
Dhinaharan Nagamalai et al. (Eds) : CCSEIT, ICBB, DMDB, AIAP, CSNA - 2019 

pp. 01-12, 2019. © CS & IT-CSCP 2019                                                          DOI: 10.5121/csit.2019.90601 

 

 

CONDITION BASED MAINTENANCE OF 

TURBINE AND COMPRESSOR OF A CODLAG 

NAVAL PROPULSION SYSTEM USING DEEP 

NEURAL NETWORK 

 

Palash Pal
1
, Rituparna Datta

2
, Aviv Segev

2
, and Alec Yasinsac

2 

 
1
University Institute of Technology, Burdwan University, West Bengal, India 

2
Department of Computer Science, University of South Alabama, 150 Jaguar 

Drive, Mobile, AL 36688, USA 

 

ABSTRACT 

 

System and sub-system maintenance is a significant task for every dynamic system. A plethora of 

approaches, both quantitative and qualitative, have been proposed to ensure the system safety 

and to minimize the system downtime. The rapid progress of computing technologies and 

different machine learning approaches makes it possible to integrate complex machine learning 

techniques with maintenance strategies to predict system maintenance in advance. The present 

work analyzes different methods of integrating an Artificial Neural Network (ANN) and ANN 

with Principle Component Analysis (PCA) to model and predict compressor decay state 

coefficient and turbine decay state coefficient of a Gas Turbine (GT) mounted on a frigate 

characterized by a Combined Diesel-Electric and Gas (CODLAG) propulsion plant used in 

naval vessels. The input parameters are GT parameters and the outputs are GT compressor and 

turbine decay state coefficients. Due to the presence of a large number of inputs, more hidden 

layers are required, and as a result a deep neural network is found appropriate. The simulation 

results confirm that most of the proposed models accomplish the prediction of the decay state 

coefficients of the gas turbine of the naval propulsion. The results show that a consistently 

declining hidden layers size which is proportional to the input and to the output outperforms the 

other neural network architectures. In addition, the results of ANN outperforms hybrid PCA-

ANN in most cases. The ANN architecture design might be relevant to other predictive 

maintenance systems. 
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1. INTRODUCTION 

 

Maintenance of any dynamic system and its components is always a very important and crucial 

task as failure of one or more components may damage the whole system. For a complex system 

like a naval vessel, maintenance demands a high level of expertise, which is sometimes difficult 

to achieve [1, 2]. Due to the rapid progress of computing technologies and different machine 

learning approaches, today it is possible to integrate complex machine learning techniques and 

maintenance strategies, thus helping to identify new standards and raise the level of performance 

[3, 4]. The predictive maintenance of a physical system is significant to ensure identification of 
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any fault that may occur during operation. Predictive maintenance helps to improve efficiency as 

well as the reliability of the system performance [5, 6]. A system like the propulsion plant of a 

naval destroyer should always be in proper working condition without any interruption, and at the 

same time its performance should be monitored continuously to avoid any unexpected breakdown 

[7, 8]. Predictive maintenance is a good maintenance strategy under such a situation. Sensors 

integrated within the system components can provide streaming data in real time without 

interrupting the system work and performance [9]. Received sensor data can then be analyzed to 

monitor the condition of different system components and to predict the risk of any potential 

future failure. 

 

In this paper, we analyzed different methods to predict the maintenance strategy for a CODLAG 

propulsion system [10, 11] used in naval vessels. Diverse background knowledge is required to 

understand the detailed working principles of naval vessels. A basic knowledge of different types 

of naval vessel propulsion-systems (specifically CODLAG propulsion system in our case) and 

working principles of gas turbines and knowledge about system maintenance along with available 

maintenance strategies are necessary. 

 

In this work we show the capability of machine learning strategies like deep learning to predict 

the maintenance of a propulsion plant of a naval vessel. The details of the CODLAG propulsion 

system are shown in Fig. 1. CODLAG is a hybrid propulsion system and uses an electric motor, 

powered by a diesel generator, to cruise or to run the ship silently. A gas turbine is used when 

high speed is required, for example during an emergency situation faced by a naval force. Electric 

motors, powered by the diesel generators are connected to the propeller shaft. When high speed is 

required, gas turbine is engaged using cross connecting gearbox to rotate the shaft. While 

cruising, clutches are used to disengage the drive train of the turbine. Electric motors are very 

effective when wide range of revolution is required. Direct connection between the electric 

motors and shaft can be established reducing complexity of gear box. 

