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ABSTRACT 
 

Frequent itemset (FI) mining is an interesting data mining task. Directly mining the FIs from 

data often requires lots of time and memory, and should be avoided in many cases. A more 

preferred approach is to mine only the frequent closed itemsets (FCIs) first and then extract the 

FIs for each FCI because the number of FCIs is usually much less than that of the FIs. 

However, some algorithms require the generators for each FCI to extract the FIs, leading to an 

extra cost. In this paper, based on the concepts of “kernel set” and “extendable set”, we 

introduce the NUCLEAR algorithm which easily and quickly induces the FIs from the lattice of 

FCIs without the need of the generators. Experimental results showed that NUCLEAR is 

effective as compared to previous studies, especially, the time for extracting the FIs is usually 

much smaller than that for mining the FCIs. 
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1. INTRODUCTION 
 

Mining association rules (ARs) [1] is one of the most interesting and popular problems in data 

mining. It is widely used for decision making in retail, e-commerce, medicine, and many other 

domains. Mining frequent itemsets (FIs) is the first and the main step in the discovery of ARs. 

Since its first introduction in 1993 [1] it has attracted a lot of attention and has been extended and 

applied in various ways. For instance, some popular variations of the FI mining problem are to 

discover high utility patterns [2, 3], uncertain frequent patterns [2] and high utility association 

rules [2, 4]. Most algorithms for mining FIs partition the search space into subclasses in order to 

apply the parallel approaches to improve their performance. However, the performance of many 

parallel FI mining algorithms is limited by the speed of disk accesses, as they repeatedly scan the 

input database, which can still lead to long execution [5, 6]. To address this issue, some 

researchers proposed more efficient parallel algorithms, which compress the database in a 

frequent pattern tree and perform tree projections [7, 8]. Another approach to speed up the FI 

mining process is to first mine all the frequent closed itemsets (FCIs) and then derive the FIs 
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from them without the need of rescanning the data file. This approach is more efficient than 

mining FIs directly because the number of FCIs is usually much less than that of FIs (see Table 

4). Charm [9], FPClose [7], DCI_PLUS [10] and NAFCP [6] are among the best algorithms for 

mining FCIs. In 2010, a parallel algorithm (PLCMQS) for mining FCIs has been proposed [11]. 

The authors of Charm proposed the CharmL algorithm [8], which builds the lattice of FCIs. 

Formal concept (i.e., lattice of FCIs) analysis is also another way of mining FIs as well as ARs [6, 

12, 13].  
 

Mining FIs from the lattice of FCIs has several advantages over mining FIs directly from data. 

First, the number of FCIs is often much smaller than the number of FIs; therefore, this requires 

less memory. Second, each FCI can stand for an equivalence class of FIs having the same closure 

(i.e., these FIs shares the same set of transactions containing them); thus, we can develop parallel 

algorithms or “divide-and-conquer” approaches to facilitate the process of deriving FIs from 

FCIs. Third, when users want to try different minimum support (minsup) thresholds to find an 

optimal set of FIs for a certain downstream procedure, the cost of updating the set of FCIs can be 

much lower than mining them from scratch in a database. However, to extract to FIs from FCIs, 

the current algorithms requires the generators for each FCI, and mining them might take a 

significant amount of time. 
 

In this paper, we present a method to mine the FIs from a lattice of FCIs without the need of the 

generators. We introduce the concepts of “kernels” and “extendable sets” which further partition 

the equivalence classes represented by the FCIs into smaller subclasses. Then, each pair of kernel 

and extendable set stands for a subclass of FIs which are supersets of the kernel and subsets of the 

union of the kernel and the extendable set. Thus, once a pair of kernel and extendable set are 

identified, enumerating FIs in the subclass is straightforward. Our proposed algorithm, called 

NUCLEAR, to generate kernels and extendable sets for each FCI is simple and efficient. Its 

inputs are just the largest FCIs those are subsets of that FCI, and the time for it to induce all FIs 

from the lattice of FCIs is significantly shorter than the time to construct the lattice.   
 

The fact that NUCLEAR does not require the generators makes it more efficient than the 

approach infer FIs from FCIs and generators. In the comparison of NUC, the approach using 

NUCLEAR, against dEclat [8, 30], a well-known algorithm which mines FIs directly from data, 

NUC is faster when the number of FIs is much larger than the number of FCIs. When NUC is 

slower, the reason is that CharmL, the algorithm used to construct the lattice of FCIs from data 

before applying NUCLEAR, is already slower than dEclat.   
 

The rest of this paper is organized as follows. Section 2 introduces some related concepts. Section 

3 reviews the related works. Section 4 presents novel theoretical results that are the basis of the 

proposed algorithm, including a recurrent formula for generating kernels and extendable sets. 

Section 5 presents the proposed NUCLEAR algorithm. Section 6 reports experimental results that 

show the efficiency of the proposed algorithm. Finally, a conclusion is drawn and future work is 

discussed in section 7. 
 

2. PRELIMINARIES 
 

Consider a context (T, I, R) where I is a set of items (or attributes), T is a set of transactions (or 

objects) and R is a binary relation on T × I. For each non-empty subset A of I and non-empty 

subset O of T, the two functions λ and ρ below define a Galois connection between 2
T
 and 2

I
 

(reader can refer to [28] for more details): 
 

λ: 2
T 
→ 2

I
: λ(O) = {a ∈ I | (o, a) ∈ R, ∀o∈ O}, λ(∅) = I 

ρ: 2
I 
→ 2

T
: ρ(A) = {o∈ T | (o, a) ∈ R, ∀a∈ A}, ρ(∅) = T. 
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Then, h = λoρ in 2
I
 is called the closure operator [33], and h(A) is said to be the closure of A.  

A set A ⊆ I is called an itemset. An itemset A containing k items is called a k-itemset. Given a user-

specified minimum support threshold minsup, such that 0 < minsup ≤ 1, the support of an itemset A 

is denoted and defined as supp(A) = |ρ(A)| / |T|. A is said to be “frequent” if supp(A) ≥ minsup.  

