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ABSTRACT 
 
Graph Neural Networks (GNNs) have been shown to effectively model graph-structured data for 

tasks such as graph node classification, link prediction, and graph classification. The graph 

pooling method is an indispensable structure in the graph neural network model. The 

traditional graph neural network pooling methods all employ downsampling or node 

aggregating to reduce graph nodes. However, these methods do not fully consider spatial 

distribution of nodes of different classes of graphs, and making it difficult to distinguish the 

class of graphs with spatial locations close to each other. To solve such problems, this article 

proposes a Maximum Variance graph feature Multistructure graph classification method 
(MVM), which extracts graph information from the perspective of graph nodes feature and 

graph topology. From the nodes feature perspective, we enlarge the variance between different 

classes while maintaining the variance between the same class of data. Then the hierarchical 

graph convolution and pooling are performed from a topological perspective and combined 

with a CNN readout mechanism to preserve more graph information to obtain a graph-level 

representation with strong discrimination. Experiments demonstrate that our method 

outperforms several number of state-of-the-art graph classification methods on multiple 

publicly available datasets. 
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1. INTRODUCTION 
 

Convolutional neural network (CNN),[1] has achieved satisfactory performance in computer 
vision[2],[3], natural language processing[4]. The data involved in these tasks are grid-structured 

data (e.g., texts, images, and videos), which can be described by regular Euclidean structured data. 

Convolution and pooling methods can be used to effectively processing such data and achieve 
considerable results. 

 

However, many real-world data mostly have graph structures, which are non-Euclidean structures, 

such as chemical molecules, social networks, knowledge graphs, etc. These structures cannot be 
processed directly by the above methods. In order to solve these problems, some relevant studies 

[5]  try to extend convolution and pooling methods to graph structured data. 

 
Graph neural network (GNN)[6] method has received considerable attention recently. It can be 

competent for most graph related tasks, such as node classification [7], links prediction [8] and 

graph classification[9],[10]. For CNN, pooling operator is an essential part, which can decrease 
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the dimension of feature maps and number of parameters and prevent overfitting. As for graph 
pooling, the general idea is to employ averaging or aggregating operators to cluster the nodes of a 

given graph[7]. However, the simple aggregation scheme ignores the interactive information 

between nodes and regards all nodes as equal status, which hinders the expressive ability of the 

model, and also fails to produce meaningful representations of graph structure features. To solve 
the above problems, a large number of graph pooling schemes have been proposed, which can be 

divided into two parts: global pooling and hierarchical pooling. Global pooling[11] directly 

generates a graph-level representation, which mainly takes the average or sum of all node 
embedding as the graph representation. Hierarchical pooling can be further divided into node 

clustering pooling[12] and node drop pooling[13]. The node clustering scheme calculates the 

similarity or weight between nodes, and aggregates similar nodes into a new node, which is time-
consuming and space-consuming[14]. The node drop is to calculate the score of each node, and 

then discard the low-scoring nodes proportionally, which is more efficient and suitable for large-

scale graphs[15], but inevitably loses some graph information[16]. DiffPool [12], MincutPool 

[14], StructPool[17], and ASAP[18] generate pooled graphs through clustering nodes. gPool [13], 
SAGPool [15] and HGP-SL[19] collapse the graph through hierarchical drop nodes. However, 

these methods only simplify the topological structure of the graph, ignoring the influence of the 

node features of the graph on the results. 
 

In this paper, we propose a Maximum Variance graph feature Multistructure graph classification 

method (MVM) to overcome above difficulties. We extract the graph information from two 
perspectives of graph node features and graph topology. From the graph feature perspective, 

general constrained maximum variance mapping[20] is introduced to enlarge the variance 

between different classes of graphs while maintaining the variance between the same class of 

data. For the matrix decomposition problem involved in the above process, we employ the 
subspace reconstruction[21] from local to global to avoid the large-scale matrix decomposition 

problem. Different from the traditional dimension reduction methods, our main purpose is not to 

reduce the dimension of features, but to make the node features in the projection space contribute 
to the downstream classification tasks to the greatest extent. For the graph topological pooling, 

this paper leverages the multistructure graph classification method[22] to extract and fuse the 

graph topology information of different layers. The main contributions of this paper are as 

follows: 
 

1.  We propose a scheme that extracting graph information from the perspective of graph 

node features and graph topology to make up for the disadvantage of only pooling from 
the perspective of graph topology. 

