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ABSTRACT

For a cloud service provider, delivering optimal system performance while fulfilling Quality of Service
(QoS) obligations is critical for maintaining a viably profitable business. This goal is often hard to attain
given the irregular nature of cloud computing jobs. These jobs expect high QoS on an on-demand fash-
ion, that is on random arrival. To optimize the response to such client demands, cloud service providers
organize the cloud computing environment as a multi-tier architecture. Each tier executes its designated
tasks and passes the job to the next tier; in a fashion similar, but not identical, to the traditional job-shop
environments. An optimization process must take place to schedule the appropriate tasks of the job on the
resources of the tier, so as to meet the QoS expectations of the job. Existing approaches employ scheduling
strategies that consider the performance optimization at the individual resource level and produce opti-
mal single-tier driven schedules. Due to the sequential nature of the multi-tier environment, the impact of
such schedules on the performance of other resources and tiers tend to be ignored, resulting in a less than
optimal performance when measured at the multi-tier level.

In this paper, we propose a multi-tier-oriented job scheduling and allocation technique. The scheduling and
allocation process is formulated as a problem of assigning jobs to the resource queues of the cloud com-
puting environment, where each resource of the environment employs a queue to hold the jobs assigned to
it. The scheduling problem is NP-hard, as such a biologically inspired genetic algorithm is proposed. The
computing resources across all tiers of the environment are virtualized in one resource by means of a single
queue virtualization. A chromosome that mimics the sequencing and allocation of the tasks in the proposed
virtual queue is proposed. System performance is optimized at this chromosome level. Chromosome manip-
ulation rules are enforced to ensure task dependencies are met. The paper reports experimental results to
demonstrate the performance of the proposed technique under various conditions and in comparison with
other commonly used techniques.
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1. INTRODUCTION

The advent of cloud computing has emerged as one of the latest revolutions of computing paradigms
[1–4]. It leverages a set of existing technologies and computing resources pooled in a cloud data
center. Clients utilize cloud resources to perform complex tasks that are not easily achievable by
their own infrastructure. Such resources are broadly accessed and provided as a service to clients
on-demand, thus mitigate the complexity and time associated with the purchase and deployment
of a traditional physical infrastructure at the client’s side.

Typically, cloud computing environments experience variant workloads that entail client jobs of
different QoS expectations, tardiness allowances, and computational demands. Jobs can be delay-
sensitive and tightly coupled with client satisfactions, and thus cannot afford SLA violation costs.
Such workload variations often occur within a short period of time and are not easily predictable,
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causing system bottlenecks and thus execution difficulties on cloud resources to fulfill such expec-
tations [5]. It is imperative that a cloud service provider efficiently accommodates and responds to
such demands in a timely manner, so that client experience and system performance are optimized.

Thus, the scheduling in cloud computing has become a driving theme to support a scalable infras-
tructure that formulates optimal workload schedules on cloud resources and mitigates potential
SLA violation penalties [6, 7]. The conundrum of a cloud service provider resolves around concil-
iating these conflicting objectives. A service provider may adopt admission control mechanisms
to drop extra incoming jobs, however the likelihood of SLA violations and thus dissatisfied clients
increase, which thus incurs SLA penalties on the client and service provider. In contrast, a ser-
vice provider may often over-allocate resources to distinctly meet the incremental client demands
and thus alleviate SLA violations, however it runs the risk of increasing the operational cost and
leaving resources under-utilized.

A major limitation in schedulers of existing approaches is that they often optimize the performance
of schedules at the individual resource level of a single-tier environment. However, it is typical
that formulating schedules in a complex multi-tier cloud environment is harder than a traditional
single-tier environment because of dependencies between the tiers. A performance degradation in
a tier would propagate to negatively affect the performance of schedules in subsequent (dependent)
tiers, thus causing the SLA violation penalties and likelihood of dissatisfied clients to increase.

Overall, such schedulers in their optimization strategies fail to capture QoS expectations and their
associated penalties in a multi-tier environment. This paper presents a penalty-based multi-tier-
driven load management approach that contemplates the impact of schedules in a tier on the per-
formance of schedules constructed in subsequent tiers, thus optimizes the performance globally
at the multi-tier level of the environment. The proposed approach accounts for tier dependencies
to mitigate the potential of shifting and escalation of SLA violation penalties when jobs progress
through subsequent tiers. Because the scheduling problem is NP-hard, a biologically inspired
genetic algorithm supported with virtualized and segmented queue abstractions are proposed to
efficiently seek (near-)optimal schedules at the multi-tier level, in a reasonable time.