Itemset A is “closed” if and only if h(A) = A. Let [A] = {A’⊆ I: h(A’) = h(A)} be the set of all 

itemsets having the same closure, which is h(A), then, the itemsets in [A] share the same set of 

transactions, which is ρ(A), i.e., they have the same support. 
 

Let CS and FCS denote the set of all closed itemsets and the set of all FCIs, respectively. Then, L ≡ 

(FCS, ≼A) is a lattice of FCIs, where ≼A is an order relation based on the ⊆ operator between 

subsets of I.   
 

An itemset G is called a “generator” of a closed itemset A if and only if h(G) = h(A) and ∀G’: ∅ ≠ 

G’⊂ G ⇒ h(G’) ⊂ h(G).  
 

For any itemset A ⊆ I, the equivalence class [A] has only one closed itemset, and one or more 

generators. 
 

Example 1. Given I = {1, 2, 3, 4, 5, 6}, T = {t1, t2, t3, t4, t5, t6}, and R as in the Table 1. Let 

itemset X = {1, 4, 5}, then ρ(X) = {t1, t2}, supp(X) = 2/4, and λ({t1, t2}) = {1, 4, 5, 6}. Then, X is 

not a FCI since h(X) =  λoρ (X) = {1, 4, 5, 6} ≠ X. Now, let C = {1, 4, 5, 6}, we have h(C) = C. 

Thus, C is a FCI. And, we have, [X] = [C] = {{1, 4}, {1, 5}, {1, 6}, {1, 4, 5}, {1, 4, 6}, {1, 4, 5, 

6}},  in which, the sets {1, 4}, {1, 5}, {1, 6} are the generators of C. 
 

The lattice of FCIs mined from R for minsup = 0.25 (i.e., absolute minimum support = 1) is 

shown in Figure 1. In this lattice, each node (rectangle) represents a FCI and its absolute support, 

separated by a colon (“:”) and each edge links a FCI to the FCIs which are its largest subsets.  

 
Table 1. The relation R = T × I, where I = {1, 2, 3, 4, 5, 6}, T = {t1, t2, t3, t4, t5, t6}. 

 

Transactions Items 

t1 1 2 3 4 5 6 

t2 1   4 5 6 

t3 1  3    

t4  2 3 4 5 6 

 

 
 
 
 
 

 

 
 

Figure 1. The lattice of FCIs mined from R with minsup = 0.25. 
 

3. RELATED WORK 
 

3.1. Mining Frequent (Closed) Itemsets 
 

In recent years, several algorithms have been proposed for FI mining such as dEclat, and Node-

list-based algorithms [5, 14, 15, 16]. The dEclat was one of the most effective algorithms 

according to [17]. It scans a database once to generate the transaction sets (tidsets) for all itemsets 

of 1 item (1-itemset). Then, it applies the “diffset” strategy to enumerate all FIs without 

{1, 2, 3, 4, 5, 6}: 1 

{2, 3, 4, 5, 6}: 2 

{3}: 3 {1}:3 {4, 5, 6}: 3 

{1, 4, 5, 6}: 2 {1, 3}: 2 
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repeatedly scanning the database. Deng et al. [14] proposed a novel structure named N-list for 

mining FIs. The proposed algorithm first compresses the dataset into a PPC-tree structure, and 

then, using that tree, the algorithm generates N-lists for each 1-itemset. Finally, the algorithm 

applies a divide-and-conquer approach to mine FIs using these lists. Experimental evaluation has 

shown that the N-list-based algorithm outperforms state-of-the-art FI mining algorithms on a 

variety of real and synthetic datasets. Recently, Deng and Lv [15] proposed an improved N-list 

based frequent itemset mining algorithm named PrePost+, which applies a novel pruning strategy 

called children-parent equivalence pruning to reduce the search space. Subsequently, Vo et al. 

[16] combined the N-list structure with the subsume concept to further increase the performance 

of FI mining. Recently, Deng [14] proposed an efficient algorithm relying on an improved 

Nodeset structure, named DiffNodesets.  

 

As defined in section II, the closure of an itemset is the set of items that appear in all transactions 

containing the itemset. FCIs have attracted a lot of studies as they can be used to partition FIs into 

equivalence classes. This inspires the development of parallel or “divide-and-conquer” 

approaches to mine FIs from FCIs without scanning the database for the support. However, few 

approaches have been proposed to perform this efficiently. Several researchers have studied 

retrieving FIs using the generator itemsets and eliminable itemsets in the equivalence classes of 

their closures [10, 17, 18-20]. For this purpose, algorithms were proposed that efficiently 

discover FIs using the lattice of FCIs, without performing duplicate checks, and by processing 

only one FCI at a time, that is, without considering its relationship to other FCIs. Generator 

itemsets can be mined independently or at the same time as FCIs. Zaki et al. [9] proposed the 

Minimal Generators algorithm to mine generators from the lattice of FCIs using a level-wise 

approach inspired by the Apriori algorithm. However, to identify the generators of a FCI, the 

algorithm had to scan all its subsets. Thus, the algorithm can be very slow. Szathmary et al. [21] 

proposed the Talky-G algorithm to mine generators from data, using an IT-tree structure. The 

algorithm uses the Charm algorithm [8, 9] to separately mine the FCIs and then, matches the 

generators with each FCI. Talky-G guarantees that when an itemset X is visited during the search, 

all its subsets have been already visited, and thus all generators that are subsets of X have already 

been found. Consequently, an itemset X is a generator if no already found generator is subset X 

and has the same support as X’s support. To quickly select the generators for that check Talky-G 

stores the support of visited generators in a hash table using the number of transactions 

containing each itemset as the hash function. This hash function is also used to match each FCI to 

its generators.  The algorithm is effective when minsup is high. However, the time required for 

finding generators is similar to the time for mining FCIs. GENCLOSE [22] is an algorithm that 

concurrently mines FCIs and generators. The authors introduced necessary and sufficient 

conditions to generate generators (k + 1)-itemsets using generators k-itemsets. Using these 

conditions, the closure of each generator can be extended gradually to find generators. In 2005, 

the CHARM [9] and dCHARM [8] algorithms have been proposed for mining FCIs using the 

