption is that instances of

two distinct attributes occurring together with a coordinating conjunction or a comma
might end up being grouped together. For example, ‘New York City and Dallas’ and ‘New

York City, Dallas’. Here, ‘New York City’ and ‘Dallas’ refers to the names of two different

cities and yet they get grouped together due to this assumption. Such instances are handled
by a separate disambiguation algorithm discussed next.

Disambiguation is performed using repeated calls to the Knowledge Dictionary. The
Disambiguation Algorithm works as shown in Listing 1. It is also illustrated in Figure 10. The

example illustrated is that of the phrase ‘Chicago, Dallas, Texas and San Francisco, California’.

The phrase contains three Entities, ‘Chicago’, ‘Dallas, Texas’ and ‘San Francisco, California’

First, all forms of stopwords and punctuation marks are removed. Then, a query is made for
words starting from the end of the string, one by one into the knowledge dictionary. A successful

response means that a match for a particular phrase exists in the Knowledge Dictionary. An

empty response indicates that no match was found. In the example, first query is made for the
word ‘California’. After receiving a successful response for it, a subsequent query is made for

this word along with the word preceding it. Thus, after querying ‘Francisco California’ a

successful response is received again and next query is made for ‘Francisco California’ by

preceding it with ‘San’ for which a successful response is received as well. Next, on querying
‘Texas San Francisco California’ an empty response is received, indicating that this search

phrase does not exist in the Knowledge Dictionary. Now, previously stored response of ‘San

Francisco California’ (highlighted in Magenta) is saved and the remaining words are sent back
for disambiguation. The function starts querying again from ‘Texas’, and moves on to ‘Dallas

Texas’ before receiving an empty response at ‘Chicago Dallas Texas’.

