
Dhinaharan Nagamalai et al. (Eds) : CCSEIT, ICBB, DMDB, AIAP, CNSA - 2019

pp. 69-86, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.90607

NUCLEAR: AN EFFICIENT METHOD FOR

MINING FREQUENT ITEMSETS BASED ON

KERNELS AND EXTENDABLE SETS

Huy Quang Pham
1, 2

,

Duc Tran

3
, Ninh Bao Duong

2
, Philippe Fournier-

Viger
4
, Alioune Ngom

1

1
University of Windsor, Windsor, Ontario, Canada

2
University of Dalat, Dalat, Vietnam

3
Faculty of Information Technology, Ho Chi Minh City University of Food

Industry, Vietnam
4
School of Natural Sciences and Humanities, Harbin Institute of Technology

Shenzhen Graduate School, Shenzhen, 518055, China

ABSTRACT

Frequent itemset (FI) mining is an interesting data mining task. Directly mining the FIs from

data often requires lots of time and memory, and should be avoided in many cases. A more

preferred approach is to mine only the frequent closed itemsets (FCIs) first and then extract the

FIs for each FCI because the number of FCIs is usually much less than that of the FIs.

However, some algorithms require the generators for each FCI to extract the FIs, leading to an

extra cost. In this paper, based on the concepts of “kernel set” and “extendable set”, we

introduce the NUCLEAR algorithm which easily and quickly induces the FIs from the lattice of

FCIs without the need of the generators. Experimental results showed that NUCLEAR is

effective as compared to previous studies, especially, the time for extracting the FIs is usually

much smaller than that for mining the FCIs.

KEYWORDS

Association Rule, Kernel and Extendable Set, Frequent Itemset, Frequent Closed Itemset,

Nuclear.

1. INTRODUCTION

Mining association rules (ARs) [1] is one of the most interesting and popular problems in data

mining. It is widely used for decision making in retail, e-commerce, medicine, and many other

domains. Mining frequent itemsets (FIs) is the first and the main step in the discovery of ARs.

Since its first introduction in 1993 [1] it has attracted a lot of attention and has been extended and

applied in various ways. For instance, some popular variations of the FI mining problem are to

discover high utility patterns [2, 3], uncertain frequent patterns [2] and high utility association

rules [2, 4]. Most algorithms for mining FIs partition the search space into subclasses in order to

apply the parallel approaches to improve their performance. However, the performance of many

parallel FI mining algorithms is limited by the speed of disk accesses, as they repeatedly scan the

input database, which can still lead to long execution [5, 6]. To address this issue, some

researchers proposed more efficient parallel algorithms, which compress the database in a

frequent pattern tree and perform tree projections [7, 8]. Another approach to speed up the FI

mining process is to first mine all the frequent closed itemsets (FCIs) and then derive the FIs

70 Computer Science & Information Technology (CS & IT)

from them without the need of rescanning the data file. This approach is more efficient than

mining FIs directly because the number of FCIs is usually much less than that of FIs (see Table

4). Charm [9], FPClose [7], DCI_PLUS [10] and NAFCP [6] are among the best algorithms for

mining FCIs. In 2010, a parallel algorithm (PLCMQS) for mining FCIs has been proposed [11].

The authors of Charm proposed the CharmL algorithm [8], which builds the lattice of FCIs.

Formal concept (i.e., lattice of FCIs) analysis is also another way of mining FIs as well as ARs [6,

12, 13].

Mining FIs from the lattice of FCIs has several advantages over mining FIs directly from data.

First, the number of FCIs is often much smaller than the number of FIs; therefore, this requires

less memory. Second, each FCI can stand for an equivalence class of FIs having the same closure

(i.e., these FIs shares the same set of transactions containing them); thus, we can develop parallel

algorithms or “divide-and-conquer” approaches to facilitate the process of deriving FIs from

FCIs. Third, when users want to try different minimum support (minsup) thresholds to find an

optimal set of FIs for a certain downstream procedure, the cost of updating the set of FCIs can be

much lower than mining them from scratch in a database. However, to extract to FIs from FCIs,

the current algorithms requires the generators for each FCI, and mining them might take a

significant amount of time.

In this paper, we present a method to mine the FIs from a lattice of FCIs without the need of the

generators. We introduce the concepts of “kernels” and “extendable sets” which further partition

the equivalence classes represented by the FCIs into smaller subclasses. Then, each pair of kernel

and extendable set stands for a subclass of FIs which are supersets of the kernel and subsets of the

union of the kernel and the extendable set. Thus, once a pair of kernel and extendable set are

identified, enumerating FIs in the subclass is straightforward. Our proposed algorithm, called

NUCLEAR, to generate kernels and extendable sets for each FCI is simple and efficient. Its

inputs are just the largest FCIs those are subsets of that FCI, and the time for it to induce all FIs

from the lattice of FCIs is significantly shorter than the time to construct the lattice.

The fact that NUCLEAR does not require the generators makes it more efficient than the

approach infer FIs from FCIs and generators. In the comparison of NUC, the approach using

NUCLEAR, against dEclat [8, 30], a well-known algorithm which mines FIs directly from data,

NUC is faster when the number of FIs is much larger than the number of FCIs. When NUC is

slower, the reason is that CharmL, the algorithm used to construct the lattice of FCIs from data

before applying NUCLEAR, is already slower than dEclat.

The rest of this paper is organized as follows. Section 2 introduces some related concepts. Section

3 reviews the related works. Section 4 presents novel theoretical results that are the basis of the

proposed algorithm, including a recurrent formula for generating kernels and extendable sets.

Section 5 presents the proposed NUCLEAR algorithm. Section 6 reports experimental results that

show the efficiency of the proposed algorithm. Finally, a conclusion is drawn and future work is

discussed in section 7.

2. PRELIMINARIES

Consider a context (T, I, R) where I is a set of items (or attributes), T is a set of transactions (or

objects) and R is a binary relation on T × I. For each non-empty subset A of I and non-empty

subset O of T, the two functions λ and ρ below define a Galois connection between 2
T
 and 2

I

(reader can refer to [28] for more details):

λ: 2
T
→ 2

I
: λ(O) = {a ∈ I | (o, a) ∈ R, ∀o∈ O}, λ(∅) = I

ρ: 2
I
→ 2

T
: ρ(A) = {o∈ T | (o, a) ∈ R, ∀a∈ A}, ρ(∅) = T.

Computer Science & Information Technology (CS & IT) 71

Then, h = λoρ in 2
I
 is called the closure operator [33], and h(A) is said to be the closure of A.