2. BACKGROUND AND RELATED WORK

Scheduling and allocation of jobs have been presented in the literature among the challenging
problems in cloud computing for the past few years [8–11]. Jobs are to be effectively scheduled
and consolidated on fewer resources to deliver better system performance. Existing approaches
investigate the problem from various perspectives, mostly tackled in a single-tier environment sub-
ject to common conflicting optimization objectives. The makespan and response time of jobs, as
well as the resource utilization are typically the performance optimization metrics used to assess
the efficacy of service delivery in achieving better user experience/satisfaction and SLA guaran-
tees. Because the scheduling problem is NP-hard, the efficacy of scheduling approaches depends
not only on fulfilling client demands and QoS obligations, but also on optimizing system perfor-
mance.

Existing approaches employ different tardiness cost functions to quantify SLA violation penal-
ties, so as to optimize the performance of schedules and mitigate their associated penalties. Chi
et al. [12] and Moon et al. [13] adopt a stepwise function to represent different levels of SLA
penalties. However, the stepwise function does not exactly reflect QoS penalty models required
to tackle SLA violations of real systems. This function would typically incur a sudden change
in the SLA penalty (increment/decrement from a level to another) when a slight variation in the
job’s completion time occurs at the transient-edge of two consecutive steps of the function, which
is inaccurate. In addition, a fixed penalty level would be constantly held for each period of SLA
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violations, which thus inaccurately incurs equal SLA penalties for different service violation times
in the same step-period. Also, formulating the cost value of each penalty level with respect to SLA
violation times is still to be precisely tackled.

In addition, Stavrinides et al. [14] use a linear monetary cost function to quantify multiple penalty
layers (categories) of SLA violations. The tardiness metric, represented by the completion time of
client jobs, is employed to calculate the cost incurred from the different layers of SLA violations.
They investigate the effect of workloads of different computational demands on the performance
of schedules in a single-tier environment, focusing on fair billing and meeting QoS expectations
of clients. However, the linear function would not reflect the monetary cost of SLA violations
in real systems, thus the performance and optimality of schedules formulated based on such cost
calculations would be affected.

Furthermore, improved Min-Min and Max-Min scheduling are widely employed to tackle the
problem by producing schedules at the individual resource level of the tier. Rajput et al. [15] and
Chen et al. [16] present Min-Min based scheduling algorithms to minimize the makespan of jobs
and increase the resource utilization in a single-tier environment. Generally, a Min-Min approach
schedules the job with the minimum completion time on the resource that executes the job at the
earliest opportunity, yet negatively affects the execution of jobs with larger completion times [17].
In contrast, a Max-Min based approach typically utilizes powerful resources to speedup the execu-
tion of jobs with the maximum completion times, however produces poor average makespan [18].

In their optimization strategies, the Min-Min and Max-Min based approaches rely primarily on
the computational demands of jobs to produce optimal schedules at the resource level. They fail
to produce minimum penalty schedules that accurately account for QoS obligations of jobs at
the multi-tier level, which would negatively impact provider’s SLA commitments. In addition,
such approaches do not consider tier dependencies of a multi-tier cloud environment, thus SLA
violation penalties of schedules at the resource level would propagate to escalate in subsequent
tiers, which would negatively impact system performance.

Some approaches focus on balancing the workloads among resources, as well as employing differ-
ent strategies to speedup job executions [19, 20]. Maguluri et al. [21] present a throughput-optimal
algorithm that tackles the execution of jobs with unknown sizes. However, a throughput-based
scheduling generally disregards the actual job running times in resources, and instead, focuses on
queue lengths measured by the number of jobs, which is not necessarily accurate.

Redundancy-based strategies are also adopted and proven to speedup the execution of jobs [22,
23]. For instance, Nahir et al. [24] present a replication-based balancing algorithm that aims
at minimizing the queueing overhead and the job’s response time. Multiple copies (replicas) of
each client’s job are created and distributed on resource queues of a tier. Once a copy of the job
completes the execution from a resource, other copies are deleted from the other resource queues.
In addition, Kristenet et al. [25, 26] present the power of d choices for redundancy to send copies
of a job to only d resources selected at random, so as to reduce the number of duplicated jobs in
resource queues of the tier.

