
David C. Wyld et al. (Eds): AI, AIMLNET, BIOS, BINLP, CSTY, MaVaS, SIGI - 2022 

pp. 95-101, 2022. CS & IT - CSCP 2022                                                        DOI: 10.5121/csit.2022.121809 

 
HYPER-PARAMETER TUNING IN DEEP  

NEURAL NETWORK LEARNING 
 

Tiffany Zhan 

 

USAOT, Las Vegas, Nevada, USA 
 

 

ABSTRACT 
 

Deep learning has been increasingly used in various applications such as image and video 

recognition, recommender systems, image classification, image segmentation, medical image 
analysis, natural language processing, brain–computer interfaces, and financial time series. In 

deep learning, a convolutional neural network (CNN) is regularized versions of multilayer 

perceptrons. Multilayer perceptrons usually mean fully connected networks, that is, each 

neuron in one layer is connected to all neurons in the next layer. The full connectivity of these 

networks makes them prone to overfitting data. Typical ways of regularization, or preventing 

overfitting, include penalizing parameters during training or trimming connectivity. CNNs use 

relatively little pre-processing compared to other image classification algorithms. Given the 

rise in popularity and use of deep neural network learning, the problem of tuning hyper-

parameters is increasingly prominent tasks in constructing efficient deep neural networks. In 

this paper, the tuning of deep neural network learning (DNN) hyper-parameters is explored 

using an evolutionary based approach popularized for use in estimating solutions to problems 

where the problem space is too large to get an exact solution.  

 

KEYWORDS 
 

Deep Learning, Convolutional Neural Network, Deep Neural Network Learning, Hyper-

Parameters.    

 

1. DEEP LEARNING 
 
In deep learning, a convolutional neural network (CNN) is a class of artificial neural network 
(ANN), most commonly applied to image and video recognition, recommender systems, image 
classification, image segmentation, medical image analysis, natural language processing, brain–
computer interfaces, and financial time series [1-10]. CNNs are regularized versions of multilayer 
perceptrons. Multilayer perceptrons usually mean fully connected networks, that is, each neuron 
in one layer is connected to all neurons in the next layer. The "full connectivity" of these 

networks makes them prone to overfitting data. Typical ways of regularization, or preventing 
overfitting, include penalizing parameters during training (such as weight decay) or trimming 
connectivity (skipped connections, dropout, etc.) CNNs take a different approach towards 
regularization: they take advantage of the hierarchical pattern in data and assemble patterns of 
increasing complexity using smaller and simpler patterns embossed in their filters. Therefore, on 
a scale of connectivity and complexity, CNNs are on the lower extreme [11, 12]. 
 
Convolutional networks were inspired by biological processes with relatively little pre-processing 

compared to other image classification algorithms [13]. This means that the network learns to 
optimize the filters (or kernels) through automated learning, whereas in traditional algorithms 

http://airccse.org/cscp.html
http://airccse.org/csit/V12N18.html
https://doi.org/10.5121/csit.2022.121809


96         Computer Science & Information Technology (CS & IT) 

these filters are hand-engineered. This independence from prior knowledge and human 
intervention in feature extraction is a major advantage. A CNN consists of an input layer, hidden 
layers and an output layer. In any feed-forward neural network, any middle layers are called 
hidden because their inputs and outputs are masked by the activation function and final 

convolution. In a CNN, the input is a tensor with a shape: (number of inputs) × (input height) × 
(input width) × (input channels). After passing through a convolutional layer, the image becomes 
abstracted to a feature map, also called an activation map, with shape: (number of inputs) × 
(feature map height) × (feature map width) × (feature map channels). Convolutional layers 
convolve the input and pass its result to the next layer. This is similar to the response of a neuron 
in the visual cortex to a specific stimulus [14]. Each convolutional neuron processes data only for 
its receptive field. Convolutional networks may include local and/or global pooling layers along 
with traditional convolutional layers. Pooling layers reduce the dimensions of data by combining 

the outputs of neuron clusters at one layer into a single neuron in the next layer. Local pooling 
combines small clusters, tiling sizes such as 2 × 2 are commonly used. Global pooling acts on all 
the neurons of the feature map [15]. Each neuron in a neural network computes an output value 
by applying a specific function to the input values received from the receptive field in the 
previous layer. The function that is applied to the input values is determined by a vector of 
weights and a bias (typically real numbers). Learning consists of iteratively adjusting these biases 
and weights. 

