

David C. Wyld et al. (Eds): ICAITA, CDKP, CBW, SOFT, CMC, Signal, MLT-2023
pp. 01-16, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.130601

GSVD: COMMON VULNERABILITY DATASET

FOR SMART CONTRACTS ON BSC
AND POLYGON

Ziniu Shen1, Yunfang Chen2 and Wei Zhang3

School of Computer Science, Nanjing University of Posts and

Telecommunications, Nanjing, China

ABSTRACT

The blockchain 2.0 age, marked by smart contract and Ethereum, has arrived couple years ago.

Its technologies have expanded the application scenarios of blockchain technology and driven
the boom of decentralized Finance. However, smart contract vulnerabilities and security issues

are also emerging one after another. Hackers have exploited these vulnerabilities to cause huge

economic losses. In recent years, a large amount of research on the analysis and detection of

smart contract vulnerabilities has emerged, but there has been no common detection tool and

corresponding test dataset. In this paper, we build GSVD dataset (Generalized Smart Contract

Vulnerability Dataset) consisting four offline datasets using smart contracts on two chains,

Polygon and BSC: two small Solidity datasets consisting of 153 labeled smart contract source

codes, which can be used to test the performance of vulnerability mining tools; two large

Solidity datasets consisting of 52,202 un labeled real smart contract source codes that can be

used to verify the correctness of various theories and tools under a large number of real data

conditions. At the same time, this paper integrates the scripting framework accompanying the

GSVD dataset, which can execute a variety of popular automated vulnerability detection tools
on top of these datasets and generate analysis results of contracts and potential vulnerabilities.

We tested the Minor dataset under GSVD using three tools (Slither, Manticore, Mythril) that are

kept up to date and found that the combined use of all tools detected 61.1% of labeled

vulnerabilities, of which Mythril has the highest detection rate of 42.6%. It is not difficult to

conclude that there`re still ample room for advancement for current smart contract

vulnerability mining tools because of their underlying methods. Besides, our dataset can

contribute to the ultimate target greatly by providing mining tools plenty real contracts

information.

KEYWORDS

Smart Contract, Blockchain, Security, Vulnerability Detection, Dataset

1. INTRODUCTION

Since its birth, blockchain technology has gained widespread attention, developed numerous
applications and occupied an increasing market share in the fields of computing and finance by

virtue of its revolutionary decentralization and immutability. In 2013, Vitalik Buterin[1] released

an Ethereum white paper, introducing smart contracts and Ethereum virtual machines (EVMs) for
blockchain, marking the arrival of Blockchain 2.0. After several years of development, more and

more platforms that support smart contract and EVM have emerged. Although Ethereum still

dominates, other platforms have gradually grabbed more and more shares through iterative

updates, which are represented by BSC, Polygon, Avalanche, etc. Ethereum`s share of total value
locked by platforms has dropped all the way from 98% at the peak to 70.7% as shown in Figure 1

http://airccse.org/cscp.html
http://airccse.org/csit/V13N06.html
https://doi.org/10.5121/csit.2023.130601

2 Computer Science & Information Technology (CS & IT)

and still keeps decreasing, while the other four platforms in the top five possess a combined share
of more than 20%. In addition to differences such as Layer-2 optimizations, hard forks, and

reconfigured consensus mechanisms for Ethereum flaws, these platforms all require the use of

smart contracts, written through the Solidity language and executed in an EVM environment, as a

result, they still have to face the inevitable security vulnerabilities of smart contracts themselves.
In today's explosive growth of decentralized finance (DeFi) and decentralized applications

(DApp), the number of smart contracts continues to increase and contain more and more complex

functions. However, in the context of development and iteration of the platform superior to
anything else, the corresponding review and auditing mechanism are obviously not being paid

enough attention. Meanwhile, the system and organization of anti-exploit are not well developed,

all these factors have led to a proliferation of hacking attacks in recent years, caused huge losses
to the market and users. In order to solve these problems, put aside the emergency

countermeasures of the major platforms themselves, researchers in the field of security are also

devoted to this area, invented a lot of vulnerability detection methods and tools. Tsankov et al.[2]

proposed the tool Securify and found that 65.9% of the 24,594 real EVM contracts were
containing vulnerabilities or errors. Luu et al.[3] proposed the symbolic execution tool Oyente

and tested 19,366 real EVM contracts, of which 8,833 were flagged as containing vulnerabilities.

Nikolic et al.[4] tested nearly 1 million contracts against three specific vulnerabilities, of which
34,200 were vulnerable. However, these methods and tools generally focus on only some of the

vulnerabilities and detect specific types of vulnerabilities through specific methods, therefore

these efforts have considerable limitations. In addition to open-source methods and tools from
academia, most of the vulnerability detection methods and tools developed by blockchain

platforms or private security companies are closed-source. Besides, we found that even if choose

open-source tools, people will face the dilemma of lacking data in the process of validating

existing findings or making comparison of the performance between chosen tool and new tool.
Usually, people need to contact the author to get access to the test dataset of the tool but many

authors stop updating and maintaining the tool after their graduation, which makes it difficult to

get in touch and retrieve data.