However, the optimization strategy of replication-based approaches does not employ the different
QoS obligations and demands of jobs, thus, would not mitigate SLA violation penalties. If the
mechanisms of admission control and resource over-allocation are not adopted, a replication-based
approach might overload resource queues of tiers with a significant amount of jobs. Thus, the
scheduler would potentially experience difficulties in managing the execution of such workloads
to meet such QoS obligations at the multi-tier level.

Similar balancing approaches are widely adopted such as Least Connection (LC) weighted algo-
rithms, Round Robin (RR) weighted algorithms [27], Random selection, and Shortest-Queue [28,
29]. These balancing approaches are provided as a service by popular cloud providers such as
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Windows Azure, Amazon ELB, and HP-CLB [30]. Also, Wang et al. [31] and Lu et al. [32]
present the Join-Idle-Queue (JIQ) balancing algorithm that assigns incoming jobs to only idle re-
source queues in a single-tier environment. Multiple dispatchers are employed to hold incoming
jobs; each dispatcher keeps IDs of idle resources in the tier.

However, the JIQ-based balancing algorithm does not account for QoS expectations of jobs when
a scheduling decision is made. Thus, high priority and delay-intolerant jobs might have to wait in a
dispatcher to get an idle resource, while simultaneously some other delay-tolerant jobs in another
dispatcher have already got idle resources for execution. In a complex multi-tier environment, the
former balancing approaches would produce schedules that are poor in performance because they
neither effectively reflect the system state nor account for dependencies between the tiers, and thus
would not accurately meet the different QoS obligations of clients.

Furthermore, resource over-allocation is a viable option proven to provide high system perfor-
mance, meet client demands, and mitigate SLA violations. Typically, clients negotiate with the
service provider to submit estimates on the execution/completion times of their jobs. However,
such estimates often tend to be either underestimated or inaccurate. For this purpose, Reig et
al. [33] present an analytical predictor to infer job information and accordingly decide on the
minimum allocation of resources required to execute client jobs before their deadlines; that is, to
avoid inaccurate run-time estimates of clients and thus mitigate SLA violations. The scheduler
policy adopts a job rejection strategy in two different scenarios. A job is rejected when its QoS
obligations cannot be met, or when another higher priority job arrives to the system that negatively
impacts SLA obligations of both jobs. However, such rejection policies would incur harsh SLA
violation penalties on the client and service provider.

In addition, Hoang et al. [34] present a Soft Advance Reservation (SAR) method to meet SLA
requirements and tackle error-prone estimates on job executions provided by the clients. Generally
speaking, an over-sourced environment would reduce the likelihood of SLA violations and thus
dissatisfied clients, however it would be significantly costly to acquire and operate. In contrast, the
cloud service provider may allocate a small number of resources to reduce the operational cost,
but with the expense of rejecting or discarding jobs that the provider would not meet their QoS
expectations.

The meta-heuristic approaches are also presented to tackle scheduling problems in cloud comput-
ing environments [35–37]. Such approaches are adopted to efficiently solve NP-hard computational-
expensive problems, however the approaches deliver a near-optimal performance in a timely man-
ner and potentially reduce the running time of the scheduling algorithms. Goudarzi et al. [38]
present a heuristic-based allocation method to meet client SLAs and maximize the profit of the
service provider in a data center of multiple clusters. However, each cluster adopts a centralized
dispatcher associated with multiple resources comprising together a single-tier environment.

Zhang et al. [39] propose a meta-heuristic scheduling algorithm that provides near-optimal re-
source configurations so as to maximize the profit and minimize the response time of jobs, in a
centralized single-tier environment. Also, Zuo et al. [40] present an Ant Colony Optimization
based scheduling method that finds a balance between the system performance represented by the
makespan of jobs and the budget cost on the client. The former meta-heuristic approaches also
tackle the problem in a single-tier environment and typically aim at optimizing the performance
of schedules locally at the individual resource level of the tier, similar to Min-Min and Max-Min
based approaches. However, they do not support the complexity and obligations of the multi-tier
environment, therefore do not produce job schedules that are optimized at the multi-tier level and
thus would not accurately mitigate SLA penalties.