2.  We expand the variance between different graph classes. Subspace reconstruction is 

employed to solve the problem of large-scale matrix decomposition. Hierarchical 
multistructure graph feature extraction is used to pick up reasonable graph information. 

3.  A range of experiments were carried out on 7 public datasets, and the comparison with 

several latest methods proved the effectiveness of our method. 

 

2. RELATED WORK 
 

2.1. Manifolds Learning 
 
For feature extraction, Principal Component Analysis (PCA)[23] and Linear Discriminant 

Analysis (LDA)[24] are both classical linear feature extraction methods. These methods assume 

that the data are distributed in the global Euclidean space. For data distributed on the nonlinear 
manifolds, the linear feature extraction method unable to get a valid embedding result, so it is 

necessary to introduce nonlinear manifold learning methods to process such data. 
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Laplace Eigenmaps (LE)[25] maintains the distance between adjacent data points before and after 

dimension reduction. Hessian-based Local Linear Embedding(HLLE)[26] replaces Laplacian-

Beltram operator in LE with Hessian operator. Local Tangent Space Alignment (LTSA)[21] 

arranges the tangent space of the neighborhood where the high-dimensional sample points are 
located to represent the local structure of the manifold to obtain a global low dimensional 

representation of the data. 

 

2.2. Graph Pooling 
 

According to the role of graph level representation in learning, graph pooling can be roughly 
divided into global pooling and hierarchical pooling. The former generates a graph level 

representation in a single step, while the latter gradually collapses the graph into a smaller graph.  

 

2.2.1. Global Pooling 

 

The global pooling methods typically aggregate node representations after graph convolutional 
layers and output graph-level representations. Common aggregation operations mainly include 

sum-pool, mean-pool, max-pool, and neural networks. For example, Set2Set[27] utilizes content-

based attention to obtain important nodes and aggregates their information via Long-Short Term 

Memory(LSTM)[28]. SOPool[29] employs bilinear mapping and attention second-order pooling 
and second-order graph statistical information to pool graphs. However, the global pooling 

method ignores the correlation information between nodes and the topology information of the 

graph. 
 

2.2.2. Hierarchical Pooling. 

 
Hierarchical pooling can capture topological information of graphs by learning hierarchical 

representations. The hierarchical pooling can be roughly divided into node clustering pooling and 

node drop pooling. Node clustering pooling aggregates clusters of multiple nodes into a single 

node. DiffPool[12] assigns nodes to different clusters by learning a cluster assignment matrix 
using a GNN model. StructPool[17] utilizes conditional random fields to learn the cluster 

assignment matrix during the pooling process. ASAP[18] adopts a self-attention to capture nodes 

in clusters and computes the cluster scores through local extremum convolution(LEConv). Node 
drop pooling calculates the node scores and discards the low scoring nodes. gPool[13] projects all 

node features into the trainable projection vector, and takes the projection value of the node on 

the projection vector as the score of the node. SAGPool[15] leverages GCN to calculate the 

node's information score. HGP-SL[19] selects some representative nodes according to the 
predefined node information score function. 

 

Apart from node drop and node clustering pooling methods, there also exist some other graph 
pooling methods. For example, EdgePool[30] and HyperDrop[31] pool graphs from the 

perspective of edges. Muchpool[32] combines the node clustering pooling and the node drop 

pooling to capture the different characteristics of the graph. 
 

3. PRELIMINARIES 
 

Let ( , , , , )G V E X A L be a graph, which 1 2{ , ,..., }NV v v v , { }
ij N N

E e


  and 1[ ,..., ] N d

nX x x R   , 

( ) N N

ijA a R   , L  are sets of nodes, sets of edges, nodes features, adjacency matrix of graph G  

and the label of G respectively, which N V  is numbers of nodes and d  is the feature 
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dimension, 0ij ija w   indicates that node 
iv  is connected to jv . Let

1 2[ , ,..., ]nY y y y  is 

corresponding low dimensional embedding of X . The main goal of manifold learning is to learn 

a projection V  which mapping the samples from original space to feature space: 

, 1,2,...,i iy Vx i n  , so that the low-dimensional data Y  can better reflect the essence of the 

original data. And the purpose of graph classification is to learn a mapping :f G L  that maps 

graphs G  to the label L . 