Figure 1. Total Value Locked by Smart Contract Platform by Dec,31,2021

In order to solve the above-mentioned real-life problems, we made targeted attempts and

achieved some viable results, our purposes and work are as follows. First, considering the large

scale and wide popularity of the Ethereum, both the quality of user and contract are influenced by
the number of contracts, a significant number of beginners are using Ethereum to learn about

blockchain-related content and a large number of contracts with no real meaning are deployed for

only practice or even scams. To ensure fairness and accuracy when comparing the performance

 Computer Science & Information Technology (CS & IT) 3

of smart contract vulnerability detection tools, we chose the smart contract platform BSC and
Polygon, which are second only to Ethereum in terms of total value locked by platforms, to

provide 2 kinds of data sets with a total of 4 copies. One of them consists of a small Solidity

dataset containing the source code of several manually-labelled smart contracts and one of them

consists of a large Solidity dataset containing the source code of several labelled real smart
contracts. The small datasets for BSC and Polygon have 56 and 97 real contracts respectively, the

large datasets have 10,600 and 41,602 real contracts respectively. In these datasets, contracts in

small datasets usually have relative few lines of code and functions and contain one or more
vulnerabilities. They are manually reviewed, auditors filtered and labelled eligible contracts to

undertake performance testing of vulnerability mining tools, comparing it with existing tools and

other duties. Contracts in large datasets are characterized by a relatively large number of lines of
code and functions, uneven distribution, some containing vulnerabilities and some not, etc. They

are selected from real contracts deployed on the chain over a period of time and can be used to

take on the responsibility of big data analysis of information carried by real-world smart

contracts. Second, in order to better unify existing open-source vulnerability detection tools and
make them easy to use, we propose a GSVD companion execution script framework that

integrates three SOTA vulnerability detection tools to analyse contracts and generate multiple

contract content-related analysis reports by simply adjusting the parameters. Last, in order to
validate the GSVD dataset and the utility of its scripting framework, we spent nearly 47 hours

testing and validating GSVDMinor with Slither, Mythril and Manticore, obtained specific execution

and performance analysis results for each tool, from which we also obtained many relevant
conclusions for real-world smart contracts and platforms.

2. BACKGROUND AND RELATED WORK

2.1. Smart Contract based Platform

In the mid-1990s, cryptographer Nick Szabo introduced the concept of smart contracts[5], his

definition of a smart contract is “A smart contract is a set of promises, specified in digital form,
including protocols within which the parties perform on these promises”, but the technology was

not widely supported and used due to the mismatch of technical means and the immaturity of the

online trust environment at that time. It wasn't until the advent of blockchain technology and the
maturation of the Internet at the turn of this century that it became useful. Blockchain supports

programmable digital contracts and uses its features like decentralization, tamper proof,

transparency and traceability to build a trusted community environment. Vitalik Buterin

published the Ethereum white paper in 2013, officially introducing smart contracts to the
blockchain, revealing the arrival of the blockchain 2.0 and since then the smart contract platform

has become more and more important in computers, finance and many other fields.

Essentially speaking, smart contract is the digitalization of traditional contract, which is deployed

on a blockchain network and contains specific triggers that can automatically execute once the

real situation meets the trigger conditions. On the blockchain platform, it can carry out
coordinated management of electronic assets and data, complete transactions between users.

Smart contracts have the advantages of low cost, ease of use, globalization, and high

trustworthiness when comparing with traditional contracts.

Smart contract platform usually refers to a blockchain platform that provides standards and

interfaces for smart contract development and has an environment in which smart contracts can

run. The earliest and by far the most successful smart contract platform is Ethereum, which
provides a development interface and runtime environment that has become a model for later

generations to emulate or directly reference. In order to better understand the different platforms

4 Computer Science & Information Technology (CS & IT)

and the key points of the work in this paper, we are going to introduce some of the more
mainstream smart contract platforms below.

Ethereum is the first blockchain platform to put smart contracts into practical use and the first to

provide a complete smart contract development interface. It was originally released by Vitalik
Buterin in 2013, unlike Bitcoin, Ethereum provides the Turing-complete programming language

Solidity and the corresponding runtime environment EVM (Ethereum Virtual Machine). On this

basis, users can write smart contracts and develop decentralized applications easily. In addition,
Ethereum also developed many token standards, mainly represented by the token standard

ERC20 and the digital asset standard ERC721. Token standards are a series of common program

interface specifications in essence, smart contracts created following this standard can be traded
with numerous exchanges and wallet accounts. These standardized supports make smart contract

development easier and less risky. With the firstness and stability of the technology, Ethereum

has gained a huge number of ordinary users and many enterprises. JP Morgan, Bank of New

York, Microsoft, Intel and other giants have adopted Ether's smart contract system early.
According to Messari, Ethereum`s market cap has now surpassed $340 billion, second only to

Bitcoin and way ahead of other blockchain platforms.

The Binance Smart Chain (BSC) was born in April 2019 and it is not a Layer-2 solution, its

motivation is to optimize the slow transaction speed of Ethereum, for which BSC uses Proof of

Stacked Authority (PoA) consensus mechanism. The main schemes are blocks are mined by a
limited number of validators, validators take turns to mine blocks in PoA, and the set of

validators is selected and eliminated based on on-chain governance of equity pledges, etc. This

reduces the block generation time to about 3 seconds and the transaction to less than 1 minute. In

addition, the revenue on the BSC comes from fees, which are paid through BNB, a token that
never inflate, so it would not generate mining revenue like Bitcoin or Ethereum. To ensure a

user-friendly interactive environment and low learning cost migration, the BSC public chain is

compatible with the Ethereum main net and Ethereum virtual machines, which means that a
significant percentage of decentralized applications, components and tools can be migrated and

run without modification or with only minor modifications from Ethereum to BSC.