“diffset” structure introduced in the dEclat algorithm. In 2012, the DBV-Miner [23] algorithm 

improved this approach by compressing the tidsets of 1-itemsets using dynamic bit vectors. It was 

shown that this can greatly reduce the memory required for storing tidsets and compute the 

support of itemsets efficiently. Then, Sahoo et al. [10] proposed the DCI_PLUS algorithm for 

mining FCIs and their generators. The algorithm compresses the database using a BitTable 

structure, which is built using a single database scan. In [20], Tran et al. proposed the 

GEN_ITEMSETS algorithm to generate all itemsets from a lattice of FCIs and generators without 

repetitions. More recently, Le and Vo [12] proposed an N-list-based algorithm for mining FCIs, 

named NAFCP. The experimental evaluation of this work has shown that NAFCP outperforms 

state-of-art FCI mining algorithms in terms of runtime and memory usage in most cases.  
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B. Lattice-based Approaches for Mining Association Rules 
 

In general, two types of lattices are considered for mining ARs, which are the frequent itemset 

lattice (FIL) and the frequent closed itemset lattice (FCIL) [12]. Vo and Le [13] have presented a 

lattice-based approach for building the FIL for mining ARs, here called FIL-2009. Each node of 

the structure used in FIL-2009 represents an itemset X and stores a tuple (X, Tidset, Children) 

where Tidset is the list of transactions containing X and Children are pointers to nodes 

representing supersets of X. Although, mining ARs using FIL-2009 is very effective, it is not 

designed for efficiently mining minimal non-redundant association rules. To address this issue, 

Vo and Le [24] extended the structure used by FIL-2009 (here called FIL-2011) by adding two 

fields in each node indicating if a node is a minimal generator or a frequent closed itemset, 

respectively. These values are determined during lattice construction. The structure is then used 

by FIL-2011 to effectively mine minimal non-redundant association rules. Thereafter, an efficient 

approach named PFIL was proposed, which supports incremental mining using the pre-large 

concept. It was shown that this approach is especially efficient for huge databases containing a 

large number of FIs [25]. The PFIL algorithm uses the diffset structure to quickly build a FIL. 

Then it uses the pre-large concept and diffset structure for maintaining the pre-large FIL.  
 

For a given dataset and a minsup threshold, building the FCIL is generally much faster than 

building the FIL because the number of FCIs is usually much less than that of FIs. CharmL [8] is 

an effective algorithm to build the lattice of FCIs. To update the lattice, researchers have 

proposed an algorithm [5] that runs efficiently in the case of large databases with a small number 

of inserted transactions.  
 

For parallel algorithms for mining FIs and ARs we refer readers to [26-29], and for the survey on 

algorithms FIs and ARs, we refer readers to [30, 31]. 
 

4. THEORETICAL RESULTS 
 

In this section, we introduce theoretical results that are the basis of our proposed algorithm.  

From now on, for convenience, whenever we use the variables C, and/or G without condition, it 

implicitly means that: C ∈ CS, ∅ ≠ G ⊆ C respectively. And, let “:” stand for “such that”, and 

“,”stand for the logical operator “∧” in the logical propositions.  
 

Definition 1 (the immediately closed subsets of a closed itemset). Let SC = {Y∈ CS: (Y ⊂ C) ∧ 

(∄Z∈ CS: Y ⊂ Z ⊂ C)} be the set of the largest closed itemsets that are subset of a given closed 

itemset C. These itemsets in SC are called the immediately closed subsets of C.  
 

Proposition 1. ∀G ⊆ C, ∀Y∈ SC (G∈ [C] ⇔ ∃x∈ G: x∉ Y). 
 

Proposition 1 points out a way to find [C] by searching every itemset G satisfying the right-hand 

side of Proposition 1. However, it might be not efficient if we have to scan every subset of C. 

  

Proof. For all G ⊆ C and Y ∈ SC,  

 

“⇒”: Since G ∈ [C], we have h(G) = C. Now, assume that ∀x ∈ G (x ∈ Y). Thus, G ⊆ Y ⊂ C ⇒ 

h(G) ⊆ h(Y) = Y  ⊂ C. This leads to a contradiction: h(G) ⊂ C.  

 

“⇐”: Assume that ∀Y ∈ SC (∃x ∈ G: x ∉ Y) ∧ (G ∉ [C]). We have: ∀Y ∈ SC ((h(G) = h(Y) = Y) ∨ 

(h(G) ≠ Y)) ∧ (h(G) ⊂ C). By the definition of SC, we have: ∀X ⊂ C (X ∈ CS ⇒ ∃Y∈ SC: X ⊆ Y). 

Then, ∀Y ∈ SC (h(G) ⊆ Y). Thus, we have: ∀Y ∈ SC, ∀x ∈G (x ∈ Y), which is a contradiction to the 

hypothesis. 
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Corollary 1. ∀Yk ∈ SC, let Mk = C \ Yk, NS = |SC|, 1 ≤ k ≤ NS, and M = {M1, …, MNS}. We have G∈ 

[C] ⇔ ∀Mk, ∃x∈ G: x ∈ Mk. 

 

Proof. We have G ∈ [C] ⇔ ∀Y ∈ SC, ∃x ∈ G: x ∉ Y ⇔ ∀Mk, ∃x ∈ G: x ∈ Mk. Therefore, this 

corollary is proven. 

