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ABSTRACT 
 

The goal of this research is to develop an algorithm to automatically retrieve critical 

information from raw data files in NASA’s airborne measurement data archive. The product has 

to meet specific metrics in term of accuracy, robustness and usability, as the initial decision-tree 

based development has shown limited applicability due to its resource intensive characteristics. 

We have developed an innovative solution that is much less resource intensive while offering 

comparable performance. As with many practical applications, the data available are noisy and 

correlated; and there is a wide range of features that are associated with the information to be 

retrieved. The proposed algorithm uses a decision tree to select features and determine their 

weights. A weighted Naive Bayes is used due to the presence of highly correlated inputs. The 

development has been successfully deployed in an industrial scale, and the results show that the 

development is well-balanced in term of performance and resource requirements 
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1. BACKGROUND  

 

Beginning in the 1980s, NASA (National Aeronautics and Space Administration) introduced 

tropospheric chemistry studies to gather information about the contents of the air. These studies 

involve a data gathering process through the use of airplanes mounted with on-board instruments, 

which gather multiple measurements over specific regions of the air. These measurements are 

complemented with other sources, such as satellites and ground stations. The data collection 

compiled, called missions or campaigns, are supported by the federal government with the goal of 

collecting data for scientific studies on climate and air quality issues. For the last two decades, 

data has been compiled into a single format, ICARTT (International Consortium for Atmospheric 

Research on Transport and Transformation) [1], which is designed to allow for sharing across the 

airborne community, with other agencies, universities, or any other group working with the data.  

 

A typical ICARTT file contains, at the minimum, about 30 fields of metadata that describe the 

data gathered, the who/where/what aspects of the data gathering process, along with additional 

comments supplied by the principal investigator that is pertinent to the data. Over the past few 

years, the federal government has launched the Open Data Initiative, part of which aims at scaling 
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up open data efforts in the climate sector. Accordingly, NASA has made it a priority to open up 

its data archive to the general public in order to promote their usage in scientific studies. As part 

of this initiative, NASA has introduced a centralized data archive service, which allows for others 

to quickly find certain information within the data archive by filtering data according to specific 

metadata components [2].  

 

It is commonly believed that the most important information in an ICARTT data archive is the 

type of measurement taken by that experiment. Some of the examples include aerosol (such as 

aerosol particle absorption coefficient at blue wavelengths), trace gas (such as ozone mixing 

ratio), and cloud property (such as cloud surface area density). In order to uniquely define each 

measurement, NASA has adopted a naming system called “common names”; each common name 

is used for indexing a measurement with a uniquely-defined physical or chemical characteristic.  

 

Unfortunately, the common name information is not directly presented in the ICARTT data file. 

Instead, each measurement is given a “variable name”. Principal investigators decide each 

variable name in compilation of the ICARTT files, and along with the unique metadata it offers, 

the variable name is not easily searchable. Although they can be found in different missions, 

conducted by separate investigators, much of the data associated with a certain variable may be 

equivalent to others, save for the distinguishing metadata. For example, the gathering of 

formaldehyde (CH2O) in the troposphere is done in several missions across a number of years, all 

with differing variable names and through different sources. However, in a centralized data 

archive, all of these variables should be given the same common name to identify them as CH2O 

data. This more general common name allows a user to easily access similar data across missions 

by filtering based on this name.  

 

The identification of a common name for each measurement variable was done by domain experts 

at NASA. The task is rather complicated as many fields in an ICARRT file contribute to the 

common name of a measurement: variable name, variable description, instrument used and 

measurement unit, etc. There are other information, although less intuitive, that may also 

contribute to the naming of each measurement. One such example is the principal investigator’s 

(PI) name, because each person has his/her tendency in naming a variable. In addition, the data 

are noisy – missing fields and typos are common – as there has been no rigorous vetting process 

for metadata fields. As a result, there are only a few domain experts in NASA who can accurately 

identify a common name by studying the ICARRT file under consideration. Given the vast 

amount of data accumulated over the past 30 years, it is essential to automate the information 

retrieval process.  

 

2. OVERVIEW OF SOLUTIONS  

 

In its most common form, the common naming process is to choose a specific label (i.e., a 

common name) for a measurement variable (text) from a list of predefined labels, given the 

metadata associated with this variable. It belongs to the category of text categorization problems.  

 

Textual similarity comparisons using fuzzy logic is a common approach to decide on matched 

and non-matched records [3]. It presents an opportunity for common name matching; however, 

given the variations in the type of metadata associated with each common name, and the large 

number of common names (300+), it becomes impractical to implement such an approach.  
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A forward-chaining based expert system, which belongs to a category of artificial intelligence 

algorithms, may provide another viable solution [4]. This approach was attempted by 

summarizing the rules used by domain experts and synthesizing a knowledge base. It turns out to 

not be very effective, as the rules are complex, non-inclusive, and sometimes contradictory. Also, 

whenever new missions are conducted, an expansion of rules in the inference engine is required - 

a tedious task.  