 

2. HYPER PARAMETERS 
 

Constructing an efficient DNN for given applications is not a trivial task. It involves significant 
domain knowledge and efforts in exploring the properties of the data. For example, how sparse 
the data is, how many training or test samples are available, the definition of the data and it’s 
types, and the data representation power [16]. The goal of DNN is to be able to represent the 
available data as precisely as possible while avoiding the problem of over-fitting, thus 
constructing an efficient DNN should fit the data but not over-fit the data, which means that time 
must be spent determining when the data is being over-fit and when it is not. Fortunately, DNNs 

have several parameters that define their overall structure. These parameters are referred to as 
hyper-parameters in that they are used to define the structure of the DNN rather than are 
parameters to be used by the DNN [17]. 
 
There are many parameters to define DNNs, for example, the number of layers in the DNN, the 
number of nodes within a given layer, the algorithms used between layers, the overall algorithm 
used for the network, the optimization techniques [18] involved, the activation functions, the 
number of epochs, the size of batches, the number of folds, etc. Since there are variety of hyper-

parameters, a critical question is what hyperparameters to be used for given problems. Exploring 
possible configurations of hyper-parameters will significantly impact the results. To complicate 
matters even further those parameters are often only reasonably transferable to another problem if 
the problems themselves can be mapped into the same problem space. Even if we may reasonably 
transfer some parameters to similar problems, there are often unique qualities within the datasets 
that differentiate them to a degree where one DNN configuration is not necessarily the most 
efficient for the next DNN configuration. The hyper-parameter tuning has been often based on 

intuition rather than scientific rationale because one experience with a set of parameters does not 
necessarily directly translate into another researcher’s experience. This paper will explore the 
scientific evolutionary principles using genetic algorithms for hyper-parameter tuning.   
 
 
 
 



Computer Science & Information Technology (CS & IT)                                        97 

3. GENETIC ALGORITHMS 
 
Genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that 
belongs to the larger class of evolutionary algorithms. Genetic algorithms are commonly used to 
generate high-quality solutions to optimization and search problems by relying on biologically 
inspired operators such as mutation, crossover and selection [19, 20]. In a genetic algorithm, a 
population of candidate solutions (called phenotypes) to an optimization problem is evolved 

toward better solutions. Each candidate solution has a set of properties (its genotype) which can 
be mutated and altered; traditionally, solutions are represented in binary as strings of 0s and 1s, 
but other encodings are also possible [20, 21]. The evolution usually starts from a population of 
randomly generated individuals, and is an iterative process, with the population in each iteration 
called a generation. In each generation, the fitness of every individual in the population is 
evaluated; the fitness is usually the value of the objective function in the optimization problem 
being solved. The more fit individuals are stochastically selected from the current population, and 
each individual's genome is recombined or possibly randomly mutated to form a new generation. 

The new generation of candidate solutions is then used in the next iteration of the algorithm. 
Commonly, the algorithm terminates when either a maximum number of generations has been 
produced, or a satisfactory fitness level has been reached for the population. A typical genetic 
algorithm involves a genetic representation of the solution domain, a fitness function to evaluate 
the solution domain. Once the genetic representation and the fitness function are defined, a GA 
proceeds to initialize a population of solutions and then to improve it through repetitive 
application of the mutation, crossover, inversion and selection operators. 

 
The initial population in GA is generated randomly, allowing the entire range of possible 
solutions (the search space). During each successive generation, a portion of the existing 
population is selected to breed a new generation. Individual solutions are selected through a 
fitness-based process, where fitter solutions (as measured by a fitness function) are typically 
more likely to be selected. The fitness function is defined over the genetic representation and 
measures the quality of the represented solution. Genetic operators include Crossover (genetic 

algorithm) and Mutation (genetic algorithm). Although crossover and mutation are known as the 
main genetic operators, it is possible to use other operators such as regrouping, colonization-
extinction, or migration in genetic algorithms [22, 23, 24, 25, 26]. This generational process is 
repeated until a termination condition has been reached. Common terminating conditions include 
a solution is found that satisfies minimum criteria, fixed number of generations reached, allocated 
budget (computation time/money) reached, the highest-ranking solution's fitness is reaching or 
has reached a plateau such that successive iterations no longer produce better results.  
 