Polygon, the platform of the Layer-2 solution for Ethereum, was born in 2021 and is known as
the "Guardian of Ethereum", which was formerly known as the original MATIC blockchain on

Ethereum to solve the problem of unsatisfactory transaction costs and time costs on Ethereum.

There are two different types of chains in the Polygon ecosystem: the Stand-Alone Chain and the
Secured Chain. The Stand-Alone Chain has its own unique consensus mechanism, which is more

flexible but less secure than the Secured Chain, which uses the Ethereum blockchain as its

underlying layer and is directly guaranteed by Ethernet. Polygon exists as a commit chain for
Ethereum, with a tree-like of sub-chain created on top of the underlying layer, allowing

transactions to be processed in batches before being sent to the underlying layer. This means that

users on Polygon can create off-chain transactions to pay and interact with smart contracts, which

significantly reduces transaction costs and increases transaction speed. Users can choose a Stand-
Alone Chain or Secured Chain based on their specific needs and take advantage of Polygon's

high scalability for smart contracts and decentralized application development.

2.2. Smart Contract Vulnerability and Detection Tools

Blockchain technology`s feature like tamper proof makes it impossible to change a smart contract
once it is on the chain, hackers can get the source code by decompiling the bytecode. Many

projects adhering to the spirit of open source, directly disclose the source code of smart contracts,

which also greatly reduce the difficulty and cost of hacking. In addition, the nature of smart
contracts is code, but even experienced coders cannot guarantee whether the contracts have

 Computer Science & Information Technology (CS & IT) 5

vulnerabilities that can be exploited, plus the operating environment of smart contract platforms
cannot guarantee that there are no native vulnerabilities or vulnerabilities that exist after

interacting with different contracts, vulnerabilities and security issues have been with developers

and users since the beginning of smart contracts. In 2016, The DAO project on Ethereum was

hacked[6] and hackers directly diverted 3.6 million Ethereum tokens, accounting for 1/3 of the
total project crowdfunding at the time. In 2018, a major security vulnerability similar to the BEC

overflow occurred in SmartMesh, resulting in the theft of over $140 million by hackers. In April

2022, hackers attacked the Beanstalk Farms project through a malicious code logic vulnerability,
which ultimately cost the project about $182 million. Smart contracts and the platforms

themselves have been in the shadow of vulnerabilities and hackers.

With the advancement of blockchain and smart contract technology, decentralized applications

and decentralized finance have also seen explosive growth, the booming market has brought

about a continuous expansion in the number and scale of smart contracts. In order to meet the

needs of more users, functions within the contract continue to become more complex and
consequently, a wider variety of contract vulnerabilities and more serious problems begin to

emerge. The NCC Group has previously summarized the issues related to vulnerabilities that

appear more frequently and have a higher security threat[7] like Reentrancy, Access Control,
Arithmetic, Unchecked low-level calls, Denial of service, Time manipulation, Short address, etc.

Although the vulnerabilities in the early stages of smart contracts have been fixed and prevented

to some extent by the platform and community, smart contract platforms or exchanges can only
implement mandatory locking of transactions and accounts to rescue assets after an attack.

Vulnerability detection for on-chain smart contracts is not technically or cost feasible, so contract

vulnerability detection before deployment is almost the only option available to users.

For those who can afford, vulnerability detection before smart contracts` deployment on the chain

is often manually reviewed by experienced security and coding experts, surely, the cost of which

is high in terms of money and time. In this condition, low-cost open-source smart contract
vulnerability mining tool is the right choice for the majority of ordinary users. A. López Vivar et

al[8] have conducted a preliminary study on open-source smart contract vulnerability detection

tools and proposed the ESAF framework. In order to find the right detection tool, we have further

investigated these tools based on the selection of ESAF, and the list as well as the details are
summarized in Table 1. Considering that the versions of Solidity language and Solc compiler

have been iterating at a high speed, we finally chose Slither, Manticore and Mythril, three tools

that have been kept up-to-date, to perform the detection work on the dataset.

6 Computer Science & Information Technology (CS & IT)

Table 1. Potential detection tools for subsequent tests.

Tools Ease of

Installation

Up to

Date

Tool URLs

ContractLarva [9] Easy No https://github.com/gordonpace/contractLarva

Erays[10] Medium No https://github.com/teamnsrg/erays

EtherTrust[11] Hard No https://www.netidee.at/ethertrust

EthIR[12] Hard No https://github.com/costa-group/EthIR

MadMax[13] Medium No https://github.com/nevillegrech/MadMax

MAIAN[4] Hard No https://github.com/MAIAN-tool/MAIAN

Manticore[14] Medium Yes https://github.com/trailofbits/manticore/

Mythril[15] Medium Yes https://github.com/ConsenSys/mythril-classic

Osiris[16] Hard No https://github.com/christoftorres/Osiris

Oyente[3] Hard No https://github.com/melonproject/oyente

Rattle Easy No https://github.com/crytic/rattle

Securify[2] Easy No https://github.com/eth-sri/securify

Slither[17] Easy Yes https://github.com/crytic/slither

SmartCheck[18] Easy No https://github.com/smartdec/smartcheck

Solgraph Easy No https://github.com/raineorshine/solgraph

SolMet[19] Easy No https://github.com/chicxurug/SolMet

Vandal[20] Easy No https://github.com/usyd-blockchain/vandal

3. GSVD: GENERALIZED SMART CONTRACT VULNERABILITY DATASE

3.1. Steps to Generate the Dataset

GSVD is the abbreviation for Generalized Smart Contract Vulnerability Dataset. Its original

intent was to provide the blockchain community with a reliable, sensible, and easy-to-use dataset,
one that goes beyond just collecting data and then displaying it directly. To achieve this goal, we

have designed several meticulous construction steps, which are shown in Figure 2. We have also

written various automation scripts to match the proper operation of each step in the big data
scenario.