 

 

3.1. Constrained Maximum Variance Mapping 
 

CMVM[20] is a manifold learning method that utilizing local structure and dissimilarities 
between manifolds to construct the relationship between homogeneous and heterogeneous data 

respectively. The purpose of the algorithm is to enlarge the dissimilarities between different 

submanifolds while keeping the local structure unchanged. 
 

3.1.1. Local Structure 
 

The local scatter can be characterized by the Euclidean distance between any pair of the projected 

sample points that are within any local k  nearest neighbours. The neighbourhood ( )iN x  of the 

sample point  ix  forms a manifold, if ( )j ix N x , then the locality can be expressed as: 

 
2|| ||ij i jd x x   

 

On this basis, CMVM consider the local relations of points in embedding and original space, the 

purpose is to keep the locality of the low-dimensional embedding of the sample points inside the 

manifold the same as in the original space. Then iy  must satisfy the constraint: 

 
2 2

2 { ( ) }T

L i j ij i j ij

ij ij

J y y L x x L tr Y D L Y        

 

where ( )ij n nL L   is the local relation adjacency and definitions as follows: 

 
2

1   

0   

i j
ij

x x
L

otherwise

  
 


 

 

3.1.2. Dissimilarities between Manifolds 

 
The Euclidean distance is also often employed as a measure of the dissimilarity and use the sum 

of the squared distance to measure the variance between different manifolds. It noted that the 

dissimilarities exist between different manifolds. Therefore, the CMVM pulls the different 

manifolds apart by maximizing the total sum of distances between outputs with the different 
labels. The dissimilarities between manifolds can be defined as following: 

 
2

2 { ( ) }ij i j

T

D H y y trJ Y Q H Y     

where { , , }ii nnQ diag Q Q , ii ijj
Q H and H  is the label matrix constructed by ijH  

0  if  and  have the same class
=

1  otherwise

i j

ij

x x
H




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3.1.3. Projection Matrix 

 

CMVM introduces linear transformation V to solve the problem of out-of-sample learning ability 

and reduce the computational complexity of generalization learning. The features after feature 

extraction can be obtained by linear transformation T

i iy V x  . According to the above analysis, 

the objective function is formulated as 

                                            
   ( ) max( ) { ( - ) }  

 . .  { ( - ) } { ( - ) }

T T

D

T T T

J V J tr V X Q H X V

s t tr V X D L X V tr X D L X

 


                                       {1} 

 

The linear transformation V is the d eigenvectors corresponding to the first d largest eigenvalues 

of the generalized eigen decomposition of{ ( ) TX Q H X , ( ) }TX D L X . 

 

3.2. Graph Neural Network 
 

Graph Neural Networks (GNN) are deep learning based models that have recently become a 

widely used method for graph analysis. The structure learning of the graph is reflected in the 

aggregation strategy by considering the adjacency information. For graph G , GNNs generally 

follow a message-passing architecture: 
 

( ) ( 1) ( )( , ; )k k kH M A H W  

 

where ( )kH  is the node features of the k -th layer and M  is the message propagation function. 

The trainable parameters are denoted by ( )kW  and the adjacency matrix by A , (0)H  is initialized 

as (0)H X . The propagation function M  can be implemented in various manners [33][34][35]. 
 

4. METHODOLOGY 
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Figure 1. The structure of model. Part a represents the distribution of data over the original 
manifold. Part b indicates the distribution of the separated data on each sub-manifold. Part c 

represents the hierarchical graph feature extraction block. Part d indicates the hierarchical graph 

pooling module. Part e represents the readout layer and the classification layer. 

 

4.1. Model Structure 
 
The overall model structure is shown in  

Figure 1, which consists of two parts. 