 

Definition 2 (the kernel and extendable set). Given two itemsets G and E those are disjoint. Let the 

notation [G, E] denote the class of all itemsets those are supersets of G and subsets of G + E, i.e.,  

[G, E] = {X: G ⊆ X ⊆ G + E}. 

 

G is called the kernel and E is called the extendable set of the class. 
 

The following results provide an easy way to find the pairs of kernel and extendable set that can 

help partition [C] into equivalence classes. 

 

Definition 3. Let Mk = C \ Yk, ∀Yk ∈ SC, M = {M1,…, MNS}. For 1 ≤ k ≤ |SC|, let Sk = {M1,…, Mk} 

denotes the set of k first elements of M, and S0 =∅.  
 

An itemset G is said to “satisfy Sk” if ∀Mi ∈ Sk, ∃x∈ G: x ∈ Mi. Let [Sk] denote the set of all FIs that 

satisfies Sk, and [Sk ]= 2
C
 if k = 0. 

 

The following lemmas are obtained by Definition 3 and Corollary 1. 
 

Lemma 1. ∀G ⊆ C, E ⊆ C, G ∩ E = ∅, 1 ≤ k ≤ |SC|,  we have: 
 

a) [Sk] ⊆ [Sk -1], (i.e., if G satisfies Sk, it also satisfies Sk-1). 

b) ∀G ∈ [Sk]⇒ ∀X ∈ [G, E], X ∈ [Sk].  

c) [C] = [SNS]. 
 

Lemma 2. For 1 ≤ k ≤ |SC|, G* ∈ [Sk-1], and let G = G* + {x}, x ∈ C, we have:  (Mk ∩ G* ≠ ∅ ) ∨ 

(x ∈ Mk.) ⇒ G ∈ [Sk] 
 

In the first condition case (i.e., Mk ∩ G* ≠ ∅), x is not necessary for G to satisfy Sk since G* already 

satisfy Sk, meanwhile, in latter it is.  
 

From now on, we denote “+” (and “∑”) the union operator for two (and many, respectively) disjoint 

sets. Definition 4 below lead to the idea of generating the kernel sets. 
 

Definition 4 (k-minimal set). Given G = G* ∪ X, and X ⊆ Mk. G is “k-minimal” if one of the 

following conditions is satified: 
 

a) G* is “(k-1)-minimal”, Mk ∩ G* ≠ ∅, X = ∅ (i.e., G = G*, and no more item are needed  

for G* to satisfy Sk). 
 

b) G* is “(k-1)-minimal” Mk ∩ G* = ∅, and X = {x}, x ∈ Mk} (i.e., x is the new item needed 

for G* to satisfy Sk). 
 

c) ∅ is “0-minimal”. 
 

We can see that if G is “k-minimal” then G satisfies Sk. Cases (a), and (b) are based on Lemma 2.  

It is worthy to note that G is “k-minimal” does not imply that there is no subset of G satisfying Sk. It 

just implies that no prefix of G satisfies Sk if G is treated as a sequence of items.  
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From now on, we assume that there exists an order over the items in C (e.g., alphabetic order), and 

every Mi is sorted in the increasing order. 
 

Definition 5 (the partition of [Sk] by kernel and extendable set). Given C, and SC. Let the set Qk 

contain the pairs of (kernel set G, extendable set E) defined recurrently as follows: 
 

a) Q0 = {(∅, C)} 

b) Q1 = {(Gi, Ei): Gi = {xi}, xi ∈ M1,  Ei = C\{y ∈ M1: y ≤ x}} 

c) ∀k > 1, Qk = Bk + Ck, where: 
 

Bk = {(G, E): (G, E) ∈ Qk-1, G ∩ Mk  ≠ ∅}, 

Ck = {(G + {xi}, E\Ei): (G, E) ∈ Qk-1, G ∩ Mk = ∅, Nk = Mk∩E, xi ∈ Nk , Ei = {y ∈ Nk: y ≤ xi}. 

 

In details, Bk contains pairs (G, E) in Qk-1 where G is “(k-1)-minimal” and is also “k-minimal”, 

according to Definition 4.a. Thus, (G, E) belongs to Qk also. Meanwhile, Ck contains the pairs (G, 

E) such that G = G’ + {xi}, where G’ is “(k-1)-minimal” but not “k-minimal”, and xi is necessary for 

G to become “k-minimal” (as Definition 4.b). 
 

Lemma 3. For all (Gi, Ei), (Gj, Ej) ∈ Qk, i ≠ j, 1 ≤ k ≤ |SC|, we have:  
 

a) X ∈ [Gi, Ei] ⇒ X ∈ [Sk]. 

b) Gi ∩ Ei = ∅.  

c) [Gi, Ei] ∩ [Gj, Ej] = ∅.  
 

In other words, Qk induces a partition of all FIs in [Sk], where each equivalence classes is defined by 

[Q, E] as in Definition 2, with (G, E) ∈ Qk. Furthermore, for every (G, E) ∈ Qk, G is “k-minimal”.   

  

Theorem 1. For 0 ≤ k ≤ |SC|, {[G, E]: (G, E) ∈ Qk} is a partition of [Sk], where each [G, E] is an 

equivalence class, and G is “k-minimal”. 
 

Proof. 
 

A. We’ll first prove that Theorem 1 hold with k = 0. 
 

Since k = 0, Q0 ={(∅, C)} by Definition 5.a, and [Sk] = 2
C
 by Definition 3.  We have: [∅, C] = {X: 

X ⊆ C} = 2
C
. Since {[∅, C]} is a partition of 2

C
 and ∅ is “0-minimal”, let G = ∅ and E = C then 

Theorem 1 is proven for k = 0. 
 

B. Assume that Theorem 1 holds for any k-1, 0 < k ≤ |SC| (i.e., the set {[G, E]: (G, E) ∈ Qk-1} 

is a partition of [Sk-1], where each [G, E] is an equivalence class, and G is “(k-1)-minimal”), we will 

prove that Theorem 1 holds for k.  
 