As a general observation, current scheduling approaches in cloud computing fail to contemplate
the impact of schedules optimized in a given tier on the performance of schedules on the subse-
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quent tiers. Such approaches do not effectively tackle dependencies between tiers of the multi-tier
cloud environment. Instead, the approaches evaluate the optimality of schedules at the individual
resource level of the single-tier environment, therefore SLA violation penalties in a tier would
typically shift to and escalate in subsequent tiers leading to a potential increase in the likelihood
of dissatisfied clients.

Furthermore, the reality is that clients of cloud computing have different computational demands
and strict QoS expectations. Client jobs demand for services from multiple cloud resources char-
acterized by multiple tiers of execution. Such jobs sometimes are delay-intolerant and tightly
coupled with client satisfactions, and thus cannot afford SLA violation penalties. Workload vari-
ations occur within a short period of time and are not easily predictable, thus causing execution
difficulties on the cloud service provider to fulfill such expectations and deliver optimal perfor-
mance. Due to resource limitations and the complexity incurred from the multi-tier dependencies,
formulating optimal schedules to satisfy various QoS obligations of client demands at the multi-
tier level while maintaining high system performance is not a trivial task.

In this paper, a penalty-oriented approach is proposed to influence scheduling in the multi-tier
cloud environment. The proposed approach contemplates tier dependencies to produce minimum-
penalty schedules at the multi-tier level. The SLA violation penalties of job schedules in a tier
are to be alleviated when jobs progress through subsequent tiers, and accordingly the performance
of such schedules is optimized globally at the multi-tier level. Since the problem is NP-hard, a
biologically inspired meta-heuristic approach along with system virtualized and segmented queue
abstractions are proposed to efficiently seek (near-)optimal schedules in a reasonable time.

3. PENALTY-ORIENTED MULTI-TIER SLA CENTRIC SCHEDULING

OF CLOUD JOBS

A multi-tier cloud computing environment consisting of N sequential tiers is considered:

T = {T1, T2, T3, ..., TN} (1)

Each tier Tj employs a set of identical computing resources Rj :

Rj = {Rj,1, Rj,2, Rj,3, ..., Rj,M} (2)

Each resource Rj,k employs a queue Qj,k that holds jobs waiting for execution by the resource.
Jobs with different resource computational requirements and QoS obligations are submitted to
the environment. It is assumed that these jobs are submitted by different clients and hence are
governed by various SLA’s. Jobs arrive at the environment in streams. A stream S is a set of jobs:

S = {J1, J2, J3, ..., Jl} (3)

The index of each job Ji signifies its arrival ordering at the environment. For example, job J1
arrives at the environment before job J2. Jobs arrive in random manner. Job Ji arrives at tier Tj
at time Ai,j via the queue of the job dispatcher JDj of the tier. It has a prescribed execution time
Ei,j at each tier. Each job has a service deadline which in turn stipulates a target completion time
C(t)i for the job Ji in the multi-tier environment.

Ji =
{
Ai,j , Ei,j , C(t)i

}
, ∀ Tj∈T (4)

Jobs submitted to tier Tj are queued for execution based on an ordering βj . As shown in Figure 1,
each tier Tj of the environment consists of a set of resources Rj . Each resource Rj,k has a queue
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Qj,k to hold jobs assigned to it. For instance, resource Rj,1 of tier Tj is associated with queue
Qj,1, which consists of 4 jobs (J6, J7, J8, and J10) waiting for execution. A virtual-queue is a
cascade of all queues of the tier as shown in Figure 2. The total execution time ETi of each job Ji
is as follows:

ETi =
N∑
j=1

Ei,j (5)

The target completion time C(t)i of job Ji represents an explicit QoS obligation on the service
provider to complete the execution of the job. Thus, the C(t)i incurs a service deadline DLi for
the job in the environment. The service deadline DLi is higher than the total prescribed execution
time ETi and incurs a total waiting time allowance ωALi for job Ji in the environment.

DLi = C(t)i −Ai,j
= ETi + ωALi

(6)

Each job Ji has a response timeRT βi that is a function of the total execution time ETi and the total
waiting time ωT βi .

RT βi =

N∑
j=1

(Ei,j + ω
βj
i,j) = ETi + ωT βi (7)

where ωβji,j represents the waiting time of job Ji at tier Tj ; βj is the ordering that governs the order

of execution of jobs at tier Tj . The ωT βi represents the total waiting time of job Ji spends waiting
for its turn to be executed at all tiers T of the environment, according to the ordering β. Each job
Ji has a departure time Di,j from tier Tj , which will be the arrival time Ai,j+1 of the job to the
next tier Tj+1.