 

 
 

Fig. 1. Working principle of the CODLAG propulsion system. 

 

Propulsion means forcing an object to move in a forward direction. The propulsion system 

produces the necessary thrust to move the object to forward [12]. The marine propulsion system 

generates the required thrust to move forward a ship or vessel across the water [13, 14]. There are 

different types of marine propulsion systems available. They are diesel propulsion [15], GT 

propulsion [16], nuclear propulsion [17], solar propulsion [18], steam turbine propulsion [19], 
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diesel-electric propulsion [20], etc. Different issues are taken into consideration when selecting a 

suitable propulsion system for a vessel [21]. Some of the issues are range of ship speed, pollution 

emitted, noise produced, number of people needed to maintain and operate the ship, how long the 

ship can be away from the base, etc. 

 

Neural networks have been used to predict maintenance in many research studies. Lucifred et al. 

[22] compared linear multiple regression, the dynamic kriging technique, and neural networks for 

predictive maintenance. The results showed that integration kriging and the ANN technique 

achieved best results. Javadpour and Knapp [23] also used NN for faults diagnosis in an 

automated manufacturing environment. The performance is tested with time series and real time 

machine vibration data.Wu et al. [24] proposed an integrated NN based decision support system 

of rotational equipment for maintenance prediction. 

 

The organization of the rest of the present paper is as follows. Section 2 discusses the details of 

naval propulsion and maintenance. Then in Section 3, we provide the details of the data-set used 

in the present study. The simulation results are shown in Section 4. The future scope along with 

the conclusion is in Section 5. 

 

2. NAVAL PROPULSION AND MAINTENANCE 
 

In this paper, we are interested in the CODLAG propulsion system. Naval forces in many 

countries use the CODLAG propulsion system in their frigate or destroyer. The Type 23 frigate 

used by the United Kingdom Royal Navy, and the F125 Baden-Wrttemberg-class frigate used by 

the German Navy, FREMM used by the Italian Navy implement CODLAG propulsion system. 

CODLAG is a hybrid propulsion system. CODLAG uses an electric motor, powered by a diesel 

generator for cruising or to run the ship silently. A gas turbine is used when high speed is 

required, for example during an emergency situation faced by a naval force. GT has three 

components: air compressor, combustion chamber, and turbine. The compressor absorbs air from 

the atmosphere and increases the pressure. The pressurized air then enters into the combustion 

chamber. Inside the combustion chamber there are fuel injectors and high intensity spark igniters. 

Fuel injectors inject a steady stream of fuel into the chamber. The injected fuel is mixed with air 

entered from the compressor. The injected fuel-air mixture is ignited by the igniters present in the 

combustion chamber. In this process, very hot and highly pressurized gas is produced. The 

produced gas is then expanded through an exhaust nozzle. The resulting hot, high velocity 

exhaust gas from the combustion chamber drives the turbine. The GT produces mechanical 

energy to rotate the shaft. This shaft having enormous torque turns the propeller or generator [12, 

25]. Altosole et al. [26] simulated a numerical 3 degree of freedom ship system during transients 

and off design conditions. 

 

The propulsion system of a vessel is very important as the overall behaviour of the ship depends 

exclusively on its propulsion system. So the proper maintenance of the propulsion system of the 

vessel is a crucial and unavoidable task. There are different types of maintenance strategies. 

Maintenance is a term that includes many activities such as system and component testing, 

adjustment, repair and replacement of system components, rebuilding etc. to retain the overall 

system performance. Maintenance strategies are divided mainly into three categories. They are 

preventive or scheduled maintenance, corrective maintenance, and predictive maintenance. 