1) Graph node feature embedding (GNFE): this part mainly enlarges the distance between 

different classes and the variance between different sub-manifolds by means of manifold learning. 
2) Graph topology pooling (GTP):  which consists of four modules, a hierarchical graph 

convolution module, a graph pooling module, a structure readout module and an output module. 

The main purpose of this part is to extract the feature information of the graph hierarchically by 
means of GNNs. 

 

4.2. Graph Node Feature Embedding(GNFE) 
 

Above graph pooling models [12][27][29][32]reduce the number of graph nodes through node 

clustering pooling and node drop pooling. Although such methods can obtain relatively reliable 
graph representations, their classification performance is limited by the distribution of graph 

nodes. As shown in  

Figure 2 a, different classes of node with low discrimination will affect the performance of graph 

classification methods. Therefore, we need to enhance the distinguishability of different classes 

of graph nodes. We design a variance maximization model based on the CMVM module, as 

depicted in  

Figure 2, which can enlarge the distance between different classes of graph data to benefit 

downstream classification tasks. 

 

 
 

Figure 2. Distribution of graph nodes before and after separation 

 
In this paper, for the following reason, it is not feasible to directly utilize the CMVM algorithm to 

graph data. First, the large number of graph samples leads to higher computational costs; Second, 

the graph relational structure of the samples is different from the data structure processed by the 

original algorithm. Therefore, we need to further generalize CMVM to handle graph data. 
 

Let 
11 1 11

[ , , , , , , ]
N M MNM

g g g gX x x x x  be the graph data, M represents the number of all graphs, 

and ( 1,2, , )iN i M  represents the number of nodes of the i th graph. We batch the data as 

1
[ , , ]

Zb bX X X  ,where 1[ ,..., ]
i ib NX x x  consist of a set of graphs and Z  is the number of 
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batches, 
iN   is the number of  the graph  of the batch 

ib . For the convenience of description, we 

take the first batch of data as an example and denote the first batch of data 

as
1 11 1 2[ ,..., ] [ , , , ]b N nX X x x x x x    and the data after dimension reduction is 

1 2[ , ,..., ]nY y y y . It 

is a disconnected graph [ , ]BG X A  composed of multiple graphs in a batch, A  is the adjacent 

matrix of 
BG . 

 

Since the sample data itself has a graph structure, the construction of the graph structure can be 

omitted. We can directly leverage the label information of the disconnected graph 
BG  to 

construct the local relation matrix and dissimilarities matrix: 

1    and  are graph nodes with the same class
=

0   otherwise

i j

ij

x x
L





 

0  if  and  are graph nodes with same class
=

1  otherwise

i j

ij

x x
H





 

 

By solving the optimization problem {1}, we can obtain the projection matrix V  mapping the 

original space to the feature space. 

 

The projection matrix ( 1,2,..., )iV i Z  is calculated for each batch. Assuming that the local 

embedding feature in the ith  projection space is ( ) ( ) ( )

1 2[ , ,..., ]i i i

i n     , according to LTSA, the 

global embedding  jy  can be obtained by the linear combination between the local embedding: 

 
( )i

j i j

i

y   

 

where i  is the weight coefficient. 

Therefore, inspired by LTSA, we can similarly define the relationship between global projection 
and local mapping as: 

 

1 1 2 2 Z ZV V V V       

 

The weight parameter i  can be obtained by training. Through experiments, it is found that there 

is almost no performance difference between directly averaging all projection matrices and using 
the attention mechanism, so for simplicity we can directly average all projection matrices to get 

the global projection matrix: 

 

1 2

1
( )ZV V V V

Z
     

 

4.3. Graph Topology Pooling (GTP) 
 

GNFE pools the graph from the perspective of node feature dimension without changing the 

structure of the graph and makes different classes of graph data have obvious distribution 
variance, which is more conducive to downstream classification tasks. For the task of graph node 

classification, we are required to design a reasonable graph feature aggregation scheme. The 

traditional GNN method [12][27][29][32]only leverage a single strategy to extract graph features, 
which is more prone to lose graph information. In order to pool the topological structure of the 

graph from multi-routine, preserving the most representative nodes and extract different 
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substructures of the graph, we employ a hierarchical structure and cross-information convolution 
operator[22] for graphs composed of a batch of small graphs to extract graph information. 