 

Solutions to similar problems include Artificial Neural Networks (ANN) especially the 

perceptron-based network, Support Vector Machines (SVM), instance-based learning especially 

the k-Nearest Neighbor (k-NN) algorithm. Generally, SVMs and ANN tend to perform much 

better when dealing with multi-dimensional and continuous-valued features [5]. However, this 

problem only involves single dimensional and discrete features. The k-NN algorithm is very 

sensitive to irrelevant features and intolerant to noise. These make it unattractive for this problem, 

as not all features are relevant to every common name, and the information in general is very 

noisy due to errors and inconsistencies in ICARTT files.  

 

Logic-based systems such as decision trees tend to perform better when dealing with 

discrete/categorical features. One of the most useful characteristics of decision trees is their 

comprehensibility. Typical decision trees, such as C4.5, are unreliable for classifying the airborne 

data. Preliminary testing with the algorithms using missions’ data led to low overall accuracy 

values, due to their preference for binary and discrete features. Instead, a separate type of decision 

tree is considered. Classification and regression trees (CART) have been used in the statistics 

community for over thirty years [6], and are well-proven methods for creating predictive models 

in the form of a “tree”, where branches are features and the end of a branch - the leaf - is the 

chosen class. Classification trees in particular have provided good results for datasets with 

categorical classes and features [7], while regression trees deal with continuous values unlike the 

atmospheric dataset. Classification trees are constructed through the partitioning of features based 

upon providing good splits, utilizing some metric to determine the “best” split. As they have the 

capability to work with datasets filled with categorical information and seeking a categorical 

outcome, classification trees align with the common naming process. Favorable preliminary 

results for implementation of a classification tree model lead to further investigation into utilizing 

this algorithm.  

 

We first implemented CART, the Boosted CART and Bagged CART algorithms as solution for 

the common naming problem [8]. The algorithms provide the accuracy as well as robustness that 

we have aimed at. However, there are two major roadblocks in the deployment of the 

implementation. The first one is the execution time of the algorithms: the running time ranges 

from hours (for CART) to over 10 hours (for Boosted and Bagged version) using normal office 

computing power. This might be acceptable if the training is a one-time event. However, the 

training is necessary whenever a new mission is added to the data archive, because the newer 

missions may require the insertion of new common names.  

 

The time complexity of CART-based algorithm is shown in Table I, where the complexity is a 

function of D (data space), L (label or class space), F (feature space), Vf value space for each 

feature, and M (number of trees). 
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Table 1. Time complexity of algorithms 

 
 

As shown by the table’s entries, CART is limited by the speed at which the algorithm constructs 

its classification tree, which can be bogged down by the introduction of large categorical features 

- like principal investigator (PI) or instrument - with their many choices. As it recursively 

partitions each feature to create a split, CART has to check for 2n −1 values, where n is equal to 

the number of possible values for a feature. The running time will get worse in the future when 

more missions are included, because the possible values of a feature (such as the list of PIs and 

instruments) can only grow over time.  

 

The second drawback of the CART-based algorithms is their memory-intensive nature. The 

classifiers are typically usable for all of the datasets, save for the enhanced (boosted and bagged) 

CART algorithms on the largest dataset - aerosol. Neither bagging nor boosting is able to execute 

for the aerosol dataset because of the algorithm’s limitations. Due to the nature of the algorithms, 

including the large number of predictors and samples, the training models built exceed the 

memory limitations of 64-bit R. While performing well for the other datasets with less samples 

and predictors, the inability to produce results for aerosol shows the limited usability of enhanced 

CART methods.  

 

The limitations of the CART-based algorithms make them less desirable for our application. We 

therefore were tasked with exploring other algorithms that provide the accuracy and robustness 

needed, while at the same time, demonstrate time and memory efficiency.  

 

3. PROPOSED SOLUTION  

 

The statistical-based Bayesian approach is investigated in this research. The major advantage of 

the Naive Bayes classifier is its short computational time, small storage space requirement, and 

robustness to noise and missing values - all are highly desirable for this application. The time 

complexity of the algorithm is O(|D||L|) (D: training data space, L: label space). In addition, the 

algorithm is very transparent, as the output is easily grasped by users through a probabilistic 

explanation [5][9].  

 

The Naive Bayes algorithm assumes all features are independent. Its accuracy will be affected 

with the presence of feature correlation. In the common naming process, some features are highly 

correlated. For example, a variable and the instrument used to measure the variable are closely 

related. We address the issues with several enhanced features to the simple Naive Bayes 

algorithm, which will be illustrated in the next few sections.  

 

3.1 WEIGHTED NAIVE BAYES  

 
The Naive Bayes algorithm is derived from Bayes’ theorem of describing the probability of a 

label (or class), based on prior knowledge, formulated as: 
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where cn is a common name and fi is a feature.  

 

The first assumption of Naive Bayes is that all features are independent. The second assumption, 

which is associated with feature independence, is that all of the features associated with a label 

are equally important. These assumptions, when violated, negatively affect its accuracy and make 

Naive Bayes less tolerant to redundant features. Numerous methods have been proposed in order 

to improve the performance of the algorithm by alleviating feature independence. A 

comprehensive study by Wu [10] on the entire 36 standard UCI data sets have shown that the 

weighted Naive Bayes provides higher classification accuracy than simple Naive Bayes.  