By assumption, we have [Sk-1] = ∑ [Gi, Ei], where (Gi, Ei) ∈ Qk-1. By Lemma 1.a, for an itemset X to 

be in [Sk], it must be in [Sk-1] 
(a)

. By Lemma 3.c, for all (Gi, Ei) and (Gj, Ej) ∈ Qk-1, i ≠ j, we have: 

[Gi, Ei] ∩ [Gj, Ej] = ∅ 
(b)

. From 
(a)

 and 
(b)

, we only need to prove that given a pair (G, E) ∈ Qk-1, we 

can partition [G, E] into disjoint subclasses, where each subclass either is in the form of [G’, E’] 

and G’ is a “k-minimal” (i.e., (G’, E’) ∈ Qk), or contains only the itemsets which do not satisfy Sk
 

(*)
. 

 

If Mk ∩ G ≠ ∅, then G satisfies Sk. Then, (G, E) ∈ Qk. Then 
(*)

 is proved. In this case, (G, E) 

belongs to Bk as in Definition 5.b, thus, it belongs to Qk 
(i)

. Now, let assume that Mk ∩ G = ∅. If Mk 

∩ E = ∅, then for all Y ∈ [G, E], Y does not satisfy Sk. Then 
(*)

 is proved 
(ii)

.   
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Now, let assume that Mk ∩ G = ∅ and Mk ∩ E ≠ ∅.  Denote Nk = Mk ∩ E = {x1, .., xn}, and for 0 < i 

≤ n, denote Gi = G + {xi} (xi ∈ Nk), Ei = E\{xj: xj ∈ Nk, j ≤ i}. Let U1 = {G1 + T: T ⊆ E1} = [G1, E1], 

and V1 = {G + Y: Y ⊆ E \ {x1}} = [G, E1]. Then, ∀X ∈ U1 (x1 ∈ X) and ∀Y ∈ V1 (x1 ∉ Y). This 

means: U1 and V1 are disjoint. We can further divide V1 into two disjoint sets: U2 – the set of 

itemsets containing x2, and V2 - the set of itemsets not containing x2. One can see that Ei = Ei-1 \ {xi}, 

then, we have: U2 = {G2 + T: T ⊆ E2} = [G2, E1 \ { x2}] = [G2, E2], V2 = [G, E2], and U2 and V2 = ∅. 

By the same way, the division process continues until we divide Vn-1 into two disjoint sets: Un =  

[Gn, En] and Vn = [G, En]. One can see that, [G, E] = Vn + ∑ [Gi, Ei]. 
 

Since Mk ∩ G = ∅ and En = ∅, for all Y ∈ Vn, Y does not satisfy Sk. Meanwhile, since Nk ∩ Gi = 

{xi} ≠ ∅, for all i ≤ n. This means Mk ∩ Gi ≠ ∅. Thus, Gi is “k-minimal” by  Definition 4.b and for 

all X ∈ [Gi, Ei], X satisfies Sk. This mean (Gi, Ei) is generated as Definition 5.c then (Gi, Ei) ∈ Qk.  
Then (*) is proved. 

(iii) 

 

By 
(i)

, 
(ii)

, and 
(iii)

, 
(*)

 is proved, and Theorem 1 is proved. 
 

Corollary 2: {[G, E]: (G, E) ∈ QNS} is a partition of [C], where each pair [G, E] is an equivalence 

class, and G is “NS-minimal”.  
 

Proof: This is result of Theorem 1, where k = NS, [C] = [Sk]. 

 

Example 2: Let consider the relation R shown in Table 1 and the lattice of FCIs mined from R with 

minsup = 0.25 (i.e., absolute minimum support = 1) shown in Figure 1. The following paragraphs 

explain how to find all FIs in [C] for C = {1, 2, 3, 4, 5, 6}. 

 

.  
 

Figure 2. Search tree for generating the kernels and extendable sets of Q3, where Q3 = {(G2, E2), (G5, E5), 

(G6, E6), {(G6, E7)}. 
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Table 2. The partition of 23 FIs in [{1, 2, 3, 4, 5, 6}] based on Q3 as in Figure 2. 
 

 [G2, E2] [G5, E5] [G6, E6] [G7, E7] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

{{1, 2}, 

{1, 2, 3}, 

{1, 2, 3, 4}, 

{1, 2, 3, 4, 5}, 

{1, 2, 3, 4, 5, 6}, 

{1, 2, 3, 4, 6}, 

{1, 2, 3, 5}, 

{1, 2, 3, 5, 6}, 

{1, 2, 3, 6}, 

{1, 2, 4}, 

{1, 2, 4, 5}, 

{1, 2, 4, 5, 6}, 

{1, 2, 4, 6}, 

{1, 2, 5}, 

{1, 2, 5, 6}, 

{1, 2, 6}} 

{{1, 3, 4}, 

{1, 3, 4, 5}, 

{1, 3, 4, 5, 6}, 

{1, 3, 4, 6}} 

 

{{1, 3, 5}, 

{1, 3, 5, 6}} 

{{1, 3, 6}} 

 

According to the lattice, the immediately closed subsets of C are Y1= {2, 3, 4, 5, 6}, Y2 = {1, 4, 5, 6} 

and Y3 = {1, 3}. In other words, SC ={Y1, Y2, Y3}. Figure 2 presents the search tree that can be built, 

implicitly, during the process of generating the kernels and extendable sets using a breadth-first 

search. Here, Q1 = {(G1, E1)}, Q2 = {(G2, E2), (G3, E3)}, and Q3 = {(G2, E2), (G5, E5), (G6, E6), {(G6, 

E7)}, where Gi is a kernel and Ei is its corresponding extendable set. (We do not have to compute the 

pair (G4, E4), the rectangle with dash-lined border.) They are found by the following steps: 

With M1 = C \ Y1= {1}, by Definition 5.b, let G1 = {1}, E1 = C \ {1} = {2, 3, 4, 5, 6}) we have: Q1 = 

{(G1, E1)}. (Then, [S1] = [G1, E1], but we do not need to compute it!)  