Based on the GNFE module, we can obtain the global projection matrix V , then the feature 

matrix after projecting is 

 

' T N dX V X R    

 

which N  is the number of nodes of the batch and d  is the dimension of the feature after 

dimension reduction. We still record the feature after dimension reduction as X . 

 
 

4.3.1. Multistructure Subgraphs 

 
The traditional graph network[27][29] simply stacks GNN modules and only use the graph 

features of the last layer as the input of downstream tasks, which will lose more graph 

information. Inspired by ResNet[36], we pool the graph information of each layer to retain as 

much information as possible. Therefore, the module can be divided into two parts: hierarchical 
subgraph feature extraction and hierarchical graph pooling. Then we will introduce these two 

modules respectively. 

 

4.3.1.1. Hierarchical Subgraph Feature Extraction(HSFE) 

 

 
 

Figure 3. Hierarchical feature extraction 

 
In order to preserve the structural information of different layers, as is shown in  
Figure 3, we use K  GNN models to update the nodes of the original graph. Let 1G , 2G ,…, KG  

represent the graphs extracted by the K  graph networks respectively 

 

1( ), 1,...,i i iG GNN G i K   

 

where 0G G  and GNN models iG  have the following options: GCN, GAT, GraphSAGE. If the 

graph data have a heterogeneous graph, the heterogeneous graph GNN models can also be used 
to process the graph data. 

 

4.3.1.2. Hierarchical Graph Pooling(HGP) 

 
Since our model uses all layers of information, it inevitably brings information redundancy. 

Therefore, we need to process the graph data of each layer of the model by pooling to reduce the 

impact of redundancy. 
 

Generally, graph pooling can be accomplished through two strategies, one is the discarding of 

nodes and the other is the aggregation of nodes. The latter will aggravate information 
redundancy, it is not suitable for our model, so we leverage nodes dropping to pool the graph of 

each layer. The goal of node discard pooling is to define a standard for sampling nodes and 

reconstructing graphs. Therefore, it is necessary to evaluate the importance of each node when 

performing node sampling. We employ GCN and MLP to calculate the score of nodes in each 
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layer of graph to pool the graph from both local and global perspectives. And the attention 
mechanism is employed to update the representation of graph nodes. 

 

 
 

Figure 4. Hierarchical graph pooling 

 
As shown in  
Figure 4, let : ,l l lG H A   be the graph obtained by the l th graph convolution layer in HSFE, 

where lH  is the node feature matrix of the graph and lA  is the adjacency matrix of 
lG . The 

calculation formula of node importance is given as follows: 
 

1 1

2 2max( ( ), ( ))l l l l g l mS D A D H W H W 
 

  

 

where   is a nonlinear activation function,
l lA A I   is the normalized adjacency matrix of graph 

lG , 
lD  is the degree normalized matrix of adjacency matrix 

lA , gW  and mW  are learnable 

parameters. 

 

 
 

Figure 5. Illustration of the Idx vector 

 
According to the score vector S , the k  nodes with the largest score and the edges connecting 

these nodes in lG  form a pooled graph. The feature matrix of the pooled graph can be obtained as 

follow: 
 

,: ,:lS

l

Idx IdxH H S  

 

where, ( , )Idx topk S k  as is depicted in  

Figure 5, 
,:

l k d

IdxH R   and
,:

k d

IdxS R   represent the subset of rows of lH and S  respectively. The 

subset consists of indexed rows corresponding to elements in Idx  that are not equal 0. refers to 

Hadmard product and topk  is a sort function, which returns the node index corresponding to the 

top k  highest scores in the score vector S . 
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The multi-head attention mechanism is exploited to update the feature of nodes in the pool graph 

 

'

1

1

|| ( , , )

( )
      || max

l ls ls ls

ls ls

ls

T
q k v

i i i
i

q k T
T

i i v

i
i

k

H Att H W H W H W

H W H W
soft H W

d







 
  

 
 

 

 

where kd dk

iW R


 , kdq

i

d
RW


  and vdv

i

d
RW


  are all trainable parameters. T indicates the 

number of heads of attention. || indicates splicing calculation. 