 

Weighting Naive Bayes is accomplished with a single addition to the probability of features 

associated with common names: 
 

 
 

For the purposes of common name matching, the probabilities are converted to logarithmic from 

linear for calculations; and the goal is to find the label x (common name) with the highest 

probability: 

 

 
where {cnk} is the set of all possible common names.  

 

3.2 WEIGHT CALCULATION  

 

We use a separate classifier to determine the importance of features. In this case, an original 

CART decision tree [7] is utilized. In summary, a certain number of randomly sampled (with 

replacement) samples are assembled on differing proportions of the training set, and several 

classifiers are constructed based upon these samples for a given number of iterations. When 

building a classifier, not all features from the training set are used and some are considered more 

important than others, placed at higher depths within the tree. For each iteration of the classifier, 

feature weights are calculated based upon the depth (d) at which they are found. The weight for 

feature i from the k-th iteration is calculated as: 

 

 
 

The process is highlighted in Figure 1. After all iterations, the average of each feature’s weight 

throughout the process is taken as the final weight.  
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An example of such a tree constructed for J variables is shown in Figure 2. 
 
 

 
   
           Figure 1 CART Algorithm for Weight Calculation              Figure 2 A Example Decision Tree 

 

4. ALGORITHM DEVELOPMENT AND RESULTS  

 

The weighted Naive Bayes algorithm is developed using Python. The software release also comes 

with an interactive user interface that allows user interaction before and during the algorithm’s 

execution. Two modes of operation are implemented: batch mode, which produces all common 

name predictions at once (and outputs the results into a file); and interactive mode, which spits 

out one prediction at a time, and prompts the user for further operation. Due to its short execution 

time, users mostly start from a batch mode in order to gain a sense of overall results, which is 

followed by the interactive mode for more control.  

 

As a statistical learning algorithm, weighted Naive Bayes is able to provide multiple predictions 

with a confidence level for each prediction. This feature becomes very desirable as the user can 

decide whether a domain expert’s input is necessary based on the predictor’s confidence level. 

The development has another very desirable feature: it allows for retraining of the classifier on-

the-fly upon the request from a user. In the case that the algorithm misclassifies a measurement, 

the input from a domain expert is memorized by the algorithm, and classifier retraining can be 

started immediately. This ensures that future use of the algorithm will be based on an updated 

knowledge base, or the same misclassification is unlikely to happen again.  

 

The training set used for this research includes a combination of eight different missions over a 

period of 15 years. A summary of the data set, listed in alphabetical order, is given in Table II. 

These are the data sets undergoing the data ingestion process during this research work. The 

results are determined using k-fold cross validation, breaking all mission data into k subsets, and 

testing is done through leave-one-out-cross-validation. This is to emulate the real world 

application of the algorithm. The performance of our software release using weighted Naive 

Bayes is summarized in Table III. In comparison, we also list the performance of the unweighted 
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Naive Bayes algorithm. Two aggregate measurements are also shown: the average accuracy of 

eight missions, and the weighted average accuracy by the number of variables. 
 

Table 2. Dataset by missions 
 

 
 

Table 3. Accuracy of algorithms 
 

 
 

The results show that the weighted Naive Bayes outperforms the unweighted version consistently 

in very mission we tested. The overall performance, measured either by the average of all the 

missions or the weighted average of variables, also demonstrates the improvement by the 

weighted approach. Furthermore, the two algorithms are very similar in term their computational 

and memory complexity. The difference in execution time between the two algorithms is not even 

noticeable in our testing.  

 

5. CONCLUSION  

 

The contribution of this work is to develop a hybrid machine learning algorithm in order to 

achieve a good performance with reasonable computational complexity. The proposed approach 

harnesses the strength of both algorithms: CART ranks features automatically and is robust on 

noisy data, whereas Naive Bayes is very computationally efficient. The CART algorithms 
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developed prior to this research were very memory demanding and computational intensive. In 

some large data sets, it exceeded memory limitation of the running environment, and it took hours 

to run on a well-equipped office computer. Therefore, the objectives set for us were to achieve a 

specified performance metrics (which we did) while making the implementation practical for day-

to-day operations.  

 

Overall, an assessment of the weighted Naive Bayes algorithm with recent NASA data shows that 

the solution delivers robust results. It exceeds the performance expectation in the presence of 

inconsistencies and inaccuracies among measurement data. The software developed shows 

satisfactory results, runs quickly and needs very little memory space. Although the process 

involves decision-tree based training using CART, it is fundamentally different from the process 

that uses a CART algorithm as the sole solution for the problem. Since the ICARTT format 

remains the same, the feature selection will not change from mission to mission. Therefore, the 

CART algorithm only needs to be run once in order to obtain features and their weights, which in 

turn are used by the weighted Naive Bayes in all future applications. With its low storage 

requirement (several megabytes versus gigabytes for CART) and short execution time (a few 

minutes versus several hours for CART on a typical office computer), the weighted Naive Bayes 

presents a practical solution to the common name identification problem. 
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