The best individual is kept and by the end of the GA run the best individual is the one with the 
optimal result. In this case optimal refers to the fitness function of the individual, which is the 
function that defines how good an individual is. Extrapolating this towards DNN we can then say 
that if we can express an individual as the set of hyper-parameters of a DNN then the optimal 
DNN configuration is the one which evaluates to the best outcome. The best outcome for a DNN 
is the one that achieves the best accuracy and the best learning rate. By treating the parameters 
that define a DNN as an optimization problem we map this problem to a Genetic Algorithm to 

find the best possible result within a given time.  
 

4. RESEARCH PROBLEM 
 

During the confirmation of DNNs, we need to determine which parameters to use. In this context, 
I capture a small subset of the parameters in a DNN and attempt to optimize them. It is possible 



98         Computer Science & Information Technology (CS & IT) 

to model a DNN with much greater complexity but in order to verify the results it will take much 
longer than the computational resources available to complete. 
 
The research problem is defined as follows: using a DNN and given datasets, can a GA be used to 

generate better results in a reasonable time period? Here a reasonable period refers to under one 
hour of time and the parameters explored are the batch sizes, number of layers, nodes within 
layers, and activations used within layers. 

 

5. ALGORITHMIC SOLUTION 
 
Since the number of possible combinations of these parameters is extremely large, a upper bound 
has been placed on these values in order to comply with the requirement that a result can be 
found within a reasonable time period. The activations used are those available within the Python   

Scikit-Learn framework. Although some activations are probably unnecessary there was no filtering 
done to prevent this. Instead, the GA identifies these as being poor performers and filter them out 
of the results. The batch sizes could potentially rise to half of the entire dataset but these instead 
were reduced to a more reasonable range. The reasonable range was determined experimentally 
ahead of time by noting that extremely large values would often result in extremely poor accuracy 
while at the same time extremely smaller batch sizes would runs slowly and result in poor 
accuracy. 
 

Algorithm A shows the procedure to build and run a GA. Algorithm B shows the procedure of 
creating and running a model.  
 
Algorithm A  

Population Initialization  

 while generations < 25 do 

  for all individuals in population  
                do Calculate  fitness 
 end for 

  select N best fitness individuals to create popula tion 
 for all individuals in best do 

 if random < Mutation Probability then 

 mutate individual 
 end if 

 end for 

 for all individual A, individual B in best do 

 if random < Crossover Probability then 

 crossover individual A, individual B 
 end if 

 end for 

 generations++ 
 end while 

 output best individual 
 

Algorithm B 

CREATEMODEL (individual) 
 model = Sequential 
 add input layer to model 

 for all layers in individual do 

 if random < Layer Probability then 



Computer Science & Information Technology (CS & IT)                                        99 

 

 

 add random layer to model 
 end if 

 end for 

 add output layer to model 

 return model 
 
RUNMODEL (individual) 

 train, test data.split() 
 compile model from train, test 

 model CreateModel(individual) 
 run model 

 return model accuracy 

 
 

6. EXPERIMENTS 
 
The DNN and GA are implemented using Python Scikit-Learn framework on Windows. I used 
the Distributed Evolutionary Algorithms in Python (DEAP) which is an evolutionary 
computation framework for rapid prototyping and testing of ideas [27]. It incorporates the data 
structures and tools required to implement most common evolutionary computation techniques 
such as genetic algorithm, genetic programming, evolution strategies, particle swarm 

optimization, differential evolution, traffic flow [27, 28, 29, 30] and estimation of distribution 
algorithm. The benchmarks dataset MNIST and CIFAR-10 are used, which make use of 
categorical cross entropy as the loss function as well as the adam optimizer. For the GA, the 
population was limited to 25 in order to limit the computational running time. 
 
Both datasets show a clear advantage to using the GA as the best accuracy achieved was better 
than on a basic CNN with no hidden layer. The best performing GA had around batch size of 100 
whereas the worse performing had a batch size of 500. This indicates that the batch size is closely 

related to the data itself rather than a generic value and is a great candidate for hyper-parameter 
tuning. 