Listing 1: Disambiguation Algorithm

def disambiguate(tokens):

```Disambiguate algorithm for attribute type entity```  
#marker: stores position from end of string corresponding to last positive response  

#out: stores output response from the present knowledge query marker = 1 result = [] for i in 

range(1, len(tokens) + 1):  
    out = knowledgeCall(tokens[-i: ], “entity”)     if out != []:         marker = i         results = out if 

marker == len(tokens):  

    return([[tokens[-marker: ], result]]) else:  
    return(disambiguate(tokens[ :-marker]) + [[tokens[-marker: ],  

result]] )  

 
 
It saves the stored response for ‘Dallas Texas’ (highlighted in Red) and moves on to query  



Computer Science & Information Technology (CS & IT)                                        171 

‘Chicago’. The recursive function finally returns all the valid word groups along with their actual 
labelled entries in the knowledge dictionary.  

 

 
 

Figure 10. Illustration of Disambiguation Process  
 

5. EVALUATION 
 
The training, validation and test dataset followed a 60:20:20 split on the questions generated by 

templating and the system was evaluated on gold dataset of 120 instances with many simple to 

complex cases created by business analysts. The metrics were calculated at question-level 

followed by calculation at dataset-level. Each question was evaluated based on the entities 
(Metric, Entity, Entity Type, Temporal etc) and sibling-relations (Metric-Condition, Filter-Entity 

Type etc) identified. For each question, the following 3 lists were captured based on MUC 

evaluation metrics described by [14].  
 

• Matches: The entities and sibling-relations that are matched perfectly from both the 

predicted list and the ground-truth list 

• Spurious: The entities and sibling-relations that are present in the predicted list, but not in 

the ground-truth list  

• Missing: The entities and sibling-relations that are present in the ground-truth list, but not 
in the predicted list  

 

The evaluation is done using the following 3 metrics using the above lists: 
 

 Precision: |Matches|/(|Matches| + |Spurious|) 

 

 Recall: |Matches|/(|Matches| + |Missing|) 



172                 Computer Science & Information Technology (CS & IT) 

 

 F1-score:  

 

The dataset-level metrics are computed from aggregating question-level metrics by computing 

their micro-averages and finally the accuracy for the dataset is computed as follows:   
 

 
 

1. F(i) is the F1-score of the ith interpretation 

 
2. I(A) is an indicator function that returns 1 if F(i) = 1, else 0 

 

3. n is the total number of samples in the dataset.  

 
Table 5.  Performance scores on Gold Dataset  

 

Metric Partial Comparison Strict Comparison 

Precision 0.979 0.979 

Recall 0.979 0.979 

F1-score 0.979 0.979 

Accuracy 0.987 0.987  

 

The evaluation is done based of 2 types of comparisons between the predictions and ground truth. 

The 2 comparators used for this purpose are:  

 
• Strict comparator: All properties of the entities and sibling-relations must be equal for 

two entities and sibling-relations to be considered equal.  

• Partial comparator: Even if the span (start and end indices) of an entity or siblingrelation 

is incorrect, as long as the other properties of the entity or sibling-relation is correct, they 
are considered to be equal.  

 

The accuracy was measured in terms of number of questions with all the attributes classified 

correctly. Instances of questions where entities were classified partially, were treated as an 
incorrect classification. The result of the experiment is reported in Table 5.   

 

We have not published the performance of other popular Named Entity Recognizers in 
comparison against our system. Firstly, this is because ANEC was built to classify attributes in a 

closed business domain whereas other NERs were built for more general open domain tasks. 

Secondly, by classifying attributes with ANEC helps us save a large number of calls to the 

Knowledge Dictionary. In case of a standard NER, we have to make a large number calls to the 
Knowledge Dictionary just to determine which class of Attributes a phrase belongs to. Hence, 

comparing two systems aimed at different domains would not be a fair comparison and the 

results would be highly biased towards ANEC.  
 

 

 



Computer Science & Information Technology (CS & IT)                                        173 

6. RESULTS AND ANALYSIS  
 
We have divided the results in the following three categories: 
 

• Attributes present in single knowledge dictionary 

• Attributes present in multiple knowledge dictionaries  

• Attributes not present in any knowledge dictionary 

 
Following subsections present the results and examples from each category.  

 

6.1. Attributes Present in Single Knowledge Dictionary 
 

The system was able to identify and classify all attributes which were present in a single 

knowledge dictionary. For example - Sales and Sales Achievement were present only in the 
Metric dictionary. Similarly, words like Region and Store were present only in Entity Type 

knowledge dictionary. 

 

6.2. Attributes Present in Multiple Knowledge Dictionaries 
 

For attributes present in multiple dictionaries, the system was able to classify attributes correctly 
when the attribute word was present with other words as an attribute. For example, the word 

Customer was present in the Entity Type dictionary as Customer Segment, whereas it was present 

in the Entity dictionary as Customer 01. For ambiguous cases like Customer, it was easy to both 
identify as well as classify them with the help of adjacent words. 
 

In case of words wholly occurring in multiple dictionaries, it becomes difficult to classify them. 

For example, Target occurs by itself, both as a Metric as well as an Entity. Another example is 
the word Store, which is used both as a Metric as well as an Entity Type. In such cases, the 

system is able to identify named attributes but is unable to classify them with sufficient 

confidence. A few such ambiguous questions are highlighted below.  
 

1. What is the Target and Sales for West Region?   

2. What is the Sales for Target for West Region?  
 

In the first example, the word Target is a Metric along with the word Sales. In case of second 

example, the word Target is an Entity whereas the word Sales remains a Metric. In such cases, 

our system fails to classify the target with sufficient confidence.  
 

6.3. Attributes not Present in Any Knowledge Dictionary  
 