A set A ⊆ I is called an itemset. An itemset A containing k items is called a k-itemset. Given a user-

specified minimum support threshold minsup, such that 0 < minsup ≤ 1, the support of an itemset A

is denoted and defined as supp(A) = |ρ(A)| / |T|. A is said to be “frequent” if supp(A) ≥ minsup.

Itemset A is “closed” if and only if h(A) = A. Let [A] = {A’⊆ I: h(A’) = h(A)} be the set of all

itemsets having the same closure, which is h(A), then, the itemsets in [A] share the same set of

transactions, which is ρ(A), i.e., they have the same support.

Let CS and FCS denote the set of all closed itemsets and the set of all FCIs, respectively. Then, L ≡

(FCS, ≼A) is a lattice of FCIs, where ≼A is an order relation based on the ⊆ operator between

subsets of I.

An itemset G is called a “generator” of a closed itemset A if and only if h(G) = h(A) and ∀G’: ∅ ≠

G’⊂ G ⇒ h(G’) ⊂ h(G).

For any itemset A ⊆ I, the equivalence class [A] has only one closed itemset, and one or more

generators.

Example 1. Given I = {1, 2, 3, 4, 5, 6}, T = {t1, t2, t3, t4, t5, t6}, and R as in the Table 1. Let

itemset X = {1, 4, 5}, then ρ(X) = {t1, t2}, supp(X) = 2/4, and λ({t1, t2}) = {1, 4, 5, 6}. Then, X is

not a FCI since h(X) = λoρ (X) = {1, 4, 5, 6} ≠ X. Now, let C = {1, 4, 5, 6}, we have h(C) = C.

Thus, C is a FCI. And, we have, [X] = [C] = {{1, 4}, {1, 5}, {1, 6}, {1, 4, 5}, {1, 4, 6}, {1, 4, 5,

6}}, in which, the sets {1, 4}, {1, 5}, {1, 6} are the generators of C.

The lattice of FCIs mined from R for minsup = 0.25 (i.e., absolute minimum support = 1) is

shown in Figure 1. In this lattice, each node (rectangle) represents a FCI and its absolute support,

separated by a colon (“:”) and each edge links a FCI to the FCIs which are its largest subsets.

Table 1. The relation R = T × I, where I = {1, 2, 3, 4, 5, 6}, T = {t1, t2, t3, t4, t5, t6}.

Transactions Items

t1 1 2 3 4 5 6

t2 1 4 5 6

t3 1 3

t4 2 3 4 5 6

Figure 1. The lattice of FCIs mined from R with minsup = 0.25.

3. RELATED WORK

3.1. Mining Frequent (Closed) Itemsets

In recent years, several algorithms have been proposed for FI mining such as dEclat, and Node-

list-based algorithms [5, 14, 15, 16]. The dEclat was one of the most effective algorithms

according to [17]. It scans a database once to generate the transaction sets (tidsets) for all itemsets

of 1 item (1-itemset). Then, it applies the “diffset” strategy to enumerate all FIs without

{1, 2, 3, 4, 5, 6}: 1

{2, 3, 4, 5, 6}: 2

{3}: 3 {1}:3 {4, 5, 6}: 3

{1, 4, 5, 6}: 2 {1, 3}: 2

72 Computer Science & Information Technology (CS & IT)

repeatedly scanning the database. Deng et al. [14] proposed a novel structure named N-list for

mining FIs. The proposed algorithm first compresses the dataset into a PPC-tree structure, and

then, using that tree, the algorithm generates N-lists for each 1-itemset. Finally, the algorithm

applies a divide-and-conquer approach to mine FIs using these lists. Experimental evaluation has

shown that the N-list-based algorithm outperforms state-of-the-art FI mining algorithms on a

variety of real and synthetic datasets. Recently, Deng and Lv [15] proposed an improved N-list

based frequent itemset mining algorithm named PrePost+, which applies a novel pruning strategy

called children-parent equivalence pruning to reduce the search space. Subsequently, Vo et al.

[16] combined the N-list structure with the subsume concept to further increase the performance

of FI mining. Recently, Deng [14] proposed an efficient algorithm relying on an improved

Nodeset structure, named DiffNodesets.

As defined in section II, the closure of an itemset is the set of items that appear in all transactions

containing the itemset. FCIs have attracted a lot of studies as they can be used to partition FIs into

equivalence classes. This inspires the development of parallel or “divide-and-conquer”

approaches to mine FIs from FCIs without scanning the database for the support. However, few

approaches have been proposed to perform this efficiently. Several researchers have studied

retrieving FIs using the generator itemsets and eliminable itemsets in the equivalence classes of

their closures [10, 17, 18-20]. For this purpose, algorithms were proposed that efficiently

discover FIs using the lattice of FCIs, without performing duplicate checks, and by processing

only one FCI at a time, that is, without considering its relationship to other FCIs. Generator

itemsets can be mined independently or at the same time as FCIs. Zaki et al. [9] proposed the

Minimal Generators algorithm to mine generators from the lattice of FCIs using a level-wise

approach inspired by the Apriori algorithm. However, to identify the generators of a FCI, the

algorithm had to scan all its subsets. Thus, the algorithm can be very slow. Szathmary et al. [21]

proposed the Talky-G algorithm to mine generators from data, using an IT-tree structure. The

algorithm uses the Charm algorithm [8, 9] to separately mine the FCIs and then, matches the

generators with each FCI. Talky-G guarantees that when an itemset X is visited during the search,

all its subsets have been already visited, and thus all generators that are subsets of X have already

been found. Consequently, an itemset X is a generator if no already found generator is subset X

and has the same support as X’s support. To quickly select the generators for that check Talky-G

stores the support of visited generators in a hash table using the number of transactions

containing each itemset as the hash function. This hash function is also used to match each FCI to

its generators. The algorithm is effective when minsup is high. However, the time required for

finding generators is similar to the time for mining FCIs. GENCLOSE [22] is an algorithm that

concurrently mines FCIs and generators. The authors introduced necessary and sufficient

conditions to generate generators (k + 1)-itemsets using generators k-itemsets. Using these

conditions, the closure of each generator can be extended gradually to find generators. In 2005,

the CHARM [9] and dCHARM [8] algorithms have been proposed for mining FCIs using the

“diffset” structure introduced in the dEclat algorithm. In 2012, the DBV-Miner [23] algorithm

improved this approach by compressing the tidsets of 1-itemsets using dynamic bit vectors. It was

shown that this can greatly reduce the memory required for storing tidsets and compute the

support of itemsets efficiently. Then, Sahoo et al. [10] proposed the DCI_PLUS algorithm for

mining FCIs and their generators. The algorithm compresses the database using a BitTable

structure, which is built using a single database scan. In [20], Tran et al. proposed the

GEN_ITEMSETS algorithm to generate all itemsets from a lattice of FCIs and generators without

repetitions. More recently, Le and Vo [12] proposed an N-list-based algorithm for mining FCIs,

named NAFCP. The experimental evaluation of this work has shown that NAFCP outperforms

state-of-art FCI mining algorithms in terms of runtime and memory usage in most cases.