 

Now, we will find Q2 based on (G1, E1) and M2, where M2 = C \ Y2 = {2, 3}). Let N2 = M2 ∩ E = {2, 

3}. Using item 2 in N2 we have G2 = G1 + {2} = {1, 2}, and E2 = E1 \ {2} = {3, 4, 5, 6}. Using item 

3 in N2 we have G3 = G1 + {3} = {1, 3}, and E3 = E2 \ {3} = {4, 5, 6}. Then, Q2 = {(G2, E2), (G3, 

E3)} as nodes of level 2 in Figure 2.  

 

Now, we will find Q3 based on  {(G2, E2), (G3, E3)} and M3, where M3 = C \ Y3 = {2, 4, 5, 6}. With 

(G2, E2), one can see that G2 satisfies S3 since M3 ∩ E2 = {2} ≠ ∅. Thus, (G2, E2) belongs to Q3. 

With (G3, E3), we have N3 = M3 ∩ E3 = {4, 5, 6}. With item 4 in N3, we have G5 = G3 + {4} = {1, 3, 

4}, and E5 = E3 \ {4}= {5, 6}. With item 5 in N3, we have G6 = G3 + {5} = {1, 3, 5}, and E6 = E5 \ 

{5} = {6}. With item 6 in N3, we have G7 = G3 + {6} = {1, 3, 6}, and E7 = E6 \ {6} = ∅. Then, Q3 = 

{(G2, E2), (G5, E5), (G6, E6), {(G6, E7)} as nodes of level 3 in Figure 2. 

  

5. NUCLEAR ALGORITHM 
 

In this section, we present a breadth-first search algorithm for generating FIs from a lattice of FCIs: 

based on Definition 4 and Theorem 1 of the previous section. 
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Input: L = the lattice of FCIs mined from R for a given minsup 

Output: all FIs satisfying minsup. 

1 ∀C∈ L, 

2 G = ∅;  E = C; 

3 if (SC = ∅)  return 2
C 

\∅; 

4 else 

5 ∀Yi∈ SC, Mi = C\Yi.  

6 TRY_BFS(1, G, E); 

 

Figure 3. The NUCLEAR algorithm. 

 

For each immediate frequent closed subset C in lattice L, the variables G and E are initialized as 

G = ∅ and E = C. If SC = ∅, the class [C] is all non-empty subsets of C. Otherwise, the recursive 

TRY_BFS algorithm is called (Figure 4). 

 

Input: k: k ≤ NS; G: itemset (k-1)-minimal; E: extendable set of G. 

Output: all FIs satisfying Sk. 

1 if (k > |Sc|) 

2 ∀ (G, E) ∈ Qk-1 , 

3 Save [G, E]; 

4 Stop; 

5 Qk = ∅; 

6 ∀ (G, E) ∈ Qk-1 

7 if(Mk ∩ G ≠ ∅) Qk = Qk + {(G, E)}; 

8 else 

9 Ei = E; 

10 Nk = Mk ∩ E ; 

11 ∀x ∈ Nk 

12 Ei = Ei\{x}; 

13 Qk = Qk + {(G + {x}, Ei)}; 

14 TRY_BFS(k+1, Qk); 

 

Figure 4. The TRY_BFS algorithm. 

 

6.  EXPERIMENTAL RESULTS AND DISCUSSION 
 

In this section, we compare the running time (in seconds) for mining all FIs from data of three 

frameworks: dEclat, GenIT, and NUC. dEclat mines FIs directly from data. GenIT is not an 

algorithm but a combination of algorithms of some previous studies, which is slightly different to 

our proposed approach. In GenIT, we first use CharmL algorithm to mine the lattice of FCIs from 

data, then, use Minimal Generator algorithm to mine the generators from the FCIs before 

applying GEN_ITEMSETS to extract FIs from the FCIs and the generators by FIs. In NUC, we 

also use CharmL algorithm to mine the lattice of FCIs from data before applying NUCLEAR to 

generate the kernels and extendable sets. The FIs are inferred during this process. Thus, to be fair, 

the total times reported for NUC includes the time of CharmL and the time of NUCLEAR; 
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whereas, that for GenIT includes the time of CharmL, the time of Minimal Generator, and the 

time of GEN_ITEMSETS. These algorithms have been executed on a Pentium (R) Dual-Core 

CPU E6500 @ 2.93GHz, equipped with 1.94GB of RAM, running the Microsoft Windows XP 

Version 2002 operating system. 

 
Seven datasets (available at [32, 33] have been used to compare the frameworks under different 

minsup threshold values. Information about the datasets is given in Table 3. The number of 

patterns can be mined from each dataset are shown in Table 4. Table 5 shows the overall runtime 

for NUC, GenIT, and dEclat in the columns of the corresponding names, and other details. The 

visual comparisons of the three approaches are also given in Figures 5-11.  

 
In our experiment, NUC is faster than dEclat when testing on the Mushroom and Connect 

datasets (Figure 8, 9). The reasons are: (1) the time for CharmL (column tCS) is smaller than that 

of dEclat because the number of FCIs in a dataset is much less than that of FIs, and (2) the time 

for NUCLEAR (column tNNI) is also smaller than that of dEclat. On the other datasets, NUC is 

slower than dEclat. However, the main reason is just CharmL is slower dEclat, whereas, the time 

for NUCLEAR is significantly small as compared to those of CharmL and dEclat. 