For words which do not occur in any of the attribute dictionaries, it is crucial that we identify 

them even though there is no way to classify them correctly. A few examples of such tokens are 

Performance and Productivity which were not present in any knowledge dictionary but had some 
significance in the business sense. Our system was able to identify them, but, since they were not 

found in the knowledge, they were marked as unrecognized attributes. 

 

7. CONCLUSION  
 
In this paper, we utilize our Recurrent Neural Network with BiLSTM units to identify and 

classify named entities in natural language questions. We have also provided an overview of the 

techniques employed to develop a Neural Network based NER in context of an AI Based 



174                 Computer Science & Information Technology (CS & IT) 

Business Analyst. Availability of a large collection of annotated data was very important to train 
a deep learning model, so this paper also discussed about templating approach which was used to 

create a large training dataset from a small sample set of 1,442 questions.  

 

While our BiLSTM model is effective in identifying and classifying a large majority of 
questions, it falls a tad bit short when it comes to identifying context in very complex cases as 

highlighted in section 6.2. The resolution of such ambiguities needs extensive research into 

business attributes and how they are linked together by various stop-words and function-words. 
An extension of the ANEC pipeline can be inclusion of a spell-checker. Attributes with spelling 

mistakes usually get added to the list of unrecognized entities. A spell-checker module can help 

us identify attributes present in the knowledge dictionary from the list of unrecognized attributes. 
Another addition can be usage of word embeddings as features for better classification of 

attributes that are not present in any knowledge dictionary.   

 

ACKNOWLEDGEMENTS  
 

We would like to thank all the members of Crux Intelligence for their support and contribution. 
We would also like to thank Samriddhi Sinha for his valuable contribution in building the system. 
 

REFERENCES 
 
[1] Joshi, A.; Prabhugaonkar, N.; Hadaye, R.; Unnikrishnan, S.; Das, S.; Gala, N.; Bari, P.; and  
 Mall, N. 2019. ‘I Under- stand What You Asked’: Question Interpreter for an AI- Based    Business 

Analyst. In Arai, K.; Kapoor, S.; and Bhatia, R., eds., Intelligent Systems and   
  Applications, 1282–1288. Cham: Springer International Publishing. ISBN 978-3-030- 01057-7.  
[2] Dhamdhere, K.; McCurley, K.; Nahmias, R.; Sundararajan, M.; and Yan, Q. 2017. Analyza:  

Exploring Data with Conversation. Proceedings of the 22nd International Conference on Intelligent 

User Interfaces. 
[3] Finkel, J. R.; Grenager, T.; and Manning, C. 2005. Incorporating Non-Local Information into  

Information Extraction Systems by Gibbs Sampling. In Proceedings of the 43rd Annual Meeting on 
Association for Computational Linguistics, ACL ’05, 363–370. USA: Association  for Computational 

Linguistics.     
[4] Honnibal, M.; and Montani, I. 2017. spaCy 2: Natural language understanding with Bloom  

embeddings, convolutional neural networks and incremental parsing. To appear.   
[5] Feng, Z.; Wang, Q.; Jiang, W.; Lyu, Y.; and Zhu, Y. 2020. Knowledge-Enhanced Named Entity 

Disambiguation for Short Text. In Proceedings of the 1st Conference of the Asia- Pacific Chapter of 

the Association for Computational Lin- guistics and the 10th International Joint Conference on Nat- 

ural Language Processing, 735–744. Suzhou, China: Asso- ciation for Computational Linguistics.  
[6] Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-Term Memory. Neural Computation, 9: 
  1735–1780.   
[7] Schuster, M.; and Paliwal, K. 1997. Bidirectional recurrent neural networks. IEEE Trans. Signal 

Process., 45: 2673– 2681.    
[8] Chiu, J. P. C.; and Nichols, E. 2016. Named Entity Recognition with Bidirectional LSTM CNNs. 

Transactions of the Association for Computational Linguistics, 4: 357–370.   
[9] Ma, X.; and Hovy, E. 2016. End-to-end Sequence Labeling via Bi-directional LSTM-CNNs CRF. In 

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: 

Long Papers), 1064–1074. Berlin, Germany: Association for   Computational Linguistics.   
[10] Manning, C.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, S.; and McClosky, D. 2014. The  Stanford 

CoreNLP Natural Language Processing Toolkit. In Proceedings of 52nd Annual Meeting of the 

Association for Computational Linguistics: System Demonstrations, 55–60.  Baltimore, Maryland: 

Association for Computational Linguistics   
[11] Marcus, M.; Kim, G.; Marcinkiewicz, M. A.; MacIntyre, R.; Bies, A.; Ferguson, M.; Katz, K.;  and 

Schasberger, B. 1994. The Penn Treebank: Annotating Predicate Argument Structure. InProceedings 
of the Workshop on Human Language Technology, HLT ’94, 114–119. USA:  Association for 

Computational Linguistics. ISBN 1558603573.   



Computer Science & Information Technology (CS & IT)                                        175 

[12] Chollet, F.; et al. 2015. Keras. https://github.com/fchollet/ keras.   
[13] Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, 

J.; Devin, M.; Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.;  
Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Leven- berg, J.; Mane ,́ D.; Monga, R.; Moore, S.; Murray,  
D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Tal- 
war,K.;Tucker,P.;Vanhoucke,V.;Vasudevan,V.;Vie ǵas, F.; Vinyals, O.; Warden, P.; Wattenberg, M.; 

Wicke, M.; Yu, Y.; and Zheng, X. 2015. TensorFlow: Large-Scale Machine Learning on 

Heterogeneous Systems. Software available from tensorflow.org.  
[14] Chinchor, N.; and Sundheim, B. 1993. MUC-5 Evalua- tion Metrics. In Fifth Message 

 Understanding Conference (MUC-5): Proceedings of a Conference Held in Baltimore, 

 Maryland, August 25-27, 1993. 
 

 

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons 

Attribution (CC BY) license. 

 

 

http://airccse.org/

	Abstract
	Keywords
	1. Introduction
	1.1. AI-based Business Analyst
	1.2. Named Entity Recognition
	1.3. LSTMs for Named Entity Recognition

	2. Attributes
	3. Data Preparation
	3.1. Knowledge Dictionary Creation
	3.2. Data Augmentation

	4. System Architecture
	4.1. Feature Vector
	4.2. Output
	4.3. Model Details
	4.4. Knowledge Query

	5. Evaluation
	6. Results and Analysis
	6.1. Attributes Present in Single Knowledge Dictionary
	6.2. Attributes Present in Multiple Knowledge Dictionaries
	6.3. Attributes not Present in Any Knowledge Dictionary

	7. Conclusion
	Acknowledgements
	References