Preventive maintenance is a routine check-up of a system and its components while it is in 

working condition. Preventive maintenance is performed at regular time intervals. That is why it 

is also called scheduled maintenance. Corrective maintenance is performed on a system once the 

system or its components break down. Recently, due to advances in science and technology, a 

third type of maintenance strategy, predictive maintenance, has been introduced. In a predictive 

maintenance strategy, sensors are used in a system or system component to monitor key 
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parameters related to the system in real time. System data is collected continuously and analyzed 

using different techniques available to evaluate the system health and to predict possibilities of 

any future failure(s) before it happens. Condition Based Maintenance (CBM) falls within the 

predictive maintenance strategy [27]. CBM continuously monitors system and system 

components to decide when and which components need to be serviced. Based on the three 

different maintenance strategies discussed, a few conclusions can be drawn. Preventive 

maintenance is complex to process and time consuming to perform if the system is itself a 

complex system. Moreover, as the maintenance is performed before failure, the system and 

components may be in good shape when it is checked, resulting in wastage of money. Corrective 

maintenance is sub-optimal as it is performed only after system or system component(s) fail. In 

this case, already damaged system component(s) may damage other components, resulting in 

multiple failures. The corrective maintenance strategy is also not a good fit for a system like the 

propulsion plant of a frigate, which cannot afford sudden failure, as it must always be in good 

working condition to counter any emergency situation that may arise. Predictive maintenance or 

condition based maintenance is the best choice for our naval CODLAG propulsion system. 
 

3. NAVAL PROPULSION DATA-SET 
 

For the experiments conducted in this paper, we collected data from the UCI Machine Learning 

repository [28]. Data has been generated from a sophisticated simulator of a GT, mounted on a 

frigate characterized by a CODLAG propulsion plant [29]. The different blocks forming the 

complete simulator (Propeller, Hull, GT, Gear Box, and Controller) have been developed and 

fine-tuned over the years on several similar real propulsion plants. In view of these observations, 

the available data is in agreement with a possible real vessel. A series of measures (16 featured 

vectors) which represents the state of the system has been analyzed in this experiment using an 

Artificial Neural Network to predict compressor decay state coefficient and turbine decay state 

coefficient. 
 

The 16-featured input vector contains the following parameters which effect the performance of 

the gas turbine and its compressor and could lead to decay: 
 

1. Lever position 

2. Ship speed [knots] 

3. CGT shaft torque [k N m] 

4. GT rate of revolutions [rpm] 

5. Gas generator rate of revolutions [rpm] 

6. Starboard propeller torque [k N m] 

7. Port propeller torque [k N m] 

8. High pressure (HP) turbine exit temperature [C] 

9. GT compressor inlet air temperature [C] 

10. GT compressor outlet air temperature [C] 

11. HP turbine exit pressure [bar] 

12. GT compressor inlet air pressure [bar] 

13. GT compressor outlet air pressure [bar] 

14. GT exhaust gas pressure [bar] 

15. Turbine injection control [%] 

16. Fuel flow [kg/s] 
 

The goal is to extend the life expectancy of the gas turbine and the gas turbine compressor by 

optimizing decay state coefficients, which are: 
 

1. GT compressor decay state coefficient 

2. GT turbine decay state coefficient 



Computer Science & Information Technology (CS & IT)                               5 

The kernel density plots for both outputs are shown in Fig. 2 and Fig. 3. The kernel density plot 

represents the probability density distribution of given data. The total area under the curve is one. 

The two plots here represent the probability density distribution of our two output variables. To 

find the probability of a value falling within an interval, we need to calculate the area under the 

curve within that interval. From the kernel density plots, it is clear that both of our outputs are 

uniformly distributed. 

 

A scatter plot matrix of all input and output variables is shown in Fig. 4. The scatter plot matrix 

here is a visual representation of the correlation between pairs of columns from a dataset. It 

shows a pairwise scatter plot for each pair of columns in our dataset. From the scatter plot 

diagram here, We show below that all of our input features are strongly correlated with each 

other. 

 

All the small boxes represent the scatter plot with two different features. There are 16 inputs and 

2 outputs, labelled as V1, V2, ..., V18. Columns V9 representing the Gas Turbine compressor 

inlet air temperature (C) and column V12 representing the Gas Turbine compressor inlet air 

pressure (bar) have constant values for all data items. Column V6 and column V7 represent 

starboard propeller torque and port propeller torque respectively. As starboard propeller torque 

and corresponding port propeller torque are the same for all data values, V6 and V7 are found to 

be identical. The data is plotted using a scatter 

 

 
 

Fig. 2. Kernel density plot for compressor decay state coefficient. 