β =
N⋃
j=1

βj (8)

As such, the time difference between the response time RT βi and the service deadline DLi repre-
sents the service-level violation time αβi of job Ji, according to the ordering β of jobs in tiers T of
the environment.

(RT βi −DLi) =

{
αβi > 0, The client is not satisfied
αβi ≤ 0, The client is satisfied

(9)

However, the execution time Ei,j of job Ji at tier Tj is pre-defined in advance. Therefore, the
resource capabilities of each tier Tj are not considered and, thus, the total execution time ETi
of job Ji is constant. Instead, the primary concern is on the queueing-level of the environment
represented by the total waiting time ωT βi of job Ji at all tiers T according to the ordering β.

Accordingly, the service-level violation time αβi of job Ji in the environment is subject to an SLA
that stipulates an exponential penalty curve %i:

%i = χ ∗ (1− e−ν(RT
β
i −DLi))

= χ ∗ (1− e−ν(ωT
β
i −ωALi))

= χ ∗ (1− e−ν(α
β
i ))

(10)
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where χ is a monitory cost factor and ν is an arbitrary scaling factor. As such, the total penalty
cost of stream l across all tiers is given by ϕ:

ϕ =

l∑
i=1

%i (11)

3.1. Multi-Tier Waiting Time Allowance ωALi Formulation
The performance of job schedules is formulated with respect to the multi-tier waiting time al-
lowance ωALi of each job Ji. Accordingly, the SLA violation penalty is evaluated at the multi-tier
level of the environment. The objective is to seek job schedules in tiers of the environment such
that the total SLA violation penalty of jobs would be minimized globally at the multi-tier level of
the environment.

The total waiting time ωT βi of job Ji currently waiting in tier Tp, where p<N , is not totally
known because the job has not yet completely finished execution from the multi-tier environment.
Therefore, the job’s ωT βi at tier Tp is estimated and, thus, represented by ωCX βi,p according to the

scheduling order β of jobs. As such, the job’s service-level violation time αβi at tier Tp would be
represented by the expected waiting time ωCX βi,p of job Ji in the current tier Tp and the waiting
time allowance ωALi incurred from the job’s service deadline DLi at the multi-tier level of the
environment.

αβi = ωCX βi,p − ωALi (12)

where the expected waiting time ωCX βi,p of job Ji at tier Tp incurs the total waiting time ωT βi of

Computer Science & Information Technology (CS & IT) 139



job Ji at the multi-tier level.

ωCX βi,p =
(p−1)∑
j=1

(ω
βj
i,j) + ωELi,p + ωRMβp

i,p (13)

where ωβji,j(∀j ≤ (p− 1)) represents the waiting time of job Ji in each tier Tj in which the job
has completed the execution in, ωELi,p represents the elapsed waiting time of job Ji in the tier
Tp where the job currently resides, and ωRMβp

i,p represents the remaining waiting time of job Ji
according to the scheduling order βp of jobs in the current holding tier Tp.

βj =

Mk⋃
k=1

I(Qj,k), ∀j∈ [1, N ] (14)

ωRMβj
i,j =

∀∑
h∈I(Qj,k), h precedes job Ji

Eh,j , ∀j∈ [1, N ] (15)

where I(Qj,k) represents indices of jobs in Qj,k. For instance, I(Q1,2) = {3, 5, 2, 7} signifies that
jobs J3, J5, J2, and J7 are queued inQ1,2 such that job J3 precedes job J5, which in turn precedes
job J2, and so on. However, the elapsed waiting time ωELi,j affects the execution priority of the
job. The higher the time of ωELi,j of job Ji in the tier Tj the lower the remained allowed time
of ωALi of job Ji at the multi-tier level, thus, the higher the execution priority of job Ji in the
resource.

The objective is to find scheduling orders β = (β1, β2, β3, . . . , βN ) for jobs of each tier Tj such
that the stream’s total penalty cost ϕ is minimal:

minimize
β

(ϕ) ≡ minimize
β

( l∑
i=1

N∑
p=1

(ωCX βi,p − ωALi)
)

(16)

3.2. Differentiated Waiting Time Allowance ωPTi,j Formulation
The performance of job schedules is formulated with respect to a differentiated waiting time ωPTi,j
of the job Ji at each tier Tj . The ωPTi,j is derived from the multi-tier waiting time allowance ωALi
of job Ji, with respect to the execution time Ei,j of the job Ji at the tier level relative to the job’s
total execution time ETi at the multi-tier level of the environment.