Computer Science & Information Technology (CS & IT) 73

B. Lattice-based Approaches for Mining Association Rules

In general, two types of lattices are considered for mining ARs, which are the frequent itemset

lattice (FIL) and the frequent closed itemset lattice (FCIL) [12]. Vo and Le [13] have presented a

lattice-based approach for building the FIL for mining ARs, here called FIL-2009. Each node of

the structure used in FIL-2009 represents an itemset X and stores a tuple (X, Tidset, Children)

where Tidset is the list of transactions containing X and Children are pointers to nodes

representing supersets of X. Although, mining ARs using FIL-2009 is very effective, it is not

designed for efficiently mining minimal non-redundant association rules. To address this issue,

Vo and Le [24] extended the structure used by FIL-2009 (here called FIL-2011) by adding two

fields in each node indicating if a node is a minimal generator or a frequent closed itemset,

respectively. These values are determined during lattice construction. The structure is then used

by FIL-2011 to effectively mine minimal non-redundant association rules. Thereafter, an efficient

approach named PFIL was proposed, which supports incremental mining using the pre-large

concept. It was shown that this approach is especially efficient for huge databases containing a

large number of FIs [25]. The PFIL algorithm uses the diffset structure to quickly build a FIL.

Then it uses the pre-large concept and diffset structure for maintaining the pre-large FIL.

For a given dataset and a minsup threshold, building the FCIL is generally much faster than

building the FIL because the number of FCIs is usually much less than that of FIs. CharmL [8] is

an effective algorithm to build the lattice of FCIs. To update the lattice, researchers have

proposed an algorithm [5] that runs efficiently in the case of large databases with a small number

of inserted transactions.

For parallel algorithms for mining FIs and ARs we refer readers to [26-29], and for the survey on

algorithms FIs and ARs, we refer readers to [30, 31].

4. THEORETICAL RESULTS

In this section, we introduce theoretical results that are the basis of our proposed algorithm.

From now on, for convenience, whenever we use the variables C, and/or G without condition, it

implicitly means that: C ∈ CS, ∅ ≠ G ⊆ C respectively. And, let “:” stand for “such that”, and

“,”stand for the logical operator “∧” in the logical propositions.

Definition 1 (the immediately closed subsets of a closed itemset). Let SC = {Y∈ CS: (Y ⊂ C) ∧

(∄Z∈ CS: Y ⊂ Z ⊂ C)} be the set of the largest closed itemsets that are subset of a given closed

itemset C. These itemsets in SC are called the immediately closed subsets of C.

Proposition 1. ∀G ⊆ C, ∀Y∈ SC (G∈ [C] ⇔ ∃x∈ G: x∉ Y).

Proposition 1 points out a way to find [C] by searching every itemset G satisfying the right-hand

side of Proposition 1. However, it might be not efficient if we have to scan every subset of C.

Proof. For all G ⊆ C and Y ∈ SC,

“⇒”: Since G ∈ [C], we have h(G) = C. Now, assume that ∀x ∈ G (x ∈ Y). Thus, G ⊆ Y ⊂ C ⇒

h(G) ⊆ h(Y) = Y ⊂ C. This leads to a contradiction: h(G) ⊂ C.

“⇐”: Assume that ∀Y ∈ SC (∃x ∈ G: x ∉ Y) ∧ (G ∉ [C]). We have: ∀Y ∈ SC ((h(G) = h(Y) = Y) ∨

(h(G) ≠ Y)) ∧ (h(G) ⊂ C). By the definition of SC, we have: ∀X ⊂ C (X ∈ CS ⇒ ∃Y∈ SC: X ⊆ Y).

Then, ∀Y ∈ SC (h(G) ⊆ Y). Thus, we have: ∀Y ∈ SC, ∀x ∈G (x ∈ Y), which is a contradiction to the

hypothesis.

74 Computer Science & Information Technology (CS & IT)

Corollary 1. ∀Yk ∈ SC, let Mk = C \ Yk, NS = |SC|, 1 ≤ k ≤ NS, and M = {M1, …, MNS}. We have G∈

[C] ⇔ ∀Mk, ∃x∈ G: x ∈ Mk.

Proof. We have G ∈ [C] ⇔ ∀Y ∈ SC, ∃x ∈ G: x ∉ Y ⇔ ∀Mk, ∃x ∈ G: x ∈ Mk. Therefore, this

corollary is proven.

Definition 2 (the kernel and extendable set). Given two itemsets G and E those are disjoint. Let the

notation [G, E] denote the class of all itemsets those are supersets of G and subsets of G + E, i.e.,

[G, E] = {X: G ⊆ X ⊆ G + E}.

G is called the kernel and E is called the extendable set of the class.

The following results provide an easy way to find the pairs of kernel and extendable set that can

help partition [C] into equivalence classes.

Definition 3. Let Mk = C \ Yk, ∀Yk ∈ SC, M = {M1,…, MNS}. For 1 ≤ k ≤ |SC|, let Sk = {M1,…, Mk}

denotes the set of k first elements of M, and S0 =∅.

An itemset G is said to “satisfy Sk” if ∀Mi ∈ Sk, ∃x∈ G: x ∈ Mi. Let [Sk] denote the set of all FIs that

satisfies Sk, and [Sk]= 2
C
 if k = 0.

The following lemmas are obtained by Definition 3 and Corollary 1.

Lemma 1. ∀G ⊆ C, E ⊆ C, G ∩ E = ∅, 1 ≤ k ≤ |SC|, we have:

a) [Sk] ⊆ [Sk -1], (i.e., if G satisfies Sk, it also satisfies Sk-1).

b) ∀G ∈ [Sk]⇒ ∀X ∈ [G, E], X ∈ [Sk].

c) [C] = [SNS].

Lemma 2. For 1 ≤ k ≤ |SC|, G* ∈ [Sk-1], and let G = G* + {x}, x ∈ C, we have: (Mk ∩ G* ≠ ∅) ∨

(x ∈ Mk.) ⇒ G ∈ [Sk]

In the first condition case (i.e., Mk ∩ G* ≠ ∅), x is not necessary for G to satisfy Sk since G* already

satisfy Sk, meanwhile, in latter it is.