Figure 2. Steps to generate GSVD

The first thing to experience in organizing data is data collection. After investigation, we found

that Google BigQuery [21] provides blockchain-related public datasets but is currently open

source only for Bitcoin and Ethereum data. We then learned that PolygonScan and BscScan, two
third-party websites, provide APIs related to queries and data downloads for smart contracts.

After a short period of extensive data testing, we found that the APIs of these sites had

restrictions such as an upper limit on the number of operations, so we wrote specific crawler
scripts to obtain a variety of information such as contract source code from these two sites.

Considering that the technical difficulty of deploying contracts is small and there will be

 Computer Science & Information Technology (CS & IT) 7

contracts that are not deployed for the purpose of use, we also set the condition that the current
number of transactions is greater than 1 to perform the initial filter. After about six months of

collection, we eventually acquired 77,178 contracts.

After the collection of data, the initial construction of the dataset is completed. The next step is to
filter and clean the collected data. Through our observation of Solidity contracts, we found that a

significant number of contracts import third-party online security libraries such as OpenZeppelin,

which will inevitably have an impact on detection efforts in offline environments. So, we
performed text reading of all contracts and cleaned out all contracts that have imported third-

party online libraries, which totalled 25,218 contracts, accounting for 33% of the total collected

contracts.

Before classifying the dataset, it is important to note that contracts written in the Solidity will fail

to execute when run in EVM because the Solc compiler version in the environment does not

match the version declared in the contract. Therefore, we sampled the Solidity language and Solc
version compatibility verification at first and we found that the final version of each generation is

downward compatible with all versions of this generation. For instance, the final version of the

generation 0.4, which is version 0.4.26, can be compatible with all contracts running between
version 0.4.0 and version 0.4.26. We then proceeded to perform text reading of all contracts in

the dataset and classified the contracts according to the Solidity version declared in it, dividing

the dataset into six broad categories C4, C5, C6, C7, C8, and CU. Among which CU stands for
Category Useless, containing a total of 246 contracts, which were also removed as obsolete cases.

3.2. Composition of GSVD

The GSVD consists entirely of real-world smart contracts written in Solidity and can be divided

into two categories. The first category is GSVDMinor, which contains several real-world smart
contracts labeled with vulnerabilities and can be used to test the performance of vulnerability

mining tools. The second category is GSVDMajor, which contains several real-world smart

contracts with un labeled vulnerabilities and can be used to verify the correctness of various

theories and tools under a large number of real data conditions. Considering the large-scale
popularity of the Ethereum, the quality of users and contracts of this platform is compromised by

the quantity. For example, a considerable number of beginners are using Ether to learn

blockchain-related content and a large number of contracts with no realistic meaning for practice
tests or even scams are deployed. So, in the first stage of dataset construction, we chose BSC and

Polygon, the smart contract platforms whose total value locked by platform second to Ethereum,

as the data source. The initial construction has been completed on the basis of these two

platforms, whereby they can be further subdivided into GSVDMinor
Polygon, GSVDMinor

BSC,
GSVDMajor

Polygon and GSVDMajor
BSC. In the future, when we enter the subsequent phase of dataset

construction, we can also continue to build extensions on different platforms. The specific

structure of GSVD is shown in Figure 3.

Figure 3. Structure and basic content of GSVD

8 Computer Science & Information Technology (CS & IT)

3.2.1. GSVD
Minor

: Small Dataset Focused on Vulnerabilities

The first thing to consider is the application scenario when building GSVDMinor. Our vision is to

provide blockchain security practitioners with a class of real-world smart contract datasets

containing typical vulnerabilities. When researchers want to test their algorithms or tools on real-
world contracts rather than typical vulnerability example contracts, they can experiment on the

GSVDMinor dataset and get a result that has been tested with real-world vulnerabilities. They can

also perform control variates tests on open-source tools that do not open test dataset to compare
the performance of their own algorithms or tools.

We combined a variety of practical situations, discussed and selected 9 typical vulnerabilities for
the construction of the dataset and subsequent validation of the detection tool. When making the

selection of specific contracts, we first used an automatic script to filter the C4 to C8 categories

to get a batch of contracts with 100-300 lines of code in order to ensure the readability of the

code, then obtained 83 Polygon contracts and 117 BSC contracts by random selection, while
ensuring that at least one contract was selected in each category. Finally, these contracts are

manually screened, those with more serious vulnerabilities are recorded and marked, those do not

contain vulnerabilities or contain low-level vulnerabilities that do not affect their use are
removed. After these steps of processing, we obtained 56 Polygon contracts containing 140

vulnerabilities and 97 BSC contracts containing 228 vulnerabilities, with the specific information

shown in Table 2.

Table 2. Information and Details of Vulnerabilities in GSVDMinor.