ωPT i,j = ωALi ∗
Ei,j
ETi

(17)

In this case, the higher the execution time Ei,j of job Ji in tier Tj , the higher the job’s differentiated
waiting time allowance ωPT i,j in the tier Tj . Accordingly, the SLA violation penalty is evaluated
at the multi-tier level with respect to the ωPTi,j of each job Ji.

The waiting time ωβji,j of job Ji at tier Tj would not be totally known until the job completely

finishes the execution from the tier, however, it can be estimated by ωPX βji,j according to the

current scheduling order βj of jobs in the tier Tj . As such, the service-level violation time αT βji,j
of job Ji in the tier Tj according to the scheduling order βj of jobs would be represented by the
expected waiting time ωPX βji,j and the differentiated waiting time allowance ωPTi,j , of the job in
the tier Tj .

αT βji,j = ωPX βji,j − ωPTi,j (18)
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αβi =
N∑
j=1

αT βji,j (19)

where αβi is the total service-level violation time of the job Ji at all tiers of the environment ac-
cording to the scheduling order β. The expected waiting time ωPX βji,j incurs the actual waiting

time ωβji,j of job Ji in tier Tj , and thus depends on the elapsed waiting time ωELi,j and the remain-

ing waiting time ωRMβj
i,j of the job Ji according to the scheduling order βj of jobs in the current

holding tier Tj .

ωPX βji,j = ωELi,j + ωRMβj
i,j (20)

The elapsed waiting time parameter ωELi,j of job Ji in tier Tj affects the job’s execution priority
in the resource. The higher the time of ωELi,j , the lower the remained time of the differentiated
waiting allowance ωPTi,j of job Ji in the tier Tj , therefore the higher the execution priority of the
job Ji in the resource, so as to reduce the service-level violation time αT βji,j of the job in the tier Tj
of the environment.

As such, the objective is to find scheduling orders β = (β1, β2, β3, . . . , βN ) for jobs of each tier
Tj such that the stream’s total penalty cost ϕ is minimal:

minimize
β

(ϕ) ≡ minimize
β

( l∑
i=1

N∑
j=1

(ωPX βji,j − ωPT i,j)
)

(21)

4. MULTI-TIER-BASED MINIMUM PENALTY SCHEDULING: A
GENETIC ALGORITHM FORMULATION

This paper is concerned with the SLA-driven, penalty-based scheduling of jobs in a multi-tier
cloud environment. The scheduling tackles tier dependencies by contemplating the impact of
schedules optimized in a given tier on the performance of schedules in subsequent tiers. Thus, the
potential of shifting and escalation of SLA violation penalties of schedules in a tier are mitigated
when jobs progress through tiers of the environment. It is desired to produce job schedules that
are penalty-minimum at the multi-tier level.

However, finding job schedules at the multi-tier level to minimize the SLA violation penalties is
an NP problem. Jobs can be tightly coupled with the client experience and QoS obligations. Given
the prohibitively large number of candidate schedules (permutations) of an excessive volume of
critical jobs with their computational complexity in a multi-tier environment, it is never desirable
to adopt the brute-force search strategy to seek minimum penalty schedules at the multi-tier level.
The dimensionality of the search space of the multi-tier environment demands for an effective
strategy that finds acceptable solutions. Thus, a meta-heuristic search strategy, such as Permutation
Genetic Algorithms (PGA), is a viable option for efficiently exploring and exploiting the large
space of scheduling permutations [41]. Genetic algorithms have been successfully adopted in
various problem domains and shown less computational effort [42]. They have undisputed success
in yielding near optimal solutions for large scale problems, in reasonable time [43].

Scheduling the client jobs entails two steps: (1) allocating/distributing the jobs among the different
tier resources. Jobs that are allocated to a given resource are queued in the queue of that resource;
(2) ordering the jobs in the queue of the resource such that their total SLA violation time is mini-
mal. What makes the problem increasingly hard is the fact that jobs continue to arrive, while the
prior jobs are waiting in their respective queues for execution. Thus, the scheduling process needs
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Figure 2. The System Virtual Queue

to respond to the job arrival dynamics to ensure that job execution at all tiers remains waiting-time
optimal. To achieve this, job ordering in each queue should be treated as a continuous process.
Furthermore, jobs should be migrated from one queue to another so as to ensure balanced job
allocation and maximum resource utilization. Thus, the two operators are employed to construct
optimal job schedules:

• The reorder operator is used to change the ordering of jobs in a given queue so as to find an
ordering that minimizes the total SLA violation time of all jobs in the queue.