 

4.3.2. Readout Function 

 

In this section, we discuss how to aggregate the pooled graphs at each layer to learn reasonable 
graph representation. One idea is directly weight and sum the graph node features of each layer, 

but it ignores the relationship between layers and loses the advantages of hierarchical feature 

extraction models. Therefore, in order to preserve the relational information between different 
layers, as is shown in  

Figure 6, we use convolutional aggregation to extract graph-level representations. The feature 

extraction model proposed in GTP will output different pooling feature graphs. Therefore, the 
representation of feature tensor learning graph level can be constructed by merging node feature 

in these pooled graphs: 

 

'

1

|| i

C

i

H H


  

 

where C  represents the number of pooling graphs, and 'iH  represents the feature matrix of the 

i th pooling graph. 

 

 
 

Figure 6. Illustration of CNN readout mechanism 

 

Since H  is a tensor, a convolutional neural network can be adopted to extract the hierarchical 

graph-level representation and C  can be regarded as the number of channels of a tensor. Finally, 

we obtain graph-level representations gF  of different subgraphs through a two-layer CNN. 

 

4.3.3. Loss Function 
 

Feeding GF  into the MLP classification layer to get the prediction of the graph 

 

1 2
ˆ softmax( ( ) )g m my F W W  
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The loss function is defined as follows 
 

, 1

1
ˆlog

n

ij ij

i j

L y y
n 

    

 

where   represents the activation function, and 
1mW , 

2mW  are the trainable parameter matrix of 

MLP. ijy  and ˆ
ijy respectively represent the label and model prediction probability that graph 

iG  

belongs to class j . 

 

5. EXPERIMENTS AND ANALYSIS 
 

In this section, we evaluate the method MVM proposed in the previous section. This experiment 

is applied to seven graph classification datasets. Then, we will give the elaborate description and 
analysis of datasets, baseline methods, experimental settings and results. 

 
Table 1 Graph statistical information 

 

Dataset Numbers of Graph classes dimension 

D&D 1178 2 89 

NCI1 4110 2 37 

NCI109 4127 2 38 

FRANKENSTEIN 4337 2 780 

P388 41472 2 72 

UACC257 39988 2 64 

TRIANGLES 45000 10 1 

 

5.1. Datasets 
 

 
 

Figure 7. Visualization of graph data 

 
In this experiment, in order to prove the effectiveness of our proposed method, we selected seven 
graph classification datasets. The statistical information of these datasets is described in detail in 
Table 1. DD is a protein graph dataset and labels indicates whether the protein is an enzyme. 
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NCI1 and NCI109 are two chemical structure graph datasets and labels are divided into two 
categories, indicating whether the chemical molecular structure has anticancer effect and whether 
it can inhibit the growth of cancer cells respectively. FRANKENSTEIN contains molecules as 
graph for mutagen classification. P388 and UACC257 belongs to a certain type of cancer screen 
with the outcome active or inactive. Triangles is a graph dataset that its label represent how many 
triangles clusters are in each graph.  
Figure 7 shows the structure of each dataset. 
 

5.2. Baseline and Experiments Setting 
 
Baseline: We choose several graph pooling models as baseline to compare with our method: 

set2set, Sortpool, gPool, SAGpool, HGP-SL, EdgePool, DiffPool, ASAP, GMT and MAC. These 

methods all consider the graph level classification task, and extract the graph structure 
information in the way of global or hierarchical pooling. 

 
Table 2 Experiment Setting 

 

Parameters Scope Parameters Scope 

Learning rate {0.001,0.0005,0.0001} Regularization {0.001,0.0001} 

Batchsize {16,32,64,128,256} pooling {0.2,0.3,0.4,0.5,0.6,0.7,0.8} 

Hidden layer {32,64,128} Dropout {0.2,0.3,0.4,0.5,0.6,0.7,0.8} 

C1 {16,32,64} Epochs {300,500,1000} 

C2 {32,64,128} Patience {50,80} 

Network layers 

K  
{2,3,4,5} dimensionality 

10 10 10{d ,d *2,...,d   10

( ) {1,2,..., }                  1 10

{1}                              1

L L L D

range d D D

D




  
 

 

 