Categories Description Level
Contracts/Vulns

Polygon BSC

Reentrancy Contract fails to run calls of re-entrant

function
Solidity 25/32 46/53

Access Control Loss of contract authority caused by

ambiguous function authority
Solidity 21/25 42/47

Time

Manipulation

Manipulation of block timestamp
Blockchain 20/23 28/32

Illegal delegate

call

Improper use of delegate call generates error
Solidity 6/7 3/3

Arithmetic Integer over/underflows Solidity 9/10 43/48

Denial of

service

Execution of contract is overwhelmed with

time-consuming computations
Blockchain 7/9 4/5

Trap of

initialization

Contract is overridden in the cause of

uninitialized variables
Solidity 9/9 9/12

Lock of balance The balance is locked with no fallback
function

Solidity 9/10 12/13

Token standard Interaction failure caused by lack of token or

grammar standardization
Solidity 15/15 14/15

In order to give readers a better understanding of GSVDMinor, we have done a preliminary

visualization of the two subsets and presented the number and distribution of different kinds of
vulnerabilities in the dataset through Figure 4, which also reflects the distribution of smart

contract vulnerabilities in the real environment to a certain extent. Reentrancy, Access Control,

Arithmetic and Time Manipulation are the easier vulnerabilities to attack, while the gains from
these vulnerabilities are relatively large.

 Computer Science & Information Technology (CS & IT) 9

Figure 4. Number and distribution of vulnerabilities in GSVDMinor

3.2.2. GSVD
Major

: Large Dataset Focused on Real-world Environments

In addition to GSVDMinor, which is used for performance testing of vulnerability detection tools,

there is GSVDMajor, which is used for big data analysis and experiment on contracts and
platforms in real-world environments. A dataset that consistently integrates a large number of

deployed smart contracts in real-world chains is of considerable relevance. When blockchain

security workers come up with a set of smart contract-related theories or develop a series of
related algorithms, they can experiment directly on GSVDMajor to validate their theories and

algorithms. In other words, researchers can use the Minor dataset to validate the performance of

their vulnerability detection algorithms or tools, but when it comes to big data observation type of
research other than pure vulnerability detection techniques, they need more data to support their

theories and algorithms based on big data in a broad sense, the Major dataset is undoubtedly the

best option.

Like the Minor dataset, GSVDMajor also has two subsets. In Section 3.1 we introduced the

filtering and classification of the raw data, we ended up with 10,600 Polygon contracts and

41,602 BSC contracts after processing. We visualize the classification criterion as a reference and
Figure 5 shows the details of this dataset, with Solidity versions corresponding to C4, C5, C6, C7

and C8 in the classification of Section 3.1, where CU has been cleaned up at the time of

classification.

Figure 5. Number and solidity version distribution of GSVDMajor

10 Computer Science & Information Technology (CS & IT)

4. EXPERIMENT AND RESULT ANALYSIS

4.1. Automatic Scripts and Detection Tools

Before starting the testing experiment, a brief introduction of the three detection tools we have
chosen is given.

Slither: A smart contract vulnerability detection tool using static analysis. It achieves the goal of
mining smart contract vulnerabilities by transforming Solidity contracts into an intermediate

expression called SlithIR, and then performing programmatic analysis means such as data flow

analysis or taint tracking. Developed by Trail of Bits.

Mythril: A security analysis tool using symbolic execution. It compiles and runs the contract

while performing operations such as taint analysis and control flow analysis on the EVM

bytecode to detect possible vulnerabilities. Developed by ConsenSys.

Manticore: A smart contract vulnerability detection tool using symbolic execution. It compiles

and runs contracts, identifies constraints on program inputs and outputs, searches and analyses

program execution path, detects contract vulnerabilities. Also developed by Trail of Bits.

Since all three tools selected support command line execution (CLI), we wrote automated

execution scripts to perform batch processing of contracts, logging of terminal execution results
and batch storage management. In addition, several statistical analysis scripts have been written

to complement the analysis of the test results. These scripts are integrated and can be executed by

simple terminal commands after modifying the input and output addresses, integrating a variety
of contract detection, report generation, data statistics and other functions. Because each tool has

different requirements for the system environment, in order to achieve the purpose of controlling

the variables, we created three Conda virtual environments in the same device to construct the

running environments of different tools and conducted test experiments in turn. After completing
this work, the performance of different tools could be compared and analysed under the same

hardware conditions.

4.2. Results and Data Analysis

4.2.1. Detection Result and Analysis of Minor Dataset

Table 3 shows the preliminary results of GSVDMinor
Polygon and GSVDMinor

BSC detection, we found

that these three tools cannot detect all nine kinds of vulnerabilities. For example, Slither cannot
detect Arithmetic, Manticore and Mythril cannot detect Denial of service, Lock of balance and

Token standard these three kinds of vulnerabilities, which shows that the mainstream open-

source vulnerability detection tools can only focus on some kinds of vulnerabilities because of

their practical application scenarios and underlying technology, which leads to their inability to
detect other kinds of vulnerabilities.

 Computer Science & Information Technology (CS & IT) 11

Table 3. Labeled vulnerabilities detected in GSVDMinor.