From now on, we denote “+” (and “∑”) the union operator for two (and many, respectively) disjoint

sets. Definition 4 below lead to the idea of generating the kernel sets.

Definition 4 (k-minimal set). Given G = G* ∪ X, and X ⊆ Mk. G is “k-minimal” if one of the

following conditions is satified:

a) G* is “(k-1)-minimal”, Mk ∩ G* ≠ ∅, X = ∅ (i.e., G = G*, and no more item are needed

for G* to satisfy Sk).

b) G* is “(k-1)-minimal” Mk ∩ G* = ∅, and X = {x}, x ∈ Mk} (i.e., x is the new item needed

for G* to satisfy Sk).

c) ∅ is “0-minimal”.

We can see that if G is “k-minimal” then G satisfies Sk. Cases (a), and (b) are based on Lemma 2.

It is worthy to note that G is “k-minimal” does not imply that there is no subset of G satisfying Sk. It

just implies that no prefix of G satisfies Sk if G is treated as a sequence of items.

Computer Science & Information Technology (CS & IT) 75

From now on, we assume that there exists an order over the items in C (e.g., alphabetic order), and

every Mi is sorted in the increasing order.

Definition 5 (the partition of [Sk] by kernel and extendable set). Given C, and SC. Let the set Qk

contain the pairs of (kernel set G, extendable set E) defined recurrently as follows:

a) Q0 = {(∅, C)}

b) Q1 = {(Gi, Ei): Gi = {xi}, xi ∈ M1, Ei = C\{y ∈ M1: y ≤ x}}

c) ∀k > 1, Qk = Bk + Ck, where:

Bk = {(G, E): (G, E) ∈ Qk-1, G ∩ Mk ≠ ∅},

Ck = {(G + {xi}, E\Ei): (G, E) ∈ Qk-1, G ∩ Mk = ∅, Nk = Mk∩E, xi ∈ Nk , Ei = {y ∈ Nk: y ≤ xi}.

In details, Bk contains pairs (G, E) in Qk-1 where G is “(k-1)-minimal” and is also “k-minimal”,

according to Definition 4.a. Thus, (G, E) belongs to Qk also. Meanwhile, Ck contains the pairs (G,

E) such that G = G’ + {xi}, where G’ is “(k-1)-minimal” but not “k-minimal”, and xi is necessary for

G to become “k-minimal” (as Definition 4.b).

Lemma 3. For all (Gi, Ei), (Gj, Ej) ∈ Qk, i ≠ j, 1 ≤ k ≤ |SC|, we have:

a) X ∈ [Gi, Ei] ⇒ X ∈ [Sk].

b) Gi ∩ Ei = ∅.

c) [Gi, Ei] ∩ [Gj, Ej] = ∅.

In other words, Qk induces a partition of all FIs in [Sk], where each equivalence classes is defined by

[Q, E] as in Definition 2, with (G, E) ∈ Qk. Furthermore, for every (G, E) ∈ Qk, G is “k-minimal”.

Theorem 1. For 0 ≤ k ≤ |SC|, {[G, E]: (G, E) ∈ Qk} is a partition of [Sk], where each [G, E] is an

equivalence class, and G is “k-minimal”.

Proof.

A. We’ll first prove that Theorem 1 hold with k = 0.

Since k = 0, Q0 ={(∅, C)} by Definition 5.a, and [Sk] = 2
C
 by Definition 3. We have: [∅, C] = {X:

X ⊆ C} = 2
C
. Since {[∅, C]} is a partition of 2

C
 and ∅ is “0-minimal”, let G = ∅ and E = C then

Theorem 1 is proven for k = 0.

B. Assume that Theorem 1 holds for any k-1, 0 < k ≤ |SC| (i.e., the set {[G, E]: (G, E) ∈ Qk-1}

is a partition of [Sk-1], where each [G, E] is an equivalence class, and G is “(k-1)-minimal”), we will

prove that Theorem 1 holds for k.

By assumption, we have [Sk-1] = ∑ [Gi, Ei], where (Gi, Ei) ∈ Qk-1. By Lemma 1.a, for an itemset X to

be in [Sk], it must be in [Sk-1]
(a)

. By Lemma 3.c, for all (Gi, Ei) and (Gj, Ej) ∈ Qk-1, i ≠ j, we have:

[Gi, Ei] ∩ [Gj, Ej] = ∅
(b)

. From
(a)

 and
(b)

, we only need to prove that given a pair (G, E) ∈ Qk-1, we

can partition [G, E] into disjoint subclasses, where each subclass either is in the form of [G’, E’]

and G’ is a “k-minimal” (i.e., (G’, E’) ∈ Qk), or contains only the itemsets which do not satisfy Sk

(*)
.

If Mk ∩ G ≠ ∅, then G satisfies Sk. Then, (G, E) ∈ Qk. Then
(*)

 is proved. In this case, (G, E)

belongs to Bk as in Definition 5.b, thus, it belongs to Qk
(i)

. Now, let assume that Mk ∩ G = ∅. If Mk

∩ E = ∅, then for all Y ∈ [G, E], Y does not satisfy Sk. Then
(*)

 is proved
(ii)

.

76 Computer Science & Information Technology (CS & IT)

Now, let assume that Mk ∩ G = ∅ and Mk ∩ E ≠ ∅. Denote Nk = Mk ∩ E = {x1, .., xn}, and for 0 < i

≤ n, denote Gi = G + {xi} (xi ∈ Nk), Ei = E\{xj: xj ∈ Nk, j ≤ i}. Let U1 = {G1 + T: T ⊆ E1} = [G1, E1],

and V1 = {G + Y: Y ⊆ E \ {x1}} = [G, E1]. Then, ∀X ∈ U1 (x1 ∈ X) and ∀Y ∈ V1 (x1 ∉ Y). This

means: U1 and V1 are disjoint. We can further divide V1 into two disjoint sets: U2 – the set of

itemsets containing x2, and V2 - the set of itemsets not containing x2. One can see that Ei = Ei-1 \ {xi},

then, we have: U2 = {G2 + T: T ⊆ E2} = [G2, E1 \ { x2}] = [G2, E2], V2 = [G, E2], and U2 and V2 = ∅.

By the same way, the division process continues until we divide Vn-1 into two disjoint sets: Un =

[Gn, En] and Vn = [G, En]. One can see that, [G, E] = Vn + ∑ [Gi, Ei].

Since Mk ∩ G = ∅ and En = ∅, for all Y ∈ Vn, Y does not satisfy Sk. Meanwhile, since Nk ∩ Gi =

{xi} ≠ ∅, for all i ≤ n. This means Mk ∩ Gi ≠ ∅. Thus, Gi is “k-minimal” by Definition 4.b and for

all X ∈ [Gi, Ei], X satisfies Sk. This mean (Gi, Ei) is generated as Definition 5.c then (Gi, Ei) ∈ Qk.
Then (*) is proved.