Experimental Setting: For the fairness of the experiment, we randomly divide all datasets into 
10 parts, of which 80% is the training set, 10% is the validation set, and 10% is the test set. We 

employ tenfold cross validation to evaluate the effectiveness of all methods mentioned above. For 

baseline methods, we obtain the best result according to the parameter settings on the source code 
provided by the author. We use pyTorch deep learning framework to implement our method and 

train the model on a calculating server containing four NVIDIA TITAN X graphics processing 

unit. The range of all Hyperparameters of our method is shown in Table 2.  
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Figure 8. Experimental results 

 

5.3. Performance Results and Analysis 
 

In this section, we will evaluate our module against the baseline methods mentioned above on 
all datasets and the results are shown in the  

Figure 8. It can be seen from the table that our method has achieved the best results in all 

datasets compared with the baseline methods. Since the Maximum Variance Mapping 

Embedding widens the gap between graphs of different classes, the node features of graphs after 

embedding are more suitable for graph classification. And   benefit from GTP, it can capture the 

substructure of multi-layer GNN layers and aggregate the relationship between different layers 
from the perspective of CNN to improve the performance of graph classification. 

 
Table 1 The results of extend experiment 

 

 D&D NCI1 NCI109 FRANKENSTEIN TRIANGLES 

SAGPool 0.7478 0.7323 0.6908 0.6230 0.8032 

MVM-SAGPool 0.7899 0.7615 0.7617 0.6630 0.8577 

HGP-SL 0.7861 0.7540 0.7405 0.5951 0.8860 

MVM-HGP-SL 0.7903 0.7760 0.7588 0.6237 0.9001 

MAC 0.7913 0.7762 0.7584 0.6762 0.9605 

MVM-MAC 0.7922 0.7769 0.7607 0.6769 0.9697 

 

5.4. Extend Experiment 
 

In order to prove the effectiveness of the Maximum Variance Mapping Embedding, we combine 
it with the baseline methods SAGPool, HGP-SL, MAC respectively for comparison. We preserve 

all the original experimental settings of the baselines and only prepend the GNFE module to the 

baselines for comparison. From the Table 1, We can observe that all the baseline methods have a 
significant improvement after incorporating the GNFE module, which proves the effectiveness of 

the module. 
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5.5. Effect of Dimensionality Reduction on Results 
 

Table 4 Dimension Sampling Results 

 

Dataset 
Original 

Dimension 
Sampling results 

D&D 89 {5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85} 

NCI109 38 {3,6,9,12,15,18,21,24,27,30,33,36} 

FRANKENSTEIN 780 {50,100,150,200,250,300,350,400,450,500,550,600} 

 

In this section, we evaluate the impact of the embedded dimensions on the results. We choose 

three datasets DD, NCI109, FRANKENSTEIN, which have different feature dimensions. Since 

the amount of computation is too large for us to calculate the final results for each dimension, we 
sample the dimensions and calculate the corresponding model accuracy. The results of dimension 

sampling for the three datasets are shown in Table 4 and the evaluation results are shown in the  

Figure 9. From the results, we can conclude that the dimensions that achieve better results are 
generally between 50% and 90% of the original dimension. However, for datasets with low 

feature dimensionality, the conclusions may differ from the actual situation. 

 

 
 

Figure 9. Illustration of dimensionality on results 

 

6. CONCLUSION 
 

This paper proposes a graph pooling method MVM from the perspectives of graph topology and 

graph features. The GNFE module is used to widen the dissimilarities between the different 
classes, while reducing the dimensionality of nodes feature. For the difficulty of excessive 

computation caused by large-scale matrix decomposition, we perform local matrix decomposition 

by batch, and then establish the relationship between local and global mappings to obtain the 
global embedding features. Then, the GTP module extracts graph node information and pooling 

hierarchically, preserving the structural information of each layer. The features of different layers 

are concatenated together and then aggregated using CNN convolution to conserve more graph 

information. It can be seen from the experiments that the MVM method outperforms most 
existing algorithms, and the GNFE module can be easily embedded into other methods and 

achieve better results. In the future, we will continue to study the influence of the dimension of 
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dimensionality reduction on the results and explain the dimension range of the optimal result 
theoretically to reduce unnecessary parameter settings. 
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