Categories

Labelled vulnerabilities detected in

GSVDMinor
Polygon

Labelled vulnerabilities detected in

GSVDMinor
BSC

slither manticore mythril Total slither manticore mythril Total

Reentrancy
25/32
78%

10/32
31%

22/32
69%

30/32
94%

43/53
81%

19/53
36%

38/53
72%

47/53
89%

Access

control

7/25

28%

8/25

32%

10/25

40%

12/25

48%

15/47

32%

6/47

13%

18/47

38%

20/47

43%

Time

manipulate

10/23

43%

2/23

9%

3/23

13%

11/23

48%

12/32

38%

2/32

6%

11/32

34%

14/32

44%

Illegal

delegation

3/7

43%

2/7

29%

3/7

43%

4/7

57%

2/3

67%

1/3

33%

1/3

33%

2/3

67%

Arithmetic
0/10

0

3/10

30%

8/10

80%

8/10

80%

0/48

0

10/48

21%

40/48

83%

40/54

83%

Denial of

service

1/9

11%

0/9

0

0/9

0

1/9

11%

2/5

40%

0/5

0

0/5

0

2/5

40%

Trap of

initialize

3/9

33%

1/9

11%

2/9

22%

3/9

33%

5/12

42%

1/12

8%

1/12

8%

5/12

42%

Lock of

balance

5/10

50%

0/10

0

0/10

0

5/10

50%

9/13

69%

0/13

0

0/13

0

9/13

69%

Token

standard

4/15

27%

0/15

0

0/15

0

4/15

27%

7/15

47%

0/15

0

0/15

0

7/15

47%

Total

61/140

45%

26/140

19%

48/140

34%

79/140

57%

95/228

42%

39/228

17%

109/228

48%

146/22

8

64%

In terms of a single statistic, the Slither has the highest accuracy on the Polygon dataset, which

has a much smaller number of contracts, at 45%, while Mythril has the highest accuracy on the
BSC dataset, which has a much larger amount of data, at 48%, but Manticore has poor results on

both datasets, with a detection rate of less than 20% in both cases. After reviewing the contracts

and detection results, we totalled each tool's detections for each type of vulnerability and the

specific data is filled in the far-right column of Table 3. From these data, we can see that after
combining the three tools for contract detection, the combined detection has a detection rate of

more than 50% for all four vulnerabilities: Reentrancy, Illegal delegate calls, Arithmetic and

Lock of balance, some rate even reached more than 80% among them. Besides, the combined
results for the nine vulnerabilities showed that the combined use of the three tools achieved an

accuracy rate of 57% on GSVDMinor
Polygon and 64% on GSVDMinor

BSC.

We found in Section 3.2 when building the Minor dataset that Reentrancy is the most numerous

of the vulnerabilities contained in the real-world contract and in the process of using tools to

detect the Minor dataset, we found that all three tools have the ability to detect Reentrancy with a

much higher accuracy rate than the other vulnerabilities, with Slither and Mythril having an
accuracy rate of 70%-80%. It is easy to see that in the real world, Reentrancy is extremely easy to

occur and the irregular syntax habits of contract authors and conflicts within common contract

functions can be the cause of this phenomenon. Because this type of vulnerability is basically
only found at the Solidity level, hackers don`t need a high level of technical skills to find this

vulnerability in the code to launch a re-entrancy attack, which is mainly related to functions such

as money transfers and once successful, hackers can gain huge profits. From another perspective,
vulnerability detection tools can also easily detect possible Reentrancy in contracts. Although the

combined detection rates of all three tools are relatively high, it should be noted that several

vulnerabilities are supported by the combined detection rates of a single tool. For example,

combined detection rate of Arithmetic is more than 80% on both datasets but Slither has a
detection rate of 0, Manticore has a detection rate of less than 30% and only Mythril has a

12 Computer Science & Information Technology (CS & IT)

detection rate of more than 80%. More similar situations arise in the detection of vulnerabilities
such as Denial of service, Lock of balance and Token standard.

Table 4. All vulnerabilities detected in GSVDMinor

Categories

All vulnerabilities detected in

GSVDMinor
Polygon

All vulnerabilities detected in

GSVDMinor
BSC

slither manticore mythril Total slither manticore mythril Total

Reentrancy 41 20 31 92 58 32 47 137

Access control 16 8 16 40 21 8 26 55

Time manipulate 18 4 4 26 13 5 11 29

Illegal delegation 12 2 4 18 2 1 2 5

Arithmetic 0 5 10 18 0 23 56 79

Denial of service 1 0 0 1 5 0 0 5

Trap of initialize 3 1 2 6 8 1 1 10

Lock of balance 5 0 0 5 9 0 0 9

Token standard 7 0 0 7 9 0 0 9

Others 133 47 86 266 207 73 135 415

Total 235 87 153 477 332 143 278 753

In addition to the vulnerabilities we labelled in advance, these detection tools also detected some

unlabelled vulnerabilities in the Minor dataset and we made a count of the number of
vulnerabilities detected, which is presented in Table 4. Out of the 9 different vulnerabilities

detected, 3 tools showed some degree of false detection. Besides, there were a large number of

other vulnerabilities detected by these three tools, which we labelled as Others and recorded in

Table 4. Because of the presence of these two phenomena, there are some cells in Table 4 where
the data recorded also exceeds the number of vulnerabilities labelled.

Because the performance of the device running the inspection tools is not good, the execution
time is much higher than the time that each tool should theoretically achieve. However, we can

still use the control variates to find out how the execution comparisons between the three tools.

Since we used automatic batch-processing scripts for the experiment, we only need to record the

starting and ending time of the script. Table 5 shows information about the specific processing
time of each tool. From Table 5 we can see that Slither is the tool with the shortest execution

time, taking only 22 minutes to complete the detection of 153 smart contracts in two subsets of

GSVDMinor, while Manticore and Mythril take significantly longer, with Manticore, which uses
dynamic symbolic execution technology, taking the longest time, nearly 42 hours, to complete.

However, combined with Table 3 above, we can see that Manticore, which takes the longest time,

has the lowest detection rate for vulnerabilities.