(iii)

By
(i)

,
(ii)

, and
(iii)

,
(*)

 is proved, and Theorem 1 is proved.

Corollary 2: {[G, E]: (G, E) ∈ QNS} is a partition of [C], where each pair [G, E] is an equivalence

class, and G is “NS-minimal”.

Proof: This is result of Theorem 1, where k = NS, [C] = [Sk].

Example 2: Let consider the relation R shown in Table 1 and the lattice of FCIs mined from R with

minsup = 0.25 (i.e., absolute minimum support = 1) shown in Figure 1. The following paragraphs

explain how to find all FIs in [C] for C = {1, 2, 3, 4, 5, 6}.

.

Figure 2. Search tree for generating the kernels and extendable sets of Q3, where Q3 = {(G2, E2), (G5, E5),

(G6, E6), {(G6, E7)}.

Computer Science & Information Technology (CS & IT) 77

Table 2. The partition of 23 FIs in [{1, 2, 3, 4, 5, 6}] based on Q3 as in Figure 2.

 [G2, E2] [G5, E5] [G6, E6] [G7, E7]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

{{1, 2},

{1, 2, 3},

{1, 2, 3, 4},

{1, 2, 3, 4, 5},

{1, 2, 3, 4, 5, 6},

{1, 2, 3, 4, 6},

{1, 2, 3, 5},

{1, 2, 3, 5, 6},

{1, 2, 3, 6},

{1, 2, 4},

{1, 2, 4, 5},

{1, 2, 4, 5, 6},

{1, 2, 4, 6},

{1, 2, 5},

{1, 2, 5, 6},

{1, 2, 6}}

{{1, 3, 4},

{1, 3, 4, 5},

{1, 3, 4, 5, 6},

{1, 3, 4, 6}}

{{1, 3, 5},

{1, 3, 5, 6}}

{{1, 3, 6}}

According to the lattice, the immediately closed subsets of C are Y1= {2, 3, 4, 5, 6}, Y2 = {1, 4, 5, 6}

and Y3 = {1, 3}. In other words, SC ={Y1, Y2, Y3}. Figure 2 presents the search tree that can be built,

implicitly, during the process of generating the kernels and extendable sets using a breadth-first

search. Here, Q1 = {(G1, E1)}, Q2 = {(G2, E2), (G3, E3)}, and Q3 = {(G2, E2), (G5, E5), (G6, E6), {(G6,

E7)}, where Gi is a kernel and Ei is its corresponding extendable set. (We do not have to compute the

pair (G4, E4), the rectangle with dash-lined border.) They are found by the following steps:

With M1 = C \ Y1= {1}, by Definition 5.b, let G1 = {1}, E1 = C \ {1} = {2, 3, 4, 5, 6}) we have: Q1 =

{(G1, E1)}. (Then, [S1] = [G1, E1], but we do not need to compute it!)

Now, we will find Q2 based on (G1, E1) and M2, where M2 = C \ Y2 = {2, 3}). Let N2 = M2 ∩ E = {2,

3}. Using item 2 in N2 we have G2 = G1 + {2} = {1, 2}, and E2 = E1 \ {2} = {3, 4, 5, 6}. Using item

3 in N2 we have G3 = G1 + {3} = {1, 3}, and E3 = E2 \ {3} = {4, 5, 6}. Then, Q2 = {(G2, E2), (G3,

E3)} as nodes of level 2 in Figure 2.

Now, we will find Q3 based on {(G2, E2), (G3, E3)} and M3, where M3 = C \ Y3 = {2, 4, 5, 6}. With

(G2, E2), one can see that G2 satisfies S3 since M3 ∩ E2 = {2} ≠ ∅. Thus, (G2, E2) belongs to Q3.

With (G3, E3), we have N3 = M3 ∩ E3 = {4, 5, 6}. With item 4 in N3, we have G5 = G3 + {4} = {1, 3,

4}, and E5 = E3 \ {4}= {5, 6}. With item 5 in N3, we have G6 = G3 + {5} = {1, 3, 5}, and E6 = E5 \

{5} = {6}. With item 6 in N3, we have G7 = G3 + {6} = {1, 3, 6}, and E7 = E6 \ {6} = ∅. Then, Q3 =

{(G2, E2), (G5, E5), (G6, E6), {(G6, E7)} as nodes of level 3 in Figure 2.

5. NUCLEAR ALGORITHM

In this section, we present a breadth-first search algorithm for generating FIs from a lattice of FCIs:

based on Definition 4 and Theorem 1 of the previous section.

78 Computer Science & Information Technology (CS & IT)

Input: L = the lattice of FCIs mined from R for a given minsup

Output: all FIs satisfying minsup.

1 ∀C∈ L,

2 G = ∅; E = C;

3 if (SC = ∅) return 2
C

\∅;

4 else

5 ∀Yi∈ SC, Mi = C\Yi.

6 TRY_BFS(1, G, E);

Figure 3. The NUCLEAR algorithm.

For each immediate frequent closed subset C in lattice L, the variables G and E are initialized as

G = ∅ and E = C. If SC = ∅, the class [C] is all non-empty subsets of C. Otherwise, the recursive

TRY_BFS algorithm is called (Figure 4).

Input: k: k ≤ NS; G: itemset (k-1)-minimal; E: extendable set of G.

Output: all FIs satisfying Sk.

1 if (k > |Sc|)

2 ∀ (G, E) ∈ Qk-1 ,

3 Save [G, E];

4 Stop;

5 Qk = ∅;

6 ∀ (G, E) ∈ Qk-1

7 if(Mk ∩ G ≠ ∅) Qk = Qk + {(G, E)};

8 else

9 Ei = E;

10 Nk = Mk ∩ E ;

11 ∀x ∈ Nk

12 Ei = Ei\{x};

13 Qk = Qk + {(G + {x}, Ei)};

14 TRY_BFS(k+1, Qk);

Figure 4. The TRY_BFS algorithm.

6. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we compare the running time (in seconds) for mining all FIs from data of three

frameworks: dEclat, GenIT, and NUC. dEclat mines FIs directly from data. GenIT is not an

algorithm but a combination of algorithms of some previous studies, which is slightly different to

our proposed approach. In GenIT, we first use CharmL algorithm to mine the lattice of FCIs from

data, then, use Minimal Generator algorithm to mine the generators from the FCIs before

applying GEN_ITEMSETS to extract FIs from the FCIs and the generators by FIs. In NUC, we

also use CharmL algorithm to mine the lattice of FCIs from data before applying NUCLEAR to

generate the kernels and extendable sets. The FIs are inferred during this process. Thus, to be fair,

the total times reported for NUC includes the time of CharmL and the time of NUCLEAR;

Computer Science & Information Technology (CS & IT) 79

whereas, that for GenIT includes the time of CharmL, the time of Minimal Generator, and the

time of GEN_ITEMSETS. These algorithms have been executed on a Pentium (R) Dual-Core

CPU E6500 @ 2.93GHz, equipped with 1.94GB of RAM, running the Microsoft Windows XP

Version 2002 operating system.

Seven datasets (available at [32, 33] have been used to compare the frameworks under different

minsup threshold values. Information about the datasets is given in Table 3. The number of

patterns can be mined from each dataset are shown in Table 4. Table 5 shows the overall runtime

for NUC, GenIT, and dEclat in the columns of the corresponding names, and other details. The

visual comparisons of the three approaches are also given in Figures 5-11.

In our experiment, NUC is faster than dEclat when testing on the Mushroom and Connect

datasets (Figure 8, 9). The reasons are: (1) the time for CharmL (column tCS) is smaller than that

of dEclat because the number of FCIs in a dataset is much less than that of FIs, and (2) the time

for NUCLEAR (column tNNI) is also smaller than that of dEclat. On the other datasets, NUC is

slower than dEclat. However, the main reason is just CharmL is slower dEclat, whereas, the time

for NUCLEAR is significantly small as compared to those of CharmL and dEclat.

From Table 5, we can estimate that NUC is about 1.25 time faster than GenIT. To clearer see the

advantages of NUCLEAR, we break down the runtime of GenIT and NUC into the times for

different stages including: (1) constructing the lattice of FCIs by CharmL (column tCS), (2)

mining generators by Minimal Generator (column tG), (3) extracting FIs from the FCIs and the

generators by GEN_ITEMSETS (column tGI), (4) generating kernels and extendable sets from

the lattice of FCIs by NUCLEAR (column tN), and (5) enumerating the FIs from the kernels and

extendable sets by NUCLEAR (column tNI). In comparing tG against tN, and tGI against tNI,

one can see that the runtime of Minimal Generator to mine the generators is about double that of

NUCLEAR for generating the kernels and extendable sets (tN), and the time for

GEN_ITEMSETS (tGI) is similarly about twice as that of NUCLEAR for extracting FIs. These

make NUCLEAR more efficient than GenIT in extracting the intermediate and the final results.

The time for minings FIs from the lattice using NUCLEAR (tNNI) is mostly much smaller than

that for constructing the lattice of FCIs (tCS) using the CharmL algorithm. Thus, in the

applications where users have to try different minsup thresholds to find an optimal set of FIs for a

certain downstream process, our approach might be more efficient than repeatedly mining FIs

from scratch like dEclat. Because, the lattice can be constructed only once for a small enough

minsup, the cost for updating/filtering the lattice is expected to be small, and after that

NUCLEAR can be used to query FIs many times. For example, in bioinformatics, we can use

NUC to conduct a feature selection which shrinks the high dimensional data to a smaller one

before applying a machine learning algorithm. The feature selection might have to be conducted

many times to obtain an optimal set of features.

From Table 4, we can see that the number of pairs of kernels and extendable sets (#N) is almost

similar to the number of generators (#G) and just slightly bigger than the number of FCIs (#C).

Furthermore, we do not need to store the kernels and extendable sets but just the FCIs. Because,

for each FCI, we only need the largest FCIs those are its subsets to generate the kernels,

extendable sets, and FIs, and this can be done quickly. Thus, using NUCLEAR can save a lot of

memory as well.

80 Computer Science & Information Technology (CS & IT)

Table 3. Characteristics of the datasets.

Database Abbreviation #Items #Transactions #Average

Chess CH 75 3,196 37

Connect CO 129 67,557 43

Mushroom MU 119 8,124 23

Retail RE 16,469 88,162 10.3

T40I10100K T4 1,000 100,000 40

C20d10k C2 192 10,000 20

C73d10k C7 1,592 10,000 73

Table 4. Number of patterns extracted from datasets.

Data minsup #FS #CS #G #N #FS/#CS #CS/#N #N/#G

C2 0.8 8165081 99785 122031 122359 81.83 0.82 1.00

C2 0.85 7525408 95533 116126 116416 78.77 0.82 1.00

C2 0.9 7017040 92087 111297 111564 76.2 0.83 1.00

C2 0.95 6525355 88695 106575 106813 73.57 0.83 1.00

C2 1 6092449 85608 102316 102519 71.17 0.84 1.00

C7 50 25696439 482902 765450 765449 53.21 0.63 1.00

C7 55 9698268 222253 346029 346028 43.64 0.64 1.00

C7 60 4188627 108428 166918 166917 38.63 0.65 1.00

C7 65 1472818 47491 71875 71874 31.01 0.66 1.00

C7 70 543081 19501 29008 29007 27.85 0.67 1.00

CH 50 900355 369450 372603 372603 2.44 0.99 1.00

CH 60 156551 98392 98418 98418 1.59 1.00 1.00

CH 70 24997 23991 23991 23991 1.04 1.00 1.00

CO 60 21184454 68349 68349 68349 309.95 1.00 1.00

CO 70 4093971 35875 35875 35875 114.12 1.00 1.00

CO 75 1561212 24346 24346 24346 64.13 1.00 1.00

CO 80 518875 15107 15107 15107 34.35 1.00 1.00

MU 2 23596649 31767 57728 82483 742.8 0.55 1.43

MU 3 9934877 22229 37972 52165 446.93 0.59 1.37

MU 4 4324745 16565 26984 35597 261.08 0.61 1.32

MU 5 3727905 12854 21160 27801 290.02 0.61 1.31

RE 0.006 975063 504142 532342 542565 1.93 0.95 1.02

RE 0.008 480620 286435 293235 294709 1.68 0.98 1.01

RE 0.01 240852 189077 191265 191650 1.27 0.99 1.00

RE 0.02 67186 65301 65329 65330 1.03 1.00 1.00

RE 0.03 40153 39552 39552 39552 1.02 1.00 1.00

RE 0.04 26925 26666 26666 26666 1.01 1.00 1.00

RE 0.05 19836 19698 19698 19698 1.01 1.00 1.00

T4 0.8 480531 480531 480531 480531 1 1.00 1.00

T4 0.85 432211 432211 432211 432211 1 1.00 1.00

T4 0.9 350323 350323 350323 350323 1 1.00 1.00

T4 0.95 210610 210610 210610 210610 1 1.00 1.00

T4 1 66278 66278 66278 66278 1 1.00 1.00

Note: #FS: the number of FIs; #CS: the number of FCIs; #G: the number of generators; #N: the

number of pairs of kernels and extendable sets.