 
From Table 5, we can estimate that NUC is about 1.25 time faster than GenIT. To clearer see the 

advantages of NUCLEAR, we break down the runtime of GenIT and NUC into the times for 

different stages including: (1) constructing the lattice of FCIs by CharmL (column tCS), (2) 

mining generators by Minimal Generator (column tG), (3) extracting FIs from the FCIs and the 

generators by GEN_ITEMSETS (column tGI), (4) generating kernels and extendable sets from 

the lattice of FCIs by NUCLEAR (column tN), and (5) enumerating the FIs from the kernels and 

extendable sets by NUCLEAR (column tNI). In comparing tG against tN, and tGI against tNI, 

one can see that the runtime of Minimal Generator to mine the generators is about double that of 

NUCLEAR for generating the kernels and extendable sets (tN), and the time for 

GEN_ITEMSETS (tGI) is similarly about twice as that of NUCLEAR for extracting FIs. These 

make NUCLEAR more efficient than GenIT in extracting the intermediate and the final results. 

The time for minings FIs from the lattice using NUCLEAR (tNNI) is mostly much smaller than 

that for constructing the lattice of FCIs (tCS) using the CharmL algorithm. Thus, in the 

applications where users have to try different minsup thresholds to find an optimal set of FIs for a 

certain downstream process, our approach might be more efficient than repeatedly mining FIs 

from scratch like dEclat. Because, the lattice can be constructed only once for a small enough 

minsup, the cost for updating/filtering the lattice is expected to be small, and after that 

NUCLEAR can be used to query FIs many times. For example, in bioinformatics, we can use 

NUC to conduct a feature selection which shrinks the high dimensional data to a smaller one 

before applying a machine learning algorithm. The feature selection might have to be conducted 

many times to obtain an optimal set of features. 

 
From Table 4, we can see that the number of pairs of kernels and extendable sets (#N) is almost 

similar to the number of generators (#G) and just slightly bigger than the number of FCIs (#C).  

Furthermore, we do not need to store the kernels and extendable sets but just the FCIs. Because, 

for each FCI, we only need the largest FCIs those are its subsets to generate the kernels, 

extendable sets, and FIs, and this can be done quickly. Thus, using NUCLEAR can save a lot of 

memory as well. 
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Table 3. Characteristics of the datasets. 

 

Database Abbreviation #Items #Transactions #Average 

Chess CH 75 3,196 37 

Connect CO 129 67,557 43 

Mushroom MU 119 8,124 23 

Retail RE 16,469 88,162 10.3 

T40I10100K T4 1,000 100,000 40 

C20d10k C2 192 10,000 20 

C73d10k C7 1,592 10,000 73 

 

Table 4. Number of patterns extracted from datasets. 

 

Data minsup #FS #CS #G #N #FS/#CS #CS/#N #N/#G 

C2 0.8 8165081 99785 122031 122359 81.83 0.82 1.00 

C2 0.85 7525408 95533 116126 116416 78.77 0.82 1.00 

C2 0.9 7017040 92087 111297 111564 76.2 0.83 1.00 

C2 0.95 6525355 88695 106575 106813 73.57 0.83 1.00 

C2 1 6092449 85608 102316 102519 71.17 0.84 1.00 

C7 50 25696439 482902 765450 765449 53.21 0.63 1.00 

C7 55 9698268 222253 346029 346028 43.64 0.64 1.00 

C7 60 4188627 108428 166918 166917 38.63 0.65 1.00 

C7 65 1472818 47491 71875 71874 31.01 0.66 1.00 

C7 70 543081 19501 29008 29007 27.85 0.67 1.00 

CH 50 900355 369450 372603 372603 2.44 0.99 1.00 

CH 60 156551 98392 98418 98418 1.59 1.00 1.00 

CH 70 24997 23991 23991 23991 1.04 1.00 1.00 

CO 60 21184454 68349 68349 68349 309.95 1.00 1.00 

CO 70 4093971 35875 35875 35875 114.12 1.00 1.00 

CO 75 1561212 24346 24346 24346 64.13 1.00 1.00 

CO 80 518875 15107 15107 15107 34.35 1.00 1.00 

MU 2 23596649 31767 57728 82483 742.8 0.55 1.43 

MU 3 9934877 22229 37972 52165 446.93 0.59 1.37 

MU 4 4324745 16565 26984 35597 261.08 0.61 1.32 

MU 5 3727905 12854 21160 27801 290.02 0.61 1.31 

RE 0.006 975063 504142 532342 542565 1.93 0.95 1.02 

RE 0.008 480620 286435 293235 294709 1.68 0.98 1.01 

RE 0.01 240852 189077 191265 191650 1.27 0.99 1.00 

RE 0.02 67186 65301 65329 65330 1.03 1.00 1.00 

RE 0.03 40153 39552 39552 39552 1.02 1.00 1.00 

RE 0.04 26925 26666 26666 26666 1.01 1.00 1.00 

RE 0.05 19836 19698 19698 19698 1.01 1.00 1.00 

T4 0.8 480531 480531 480531 480531 1 1.00 1.00 

T4 0.85 432211 432211 432211 432211 1 1.00 1.00 

T4 0.9 350323 350323 350323 350323 1 1.00 1.00 

T4 0.95 210610 210610 210610 210610 1 1.00 1.00 

T4 1 66278 66278 66278 66278 1 1.00 1.00 

Note: #FS: the number of FIs; #CS: the number of FCIs; #G: the number of generators; #N: the 

number of pairs of kernels and extendable sets. 
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Table 5. Runtimes of the frameworks and of the breakdown process. 

 

Data minsup tCS tG tN tNI tNNI tGI GenIT dEclat 
NU

C 

C2 0.800 14.8 3.6 2.4 6.1 8.5 14.1 32.5 24.6 23.3 

C2 0.850 13.9 3.4 2.3 5.3 7.7 12.8 30.1 22.6 21.6 

C2 0.900 13.1 3.3 2.2 5.0 7.2 11.9 28.3 21.2 20.3 

C2 0.950 12.5 3.2 2.3 4.6 6.9 11.2 26.9 19.6 19.5 

C2 1.000 12.0 3.1 1.9 3.9 5.8 10.3 25.4 18.4 17.8 

C7 50.000 192.5 33.3 
23.