The reason for this big difference in processing time is that Slither is a static analysis tool that

only needs to check and analyse the code to reach a conclusion, while the other two tools need to

compile and simulate the execution of the contract, as well as testing the contract, so it is clear
that compiling the contract is a rather time-consuming process.

Table 5. Execution Time of Each Tool.

Number Tools Avg Exec Time Total Exec Time

1 Slither 0 m 9 s 0 h 22 m 31 s

2 Manticore 16 m 24 s 41 h 54 m 2 s

3 Mythril 1 m 42 s 4h 15 m 6 s

 Computer Science & Information Technology (CS & IT) 13

4.2.2. Data Analysis of Major Dataset

Since the performance of the devices used for the experiments is not top-notch, we only

performed some statistical and analytical work on the Major dataset. In other words, we hope to

conduct not only contract vulnerability-related experiments on the Major dataset, but also a
variety of diversified big data analysis and real phenomenon feedback. Figure 6 shows the

distribution of contract versions of Polygon and BSC subset from the Major dataset. We can see

that just over a year after its announcement, Solidity v0.8.0 is already widely used in real-world
contracts on real-world platforms. From the composition of GSVD, v0.8.0 occupies an almost

80% share of the absolute dominance on Polygon, while on BSC, v0.8.0 also has a 51% share. In

addition, v0.6.0 has more than 3 times the share of v0.7.0. This phenomenon also shows that the
new features in v0.7.0 are not easy to use and not popular.

Figure 6. Distribution of solidity versions in GSVDMajor

In addition, we also did preliminary statistics and analysis on the speed of smart contract updates,

the number of codes, and other information during the collection process. Figure 7 shows the
average daily number of smart contract deployments per month on BSC and Polygon starting in

November 2021. The line graph shows that the average daily number of contracts deployed on

both platforms is growing at an extremely fast rate over time, reflecting the fact that as
decentralized finance (DeFi) and decentralized applications (DApp) are booming, more users are

using smart contracts and more professional workers are joining in the development and O&M of

smart contract.

Figure 7. Average Daily Number of Smart Contract Deployed on BSC and Polygon Per Month

14 Computer Science & Information Technology (CS & IT)

5. CONCLUSIONS

In this paper, we collected and built a new smart contract dataset GSVD, containing 2 categories,

2 smart contract platforms and 4 subsets, which currently has over 52,000 different real-world

smart contracts after the first phase of work. Based on these contracts, we filtered and classified

them into Minor and Major dataset, focusing on vulnerability detection and real smart contract
environment of the moment respectively. After completing the build, we performed vulnerability

detection on the Minor dataset and statistical analysis on the Major dataset, which yielded a lot of

useful vulnerability data and discovered many smart contract-related phenomena worthy of
deeper investigation. Because of the huge number of contracts and lines of code in the dataset, we

also wrote multiple automated execution scripts, integrated them and worked with the entire

dataset. The dataset, supporting scripting tools and experimental results presented in this paper

are of considerable value to the development of work related to smart contract vulnerabilities and
platforms. We will continue to work on the basis of the existing results, update and expand the

dataset, push the experiment to a larger space and provide high-value content for related workers.

6. FUTURE WORKS

Although the number of GSVD data is large enough and the coverage is relatively wide, it is

worth noting that the variety of vulnerabilities in the Minor dataset is not enough and the

distribution is not uniform. Besides, although the Major dataset is large enough, the update speed
of smart contracts in the real world is extremely fast and therefore, the contracts in the Major

dataset are not able to maintain timeliness. In the construction and experimentation of GSVD, we

ensured the replicability of GSVD by streamlining the workflow and writing automatic execution
scripts. In the first phase we collected contract content for the BSC and Polygon over a period of

time. With everything going well, we plan to continuously update the contracts for both platforms

in Phase 2, expanding the Minor and Major datasets after screening and cleaning. In addition to
this, we have plans to expand other blockchain platforms that support smart contracts and use

EVM in phase 2.

In addition to plans to expand the size of the dataset, we also have plans to optimize its use, such
as providing more granular filtering, publishing to the website and providing conditional query

services, so that users do not need to download the full dataset to get the part of the contract they

want. However, when users use the query and download service, they can only query by
objective conditions such as balance, number of transactions, Solidity version number, etc. When

it comes to the contract content, there is nothing they can do. Therefore, in addition to the

expansion and optimization in the second phase, we are going to do further research on user
notice through other existing tools or develop our own tools, so that we can display the contract

content and make the dataset easier to use and provide the users with a better experience.

Besides, we noticed that some innovative modern methods are emerging and beat traditional
detection methods in some aspects. For example, N Ashizawa et al.[22] tried to introduce

machine learning to detect smart contract vulnerability, L Zhang et al. [23]proposed hybrid

methods combing with word embedding and different deep learning methods. We also plan to
expand our detecting module with newly-released tools which applying deep learning methods.

In addition to theoretical and software work, the subsequent phase of work cannot be carried out

without better equipment. We are already planning to use a multi-core processor, large memory
cloud platform as the execution platform for experiments and datasets, which will greatly

improve the speed of dataset construction and experiment execution.

 Computer Science & Information Technology (CS & IT) 15

ACKNOWLEDGEMENTS

The authors would like to thank everyone, just everyone! Plus, this work is supported by

National Key RD Program of China (No.2019YFB2101701).

REFERENCES

[1] Buterin, V. (2014). A next-generation smart contract and decentralized application platform. white

paper, 3(37), 2-1.

[2] Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., & Vechev, M. (2018, October).

Securify: Practical security analysis of smart contracts. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security (pp. 67-82).