Computer Science & Information Technology (CS & IT) 81

Table 5. Runtimes of the frameworks and of the breakdown process.

Data minsup tCS tG tN tNI tNNI tGI GenIT dEclat
NU

C

C2 0.800 14.8 3.6 2.4 6.1 8.5 14.1 32.5 24.6 23.3

C2 0.850 13.9 3.4 2.3 5.3 7.7 12.8 30.1 22.6 21.6

C2 0.900 13.1 3.3 2.2 5.0 7.2 11.9 28.3 21.2 20.3

C2 0.950 12.5 3.2 2.3 4.6 6.9 11.2 26.9 19.6 19.5

C2 1.000 12.0 3.1 1.9 3.9 5.8 10.3 25.4 18.4 17.8

C7 50.000 192.5 33.3
23.

6
16.3 40.0 outM outM 88.1

232.

4

C7 55.000 58.9 14.0 9.2 5.4 14.6 19.4 92.2 33.2 73.5

C7 60.000 20.0 6.3 3.9 2.0 5.9 7.8 34.1 14.6 25.9

C7 65.000 6.5 2.4 1.5 0.7 2.2 2.7 11.6 5.3 8.7

C7 70.000 2.3 0.9 0.4 0.4 0.8 0.9 4.1 2.1 3.1

Ch 50.000 109.3 17.4 5.5 0.6 6.1 3.0 129.6 5.0
115.

4

Ch 60.000 14.3 3.9 1.3 0.1 1.5 0.6 18.7 1.1 15.8

Ch 70.000 1.8 0.8 0.3 0.0 0.3 0.1 2.7 0.3 2.1

Co 60.000 35.2 2.4 1.8 16.5 18.3 outM outM 95.0 53.4

Co 70.000 13.3 1.2 0.9 2.9 3.8 7.3 21.8 20.5 17.1

Co 75.000 7.9 0.8 0.5 0.9 1.4 2.6 11.3 8.7 9.4

Co 80.000 4.7 0.6 0.3 0.3 0.6 0.8 6.1 3.5 5.3

M 2.000 3.8 2.3 1.1 18.3 19.3 outM outM 71.2 23.1

M 3.000 2.7 1.3 0.4 8.0 8.4 28.2 32.1 30.1 11.1

M 4.000 1.9 0.8 0.5 3.2 3.7 13.8 16.5 13.3 5.6

M 5.000 1.6 0.9 0.3 2.9 3.2 11.1 13.7 11.3 4.8

RT 0.006 101.2 9.8 4.9 0.8 5.7 7.8 118.8 60.6
106.

9

RT 0.008 57.2 5.2 2.4 0.3 2.7 1.2 63.6 27.2 59.8

RT 0.010 39.0 3.1 1.5 0.1 1.6 0.5 42.7 16.5 40.6

RT 0.020 17.1 1.1 0.4 0.0 0.5 0.1 18.3 5.7 17.6

RT 0.030 12.0 0.6 0.2 0.0 0.3 0.1 12.8 3.8 12.3

RT 0.040 9.0 0.4 0.2 0.0 0.2 0.1 9.4 2.8 9.2

RT 0.050 7.2 0.4 0.1 0.0 0.2 0.0 7.6 2.2 7.4

T4 0.800 427.7 28.9 7.4 0.3 7.7 1.4 458.0 41.2
435.

4

T4 0.850 372.0 24.6 5.9 0.2 6.1 1.3 397.9 35.2
378.

2

T4 0.900 289.2 19.3 5.3 0.2 5.5 1.3 309.8 29.9
294.

7

T4 0.950 120.8 9.7 2.8 0.1 2.8 0.6 131.1 25.2
123.

6

82 Computer Science & Information Technology (CS & IT)

Data minsup tCS tG tN tNI tNNI tGI GenIT dEclat
NU

C

T4 1.000 75.4 1.9 0.6 0.0 0.6 0.1 77.4 21.1 76.0

Note: tCS: time to find FCIs using CharmL; tG: time to find the generators using Minimal

Generator; tN: time to generate kernels and extendable sets by NUCLEAR; tNI: time to enumerate

FIs from kernels and extendable sets by NUCLEAR; tNNI: time to find FIs from lattice of FCIs,

which is the sum of tN and tNI; tGI: time to generate FIs based on FCIs and generators using

GEN_ITEMSETS; NUC: time to find FIs from data using CharmL and NUCLEAR; GenIT: time to

find FIs using CharmL, Minimal Generator, and GEN_ITEMSETS; dEclat: time to find FIs from

data using dElat. outM: out of memory.

Figure 5. Time execution comparison on C20d10k.

Figure 6. Time execution comparison on C73d10k.

Figure 7. Comparison of time on Chess.

Computer Science & Information Technology (CS & IT) 83

Figure 8. Comparison of time on Connect.

Figure 9. Comparison of time on Mushroom.

Figure 10. Time execution comparison on Retail.

Figure 11. Time execution comparison on T40I10100K.

84 Computer Science & Information Technology (CS & IT)

7. CONCLUSIONS AND FUTURE WORK

Mining FIs from the lattice of FCIs is a reasonable approach since the number of FCIs is often

much smaller than the number of FIs. Thus, FCIs can be mined with a limited amount of

memory. Especially, because there are parallel and distributed algorithms to mine FCIs for large

or high dimensional data, the FCIs are easier to be available than the FIs. Besides, FCIs can be

used to partition FIs into equivalence classes that can be used to efficiently process FIs in

parallel. This approach is interesting as the lattice of FCIs can be mined once for a minimum

support threshold that is small enough and used many times later to derive FIs for different

minimum support thresholds.

In this paper, we presented a recurrent formula for generating the kernels and extendable sets

from a lattice of FCIs without the need of the generators. They are simple enough so that users

can easily and quickly derive the FIs from them, and we even don’t need to store them. Thank for

that, NUC, the approach using NUCLEAR to mine the FIs from the lattice of FCIs is more

efficient than GEN_IT, a similar approach that requires the generators for mining FIs from the

lattice of FCIs. NUC is slower than dEclat in the major cases, but it’s just mainly because the

construction of the lattice by CharmL takes more time than dEclat; whereas, the time for

obtaining the FIs from the lattice by NUCLEAR is still considerably small.