 

7. CONCLUSION 
 
The genetic algorithm is beneficial to be used for the purposes of hyper-parameters tuning in 
deep neural network learning. It can enhance the chances to identify an efficient architecture as 
well as optimize the performance to discover the best parameters for a given problem. Instead of 
researching what the current best solution is, it is wise to allow the genetic algorithm to do the 

work instead. Rather than a human applying an educated guess at what will perform better, the 
genetic algorithm will do the same thing without requiring additional effort to review the results. 
It is therefore a good approach to tuning hyper-parameters, particularly in a domain where there 
is not sufficient intuitive knowledge. However, the genetic algorithm suffers from high 
computational costs and in some cases is not realistic if computational resources are limited.  
 

REFERENCES 
 
[1]  Valueva, M., Nagornov, N., Lyakhov, P., Valuev, G., Chervyakov, N. (2020). Application of the 

residue number system to reduce hardware costs of the convolutional neural network implementation. 

Mathematics and Computers in Simulation. Elsevier BV. 177: 232–243.  

[2]  Zhang, W. (1988). Shift-invariant pattern recognition neural network and its optical architecture. 

Proceedings of Annual Conference of the Japan Society of Applied Physics. 



100         Computer Science & Information Technology (CS & IT) 

[3]  Avilov, O., Rimbert, S., Popov, A. Bougrain, L. (2020). Deep Learning Techniques to Improve 

Intraoperative Awareness Detection from Electroencephalographic Signals. The 42nd Annual 

International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 

Montreal, QC, Canada: IEEE. 2020: 142–145. 

[4]  Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., Iosifidis, A. (2017). Forecasting 

Stock Prices from the Limit Order Book Using Convolutional Neural Networks. 2017 IEEE 19th 

Conference on Business Informatics (CBI). Thessaloniki, Greece: IEEE: 7–12. 

doi:10.1109/CBI.2017.23. ISBN 978-1-5386-3035-8. S2CID 4950757. 
[5]  Matusugu, M., Katsuhiko, M., Yusuke, M., Yuji, K. (2003). Subject independent facial expression 

recognition with robust face detection using a convolutional neural network (PDF). Neural Networks. 

16 (5): 555–559. doi:10.1016/S0893-6080(03)00115-1. PMID 12850007. Retrieved 17 November 

2013. 

[6]  Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press. p. 326. 

[7]  Habibi, H. (2017). Guide to convolutional neural networks: a practical application to traffic-sign 

detection and classification. Heravi, Elnaz Jahani. Cham, Switzerland. ISBN 9783319575490. OCLC 

987790957. 

[8]  Venkatesan, R., & Li, B. (2017). Convolutional Neural Networks in Visual Computing: A Concise 

Guide. CRC Press. ISBN 978-1-351-65032-8. 

[9]  Ciresan, D., Meier, U., Schmidhuber, J. (2012). Multi-column deep neural networks for image 

classification. 2012 IEEE Conference on Computer Vision and Pattern Recognition. New York, NY: 

Institute of Electrical and Electronics Engineers (IEEE). pp. 3642–3649.  

[10]  LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature. 521 (7553): 436–444. 

Bibcode:2015 Natur.521..436L. doi:10.1038/nature14539. PMID 26017442. S2CID 3074096. 

[11]  LeCun, Y., Bengio, Y. (1995). Convolutional networks for images, speech, and time series. In Arbib, 

Michael A. (ed.). The handbook of brain theory and neural networks (Second ed.). The MIT press. 
pp. 276–278. 

[12]  Patrick, L. Viard-Gaudin, C., Barba, D. (2006). A Convolutional Neural Network Approach for 

Objective Video Quality Assessment (PDF). IEEE Transactions on Neural Networks. 17 (5): 1316–

1327. doi:10.1109/TNN.2006.879766. PMID 17001990. S2CID 221185563. Retrieved 17 November 

2013. 

[13]  Viebke, A., Memeti, S., Pllana, S., Abraham, A. (2019). CHAOS: a parallelization scheme for 

training convolutional neural networks on Intel Xeon Phi. The Journal of Supercomputing. 75 (1): 

197–227. arXiv:1702.07908. doi:10.1007/s11227-017-1994-x. S2CID 14135321. 

[14]  Hinton, G. (2012). ImageNet Classification with Deep Convolutional Neural Networks. NIPS'12: 

Proceedings of the 25th International Conference on Neural Information Processing Systems - 

Volume 1. 1: 1097–1105 – via ACM. 

[15]  Haotian, J., Zhong, L., Qianxiao, L. (2021). Approximation Theory of Convolutional Architectures 

for Time Series Modelling. International Conference on Machine Learning. arXiv:2107.09355. 