[3] Luu, L., Chu, D. H., Olickel, H., Saxena, P., & Hobor, A. (2016, October). Making smart contracts

smarter. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications

security (pp. 254-269).

[4] Nikolić, I., Kolluri, A., Sergey, I., Saxena, P., & Hobor, A. (2018, December). Finding the greedy,

prodigal, and suicidal contracts at scale. In Proceedings of the 34th annual computer security

applications conference (pp. 653-663).
[5] Szabo, N. (1996). Smart contracts: building blocks for digital markets. EXTROPY: The Journal of

Transhumanist Thought,(16), 18(2), 28.

[6] Wikipedia contributors. (2023b, January 9). The DAO (organization). Wikipedia.

https://en.wikipedia.org/w/index.php?title=The_DAO_(organization).

[7] NCC Group. (2018, July 28). Decentralized Application Security Project Top 10 of 2018. NCC

Group. https://dasp.co/index.html.

[8] Vivar, A. L., Orozco, A. L. S., & Villalba, L. J. G. (2021). A security framework for Ethereum smart

contracts. Computer Communications, 172, 119-129.

[9] Azzopardi, S., Ellul, J., & Pace, G. J. (2018, November). Monitoring smart contracts: Contractlarva

and open challenges beyond. In International Conference on Runtime Verification (pp. 113-137).

Springer, Cham.
[10] Zhou, Y., Kumar, D., Bakshi, S., Mason, J., Miller, A., & Bailey, M. (2018). Erays: reverse

engineering ethereum's opaque smart contracts. In 27th USENIX Security Symposium (USENIX

Security 18) (pp. 1371-1385).

[11] Grishchenko, I., Maffei, M., & Schneidewind, C. (2018, April). A semantic framework for the

security analysis of ethereum smart contracts. In International Conference on Principles of Security

and Trust (pp. 243-269). Springer, Cham.

[12] Albert, E., Gordillo, P., Livshits, B., Rubio, A., & Sergey, I. (2018, October). Ethir: A framework for

high-level analysis of ethereum bytecode. In International symposium on automated technology for

verification and analysis (pp. 513-520). Springer, Cham.

[13] Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., & Smaragdakis, Y. (2018). Madmax:

Surviving out-of-gas conditions in ethereum smart contracts. Proceedings of the ACM on

Programming Languages, 2(OOPSLA), 1-27.
[14] Mossberg, M., Manzano, F., Hennenfent, E., Groce, A., Grieco, G., Feist, J., ... & Dinaburg, A.

(2019, November). Manticore: A user-friendly symbolic execution framework for binaries and smart

contracts. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering

(ASE) (pp. 1186-1189). IEEE.

[15] Mueller, B. (2018). Smashing ethereum smart contracts for fun and real profit. HITB SECCONF

Amsterdam, 9, 54.

[16] Torres, C. F., Schütte, J., & State, R. (2018, December). Osiris: Hunting for integer bugs in ethereum

smart contracts. In Proceedings of the 34th Annual Computer Security Applications Conference (pp.

664-676).

[17] Feist, J., Grieco, G., & Groce, A. (2019, May). Slither: a static analysis framework for smart

contracts. In 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB) (pp. 8-15). IEEE.

[18] Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E., & Alexandrov, Y.

(2018, May). Smartcheck: Static analysis of ethereum smart contracts. In Proceedings of the 1st

International Workshop on Emerging Trends in Software Engineering for Blockchain (pp. 9-16).

16 Computer Science & Information Technology (CS & IT)

[19] Hegedűs, P. (2018, May). Towards analyzing the complexity landscape of solidity based ethereum

smart contracts. In Proceedings of the 1st International Workshop on Emerging Trends in Software

Engineering for Blockchain (pp. 35-39).

[20] Brent, L., Jurisevic, A., Kong, M., Liu, E., Gauthier, F., Gramoli, V., ... & Scholz, B. (2018). Vandal:

A scalable security analysis framework for smart contracts. arXiv preprint arXiv:1809.03981.
[21] Google Cloud. (2011). BigQuery: Cloud Data Warehouse. Google Cloud.

https://cloud.google.com/bigquery.

[22] Ashizawa, N., Yanai, N., Cruz, J. P., & Okamura, S. (2021, May). Eth2Vec: learning contract-wide

code representations for vulnerability detection on ethereum smart contracts. In Proceedings of the

3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure (pp. 47-59).

[23] Zhang, L., Chen, W., Wang, W., Jin, Z., Zhao, C., Cai, Z., & Chen, H. (2022). Cbgru: A detection

method of smart contract vulnerability based on a hybrid model. Sensors, 22(9), 3577.

AUTHORS

Ziniu Shen (1998-). Male. Born in Taizhou, China. College of Computer Science,

Nanjing University of Posts and Telecommunications. Master. Focus on Blockchain,

Smart Contract Vulnerabilities, Deep Learning.

Yunfang Chen (1976-). Male. Born in Zhenjiang, China. College of Computer Science,

Nanjing University of Posts and Telecommunications. Professor, Ph.D. Focus on

Computer Network, Blockchain, Artificial Intelligence.

Wei Zhang (1973-). Male. Born in Taizhou, China. College of Computer Science,

Nanjing University of Posts and Telecommunications. Professor, Ph.D. Focus on Cyber
Security, Blockchain, Artificial Intelligence.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

	Abstract
	Keywords
	Smart Contract, Blockchain, Security, Vulnerability Detection, Dataset