In the future, the methods for updating the FIs when minsup is changed will be studied for the

case that lattice can be constructed only once and reuse many times. We would like to test our

approach on the real data, such as bioinformatics data, where FIs cannot be mined directly from

data within a reasonable amount of time while our approach with or without parallel

implementation can.

ACKNOWLEDGEMENTS

This work has been partially supported by the Natural Sciences and Engineering Research

Council of Canada (NSERC).

The authors would like to thank Tran and the co-authors of [20] for providing us the code of

GEN_ITEMSETS algorithm for our experiments.

REFERENCES

[1] Agrawal R., Imielinski T., Swami N. (1993). Mining association rules between sets of items in large

databases. In: ACM SIGMOID, pp. 207-216.

[2] Mai T., Vo B., Nguyen L.T.T. (2017). A lattice-based approach for mining high utility association

rules. Information Sciences, 399, 81-97.

[3] Yun U., Lee G., Yoon E. (2017). Efficient high utility pattern mining for establishing manufacturing

plans with sliding window control. IEEE Transactions on Industrial Electronics, 64(9), 7239 – 7249.

[4] Mai T., Nguyen L.T.T. (2017). An Efficient Approach for Mining Closed High Utility Itemsets and

Generators. Journal of Information and Telecommunication, 1(3), 193-207.

[5] Bundit, M., Nunnapus, B., Arnon, R., Athasit, S., Putchong, U. (2007). Parallel association rule

mining based on FI-Growth algorithm. In: ICPDS’07, pp. 1-8.

[6] Lakhal, L., and Stumme, G. (2005). Efficient mining of association rules based on formal concept

analysis. In: FCA’05, pp. 180-195.

Computer Science & Information Technology (CS & IT) 85

[7] Grahne G., Zhu J. (2005). Fast algorithms for frequent itemset mining using FP-Trees. IEEE

Transactions on Knowledge and Data Engineering, 17(10), 1347-1362.

[8] Zaki, M.J. and Hsiao, C.J. (2005). Efficient algorithms for mining closed itemsets and their lattice

structure. IEEE Transactions on Knowledge and Data Engineering, 17(4), 462-478.

[9] Zaki, M.J. (2004). Mining non-redundant association rules. Data Mining and Knowledge Discovery,

9(3), 223-248.

[10] Sahoo, J., Das, A. K., Goswami, A. (2015). An effective association rule mining scheme using a new

generic basis. Knowledge and Information Systems, 43(1), 127–156.

[11] Negrevergne, B., Termier, A., Méhaut, J., Uno, T. (2010). Discovering Closed Frequent Itemsets on

Multicore: Parallelizing Computations and Optimizing Memory Accesses. 2010 International

Conference on High Performance Computing and Simulation (HPCS), pp. 521-528.

[12] Le T., Vo B. (2016). The Lattice-based approaches for mining association rules: a review. WIREs

Data Mining and Knowledge Discovery, 6(4), 140-151.

[13] Vo B., Le B. (2009). Mining traditional association rules using frequent itemsets lattice. In: CIE’09,

pp. 1401–1406.

[14] Deng Z.H. (2016). DiffNodesets: An efficient structure for fast mining frequent itemsets. Applied

Soft Computing, 41, 214-223.

[15] Deng Z.H., Lv S.L. (2015). PrePost+: An efficient N-lists-based algorithm for mining frequent

itemsets via Children-Parent Equivalence pruning. Expert Systems with Applications, 42(13), 5424-

5432.

[16] Vo B., Le T., Coenen F., Hong T.P. (2016). Mining frequent itemsets using the N-list and subsume

concepts. International Journal of Machine Learning and Cybernetics, 7(2), 253-265.

[17] Goethals, B., and Zaki, M. (2003). FIMI '03 Workshop on Frequent Itemset Mining Implementations.

http://www.cs.rpi.edu/~zaki/PaperDir/FIMI03.pdf.

[18] Tran N.A., Duong V.H., Tran C.T., Le H.B (2011). Efficient algorithms for mining frequent itemsets

with constraint. In: KSE’11, pp. 19-25.

[19] Tran N.A., Tran C.T., Le H.B. (2012). Structures of association rule set. In: ACIIDS’12, pp. 361-370

[20] Truong C.T., Tran N.A. (2010). Structure of set of association rules based on concept lattice. In:

ACIIDS’10, pp. 217-227.

[21] Szathmary, L., Valtchev, P., Napoli, A., Godin, R. (2009). Efficient vertical mining of frequent

closures and generators. In Advances in Intelligent Data Analysis VIII (pp. 393-404). Springer Berlin

Heidelberg.

[22] Anh N. T., Tin C.T., and Bac L.H. (2013). An approach for mining concurrently closed itemsets and

generators. In: ICCSAMA’13, pp.355–366.

[23] Vo B., Hong T.P., Le B. (2012). DBV-Miner: A dynamic Bit-Vector approach for fast mining

frequent closed itemsets. Expert Systems with ApplIcations, 39(8), 7196-7206.

[24] Vo B., Le B. (2011). Interestingness measures for association rules: Combination between lattice and

hash tables. Expert Systems with Applications, 38(9), 11630-11640.

[25] Vo B., Le T., Hong T.P., Le, B. (2014). An effective approach for maintenance of pre-large-based

frequent-itemset lattice in incremental mining. Applied Intelligence, 41(3), 759-775.

86 Computer Science & Information Technology (CS & IT)

[26] Agrawal R., Shafer J.C. (1996). Parallel mining of association rules. IEEE Transactions on

Knowledge and Data Engineering, 8(6), 962-969.

[27] Han E., Karypis G., and Kumar V. (1997). Scalable parallel data mining for association rules. In:

ACM SIGMOD’97, pp. 277-288.

[28] Zaïane, O.R., El-Hajj, M., and Lu, P. (2001). Fast parallel association rule mining without candidacy

generation. In: ICDM’01, pp. 665-668.

[29] Pasquier N., Taouil R., Bastide Y., Stumme G., and Lakhal L. (2005). “Generating a condensed

representation for association rules,” J. of Intelligent Information Systems, vol. 24, no. 1, pp. 29-60.

[30] Ai, D., Pan, H., Li, X., Gao, Y., & He, D. (2018). Association rule mining algorithms on high-

dimensional datasets. Artificial Life and Robotics, 23(3), 420-427.

[31] Fournier-Viger P., Lin J.C.W., Vo B., Truong T.C., Zhang J., Le H.B. (2017). A survey of itemset

mining. WIREs Data Mining and Knowledge Discovery, 7(4), e1207

[32] http://fimi.ua.ac.be/data.

[33] http://coron.loria.fr/site/downloads_datasets.php.