 

plot matrix, showing a visual explanation of the relationship between pairs of variables. The 

figure shows pairwise scatter plot for each pair of the columns in the dataset. The scatter plot 

matrix of size 18X18 contains all the scatter plots between all the possible pairs of variables. 

From the scatter plot, we can analyze the correlation between the different variables. If two 

variables are not correlated, then the scatter plot between them will contain data points scattered 

at random without forming any pattern. But for two variables which are correlated, the scatter 

plot will contain data points forming some pattern. If the pattern falls on a line, then the two 

variables are linearly correlated, else they are nonlinearly correlated. In the diagram, we can see 

most of the variables are almost linearly correlated. As all the data items in column V9 and V16 

are constant, all the scatter plots containing V9 and V16 form a linear pattern, parallel to the axis. 

As column V6 and V7 are identical, they form identical scatter plots. V17 and V18 are output 

columns and outputs are not correlated with any single input. As a result, scatter plots of the 

output variables cover the whole box, without forming any pattern. Numbers and lines coming 
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out of scatter plots on top, bottom, left and right represent the scale of data items, which due to 

lack of space appear in only some of the plots. 

 

4. SIMULATION RESULTS 

 

The range of decay of the compressor and turbine were sampled with a uniform grid of precision 

(0.001) to have good granularity of representation. In particular, for the compressor decay state 

discretization, the coefficient was investigated in the domain [0.95:1] and for the turbine, decay 

state coefficient is in the domain [0.975:1]. We used a multilayer feed forward neural network to 

predict both of our outputs simultaneously against our 16-featured input. While running our code 

using the default neural network configuration 

 

 
 

Fig. 3. Kernel density plot for turbine decay state coefficient. 

 

Architecture MSE1 MSE2 Average MSE 

8-6-4-2 0.00017 0.00013 0.00015 

8-6-4 0.00011 0.00017 0.00014 

8-6 0.00012 0.00020 0.00016 

6-4  Convergence failed  
 

Table 1. Comparison between different neural network architectures in term of Mean Squared Error (MSE) 

for naval vessel propulsion system using whole data-set with training (70%)-testing (30%). 

 

(threshold = 0.01, stepmax = 100000) provided by the R neural net library, the results did not 

converge. We tried to tune the net by increasing stepmax to 1000000, and keeping the threshold 

the same (as increasing the threshold may affect accuracy). Still it did not converge. Increasing 

stepmax alone further could take a prohibitively large amount of time for our code to run without 

any guarantee of convergence. So, finally we tuned the neural net by increasing the threshold to 

0.1 and stepmax to 1000000 and it converged. Even after compromising accuracy by increasing 

the threshold, the neural nets are able to optimize successfully. The simulation is performed with 

four different hidden layers architectures which are 8-6-4-2, 8-6-4, 8-6, and 6-4. Our results are 

shown in Table 1. 

 

From the table it can be seen that with architecture 8-6-4-2 the Mean Square Error (MSE) for 

compressor decay state coefficient is 0.00017 and MSE for turbine decay state  
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Fig. 4. Scatter plot matrix of input and output variables for visual representation. 

 

coefficient is 0.00013. The average MSE is 0.00015. The table also shows that the architecture 

with 6-4 has failed to converge. The best MSE for prediction of the compressor decay state 

coefficient is obtained from architecture 8-6-4 (which is 0.00011) whereas the best MSE for the 

prediction of turbine decay state coefficient is from architecture 8-6-4-2 which is 0.00013. The 

best result in terms of average MSE is from 8-6-4 and the MSE is 0.00014 and the neural network 

architecture is shown in Fig. 5. 

 

The best performing neural network displayed in Fig. 5 shows a consistent decrease in the 

number of neurons in each layer of the neural network from the input to each of the hidden layers, 

followed by the result layer. This consistent decrease which starts with 16 inputs, followed by 8-

6-4 neurons in the hidden layers, and 2 neurons in the output layer, shows an interesting 

architecture design, to which the successful results might be attributed. The first hidden layer is 

half the size of the input and the output layer is half the size of the last hidden layer. These results 

show that the best neural network architecture is the one that is decreasing in the hidden layer 

which is proportional to number of the inputs and to the number of outputs. The different 

architectures of the deep neural networks show some promising results which might be relevant 

to other neural networks for predictive maintenance systems or neural network architecture in 

general. 
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Fig. 5. The best network architecture in terms of average MSE. 