6 
16.3 40.0 outM outM 88.1 

232.

4 

C7 55.000 58.9 14.0 9.2 5.4 14.6 19.4 92.2 33.2 73.5 

C7 60.000 20.0 6.3 3.9 2.0 5.9 7.8 34.1 14.6 25.9 

C7 65.000 6.5 2.4 1.5 0.7 2.2 2.7 11.6 5.3 8.7 

C7 70.000 2.3 0.9 0.4 0.4 0.8 0.9 4.1 2.1 3.1 

Ch 50.000 109.3 17.4 5.5 0.6 6.1 3.0 129.6 5.0 
115.

4 

Ch 60.000 14.3 3.9 1.3 0.1 1.5 0.6 18.7 1.1 15.8 

Ch 70.000 1.8 0.8 0.3 0.0 0.3 0.1 2.7 0.3 2.1 

Co 60.000 35.2 2.4 1.8 16.5 18.3 outM outM 95.0 53.4 

Co 70.000 13.3 1.2 0.9 2.9 3.8 7.3 21.8 20.5 17.1 

Co 75.000 7.9 0.8 0.5 0.9 1.4 2.6 11.3 8.7 9.4 

Co 80.000 4.7 0.6 0.3 0.3 0.6 0.8 6.1 3.5 5.3 

M 2.000 3.8 2.3 1.1 18.3 19.3 outM outM 71.2 23.1 

M 3.000 2.7 1.3 0.4 8.0 8.4 28.2 32.1 30.1 11.1 

M 4.000 1.9 0.8 0.5 3.2 3.7 13.8 16.5 13.3 5.6 

M 5.000 1.6 0.9 0.3 2.9 3.2 11.1 13.7 11.3 4.8 

RT 0.006 101.2 9.8 4.9 0.8 5.7 7.8 118.8 60.6 
106.

9 

RT 0.008 57.2 5.2 2.4 0.3 2.7 1.2 63.6 27.2 59.8 

RT 0.010 39.0 3.1 1.5 0.1 1.6 0.5 42.7 16.5 40.6 

RT 0.020 17.1 1.1 0.4 0.0 0.5 0.1 18.3 5.7 17.6 

RT 0.030 12.0 0.6 0.2 0.0 0.3 0.1 12.8 3.8 12.3 

RT 0.040 9.0 0.4 0.2 0.0 0.2 0.1 9.4 2.8 9.2 

RT 0.050 7.2 0.4 0.1 0.0 0.2 0.0 7.6 2.2 7.4 

T4 0.800 427.7 28.9 7.4 0.3 7.7 1.4 458.0 41.2 
435.

4 

T4 0.850 372.0 24.6 5.9 0.2 6.1 1.3 397.9 35.2 
378.

2 

T4 0.900 289.2 19.3 5.3 0.2 5.5 1.3 309.8 29.9 
294.

7 

T4 0.950 120.8 9.7 2.8 0.1 2.8 0.6 131.1 25.2 
123.

6 
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Data minsup tCS tG tN tNI tNNI tGI GenIT dEclat 
NU

C 

T4 1.000 75.4 1.9 0.6 0.0 0.6 0.1 77.4 21.1 76.0 

Note: tCS: time to find FCIs using CharmL; tG: time to find the generators using Minimal 

Generator; tN: time to generate kernels and extendable sets by NUCLEAR; tNI: time to enumerate 

FIs from kernels and extendable sets by NUCLEAR; tNNI: time to find FIs from lattice of FCIs, 

which is the sum of tN and tNI; tGI: time to generate FIs based on FCIs and generators using 

GEN_ITEMSETS; NUC: time to find FIs from data using CharmL and NUCLEAR; GenIT: time to 

find FIs using CharmL, Minimal Generator, and GEN_ITEMSETS; dEclat: time to find FIs from 

data using dElat. outM: out of memory. 

 

 
 

Figure 5. Time execution comparison on C20d10k. 
 

 
 

Figure 6. Time execution comparison on C73d10k. 
 

 
 

Figure 7. Comparison of time on Chess. 
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Figure 8. Comparison of time on Connect. 

 

 
 

Figure 9. Comparison of time on Mushroom. 
 

 
 

Figure 10. Time execution comparison on Retail. 
 

 
 

Figure 11. Time execution comparison on T40I10100K. 
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7. CONCLUSIONS AND FUTURE WORK 
 

Mining FIs from the lattice of FCIs is a reasonable approach since the number of FCIs is often 

much smaller than the number of FIs. Thus, FCIs can be mined with a limited amount of 

memory. Especially, because there are parallel and distributed algorithms to mine FCIs for large 

or high dimensional data, the FCIs are easier to be available than the FIs. Besides, FCIs can be 

used to partition FIs into equivalence classes that can be used to efficiently process FIs in 

parallel. This approach is interesting as the lattice of FCIs can be mined once for a minimum 

support threshold that is small enough and used many times later to derive FIs for different 

minimum support thresholds.  
 

In this paper, we presented a recurrent formula for generating the kernels and extendable sets 

from a lattice of FCIs without the need of the generators. They are simple enough so that users 

can easily and quickly derive the FIs from them, and we even don’t need to store them. Thank for 

that, NUC, the approach using NUCLEAR to mine the FIs from the lattice of FCIs is more 

efficient than GEN_IT, a similar approach that requires the generators for mining FIs from the 

lattice of FCIs. NUC is slower than dEclat in the major cases, but it’s just mainly because the 

construction of the lattice by CharmL takes more time than dEclat; whereas, the time for 

obtaining the FIs from the lattice by NUCLEAR is still considerably small.  
 

In the future, the methods for updating the FIs when minsup is changed will be studied for the 

case that lattice can be constructed only once and reuse many times. We would like to test our 

approach on the real data, such as bioinformatics data, where FIs cannot be mined directly from 

data within a reasonable amount of time while our approach with or without parallel 

implementation can. 
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