[16]  Passos, D., & Mishra, P. (2022). A tutorial on automatic hyperparameter tuning of deep spectral 

modelling for regression and classification tasks. Chemometrics and Intelligent Laboratory Systems, 

104520. 

[17]  Gonzales-Martínez, R., Machacuay, J., Rotta, P., & Chinguel, C. (2022). Hyperparameters Tuning of 
Faster R-Cnn Deep Learning Transfer for Persistent Object Detection in Radar Images. IEEE Latin 

America Transactions, 20(4), 677-685. 

[18]  Thavasimani, K. & Srinath, N. (2022). Optimal Hyperparameter Tuning using custom genetic 

algorithm on deep learning to detect twitter bots. Journal of Engineering Science and Technology, 

17(2), 1532-1549. 

[19]  Gerges, F., Zouein, G., Azar, D. (2018). Genetic Algorithms with Local Optima Handling to Solve 

Sudoku Puzzles. Proceedings of the 2018 International Conference on Computing and Artificial 

Intelligence. ICCAI 2018. New York, NY, USA: Association for Computing Machinery: 19–22. 

doi:10.1145/3194452.3194463. ISBN 978-1-4503-6419-5. S2CID 44152535. 

[20]  Ting, C. (2005). On the Mean Convergence Time of Multi-parent Genetic Algorithms Without 

Selection. Advances in Artificial Life: 403–412. ISBN 978-3-540-28848-0. 

[21]  Deb, K. & Spears, W. (1997). C6.2: Speciation methods. Handbook of Evolutionary Computation. 

Institute of Physics Publishing. S2CID 3547258. 



Computer Science & Information Technology (CS & IT)                                        101 

[22]  Patrascu, M., Stancu, A.F., Pop, F. (2014). HELGA: a heterogeneous encoding lifelike genetic 

algorithm for population evolution modeling and simulation. Soft Computing. 18 (12): 2565–2576. 

doi:10.1007/s00500-014-1401-y. S2CID 29821873. 

[23]  Srinivas, M., Patnaik, L. (1994). Adaptive probabilities of crossover and mutation in genetic 

algorithms (PDF). IEEE Transactions on System, Man and Cybernetics. 24 (4): 656–667. 

doi:10.1109/21.286385. 

[24]  Zhang, J., Chung, H., Lo, W. L. (2007). Clustering-Based Adaptive Crossover and Mutation 

Probabilities for Genetic Algorithms. IEEE Transactions on Evolutionary Computation. 11 (3): 326–
335. doi:10.1109/TEVC.2006.880727. S2CID 2625150. 

 [25]  Fraser, A. & Burnell, D. (1970). Computer Models in Genetics. New York: McGraw-Hill. ISBN 978-

0-07-021904-5. 

[26]  Fogel, D. B., ed. (1998). Evolutionary Computation: The Fossil Record. New York: IEEE Press. 

ISBN 978-0-7803-3481-6. 

[27]  Fortin, F., De Rainville, F., Gardner, F., Gagné, C., Parizeau, M. (2012). DEAP: Evolutionary 

Algorithms Made Easy. Journal of Machine Learning Research. 13: 2171–2175. 

[28]  Gonzales-Martínez, R., Machacuay, J., Rotta, P., & Chinguel, C. (2022). Hyperparameters Tuning of 

Faster R-Cnn Deep Learning Transfer for Persistent Object Detection in Radar Images. IEEE Latin 

America Transactions, 20(4), 677-685. 

[29]  Shankar, K., Kumar, S., Dutta, A. K., Alkhayyat, A., Jawad, A. J. A. M., Abbas, A. H., & Yousif, Y. 

K. (2022). An Automated Hyperparameter Tuning Recurrent Neural Network Model for Fruit 

Classification. Mathematics, 10(13), 2358. 

[30]  Elhoseny, M., Metawa, N., Sztano, G., & El-Hasnony, I. M. (2022). Deep Learning-Based Model for 

Financial Distress Prediction. Annals of Operations Research, 1-23. 

 

 
 

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons 

Attribution (CC BY) license. 

 

http://airccse.org/

	Abstract
	Keywords
	Deep Learning, Convolutional Neural Network, Deep Neural Network Learning, Hyper-Parameters.