 

Next, experiments were performed to analyze the dimensionality reduction by comparing ANN 

with the integration of Principle Component Analysis (PCA) [30] and ANN. PCA is a statistical 

method for orthogonal transformation which converts the data-set to linearly uncorrelated 

variables and it can identify redundant data. The motivation of integrating PCA into ANN is to 

eliminate correlated redundant data. 

 

These experiments were performed with a reduced data-set (randomly selected data-set size 1,000 

and 2,000). During the experiments with the whole data-set there is a compromise in terms of 

threshold. However, the reduced data-set is experimented with default values (threshold = 0.01, 

stepmax = 100000). Three different network architectures were used which are hidden layers with 

5-4-3, 6-4-3, and 7-5-3. In addition, the performance of each architecture with each one of the 

output variables and with both variables was analyzed. 

 

Table 2 and Table 3 show the comparison between ANN and PCA-ANN results for data-set size 

1,000 and 2,000 respectively. In all cases, the performance of ANN is better than the performance 

of the integration of PCA and ANN. Moreover, from Table 3 it can be seen that the integrated 

PCA with ANN results for hidden layer with 5-4-3 with two outputs, 6-4-3 with second output 

and layer 7-5-3 for both output and second output failed to converge. This is an interesting 

observation which shows that reducing redundant data does not always help to achieve better 

results even though it is efficient in terms of computational complexity. The results show that it is 

more important to use a larger number of variables to represent a system than to use a smaller 

number of variables, even if the variable values are correlated. 
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Table 2. Comparison between different neural network architectures with PCA-cum-neural network hybrid 

architectures with reduced data-set size 1000 in terms of Mean Squared Error (MSE) for a naval vessel 

propulsion system 

 

5. CONCLUSION 

 

Maintenance demands a high level of expertise for a very complex system which is difficult 

enough to achieve for physical systems. Predictive maintenance is a domain where advanced 

computing techniques help to significantly increase system reliability. Maintenance strategies 

combined with statistical methods and automated learning algorithms may significantly improve 

overall performance of a system. A system like a propulsion plant of a naval destroyer always 

should be in proper working condition without any interruption, and at the same time its 

performance should be monitored continuously to avoid any unexpected downfall and to optimize 

performance. 

 

In the present study, deep neural network and PCA integrated with deep neural network is used to 

predict the decay state coefficient of a GT compressor and GT turbine for naval vessel 

propulsion. The data for the experiment has been adapted from the UCI Machine Learning 

repository that contains 16 featured vectors (input) with two outputs. The backpropagation 

training algorithms are used for the present study. The simulation experiment is performed with 

four different deep neural networks (hidden layer such as 8-6-4-2, 8-6-4, 8-6 and 6-4). Our 

comparison with all the networks clearly depicts that the hidden layer structure with 8-6-4 

network performs best in terms of average Mean Squared Error (MSE) to predict the decay state 

coefficient. In terms of compressor decay state coefficient, 8-6-4 is best, and for turbine decay 

state coefficient 8-6-4-2 is best. The network with 6-4 failed to converge in all cases. Thereafter, 
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to understand the robustness of ANN, a reduced data set is used for the experiments with ANN 

and hybrid PCA-ANN. Results shows that ANN outperforms PCA-ANN. 

 

 
 

Table 3. Comparison between different neural network architectures with PCA-cum-neural network hybrid 

architectures with reduced data-set size 2000 in terms of Mean Squared Error (MSE) for a naval vessel 

propulsion system 

 

Though our experiment achieved good results, there is considerable scope for future research. 

Different learning algorithms can be used to train the network and results can be compared. 

Moreover, networks can be further tuned, adjusting the threshold to some lower value to get more 

accurate results. Experiment can also be performed to lower the time complexity to train the 

neural net model. While implementing the work in a real naval vessel, the concept of Internet of 

Things (IoT) can be used to gather streaming data from the system and system components in real 

time. The interval of time between two successive data collection events can be decreased, so that 

a massive amount of data becomes available as input. This massive amount of data then can be 

analyzed using big data analytics techniques and distributed computing, integrated with machine 

learning algorithms. 
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