• The migrate operator, in contrast, is used to exploit the benefits of moving jobs between the
different resources of the tier so as to reduce the total SLA violation time at the multi-tier
level. This process is adopted at each tier of the environment.

However, implementing the reorder/migrate operators in a PGA search strategy to create job
schedules at the multi-tier level of the environment is not a trivial task. This implementation
complexity can be relaxed by virtualizing queues of the tiers into one system virtual queue. As
shown in Figure 2, the system virtual queue is simply a cascade of the resource queues of the
multi-tier environment.

In this way, the reorder/migrate operators running at the queue/tier level are converged into simply
a reorder operator running at the multi-tier level. This system virtualization simplifies the PGA
solution formulation toward finding schedules that are penalty-minimum at the multi-tier level. A
consequence of this abstraction is the length of the permutation chromosome and the associated
computational cost. This system virtual queue will serve as the chromosome of the solution that
represents the scheduling of jobs on resource queues of tiers. An index of a job in this queue
represents a gene. The ordering of jobs in a system virtual queue signifies the order at which
the jobs in this queue are to be executed by the resource associated with that queue. Solution
populations are created by permuting the entries of the system virtual queue, using the order and
migrate operators. The system virtual queue in Figures 2 and 3 has six queues (Q1,1, Q1,2, Q1,3,
Q2,1, Q2,2, and Q2,3) cascaded to construct one system virtual queue.
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Figure 3. A System Virtualized Queue Genetic Approach

4.1. Evaluation of Schedules
The quality of a job schedule in a system virtual queue realization (chromosome) is assessed
by a fitness evaluation function. For a chromosome r in generation G, the fitness value fr,G is
represented by the SLA violation cost of the schedule in the system virtual queue computed at the
multi-tier level. Two different fitness evaluation functions are adopted in two different solutions:

fr,G =

{∑l
i=1(ωCX

β
i,p − ωALi), ωALi based Scheduling∑l

i=1(ωPX
βj
i,j − ωPT i,j), ωPT i,j based Scheduling

(22)

In both scenarios, the SLA violation cost of job Ji is represented by the job’s waiting time (either
ωCX βi,p or ωPX βji,j) according to its scheduling order β in the system virtual queue and the job’s
waiting allowance (either ωALi or ωPT i,j) incurred from the job’s deadline DLi at the multi-tier
level.

The normalized fitness value Fr of each schedule candidate is computed as follows:

Fr =
fr,G∑n

C=1(fC,G)
, r∈C (23)

Based on the normalized fitness values of the candidates, the Russian Roulette is used to select a
set of schedule candidates to produce the next generation population, using the combination and
mutation operators.
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4.2. Evolving the Scheduling Process
The job schedule of the system virtual queue is evolved to produce a population of multiple system
virtual queues, each of which represents a chromosome that holds a new scheduling order of jobs
in resource queues of the multi-tier environment. The crossover and mutation genetic operators
are applied on randomly selected system virtual queues from the current population to produce
the new population. Such operators explore and exploit the search space of possible scheduling
options without getting stuck in locally optimum solutions. The Single-Point crossover and Insert
mutation operators are used; rates of these operators in each generation are set to be 0.1 of the
population size.

The evolution process of schedules of the system virtual queues along with the genetic operators
are explained in Figure 3. Each segment in the system virtual queue corresponds to an actual
queue associated with a resource in the tier. In each generation, each segment is subject to one of
the following states:

• Maintain the same scheduling set and order of jobs held in the previous generation;

• Get a new scheduling order for the same set of jobs held in the previous generation;

• Get a different scheduling set and order of jobs.

For instance, queue Q2,3 of Chromosome (1,n) in the first generation maintains exactly the same
scheduling set and order of jobs in the final generation shown in queueQ2,3 of Chromosome (g,n).
In contrast, queue Q1,1 of Chromosome (1,1) in the first generation maintains the same scheduling
set of jobs in the final generation, yet has got a new scheduling order of jobs as shown in queue
Q1,1 of Chromosome (g,1). A similar observation is shown in queue Q2,1 of Chromosomes (1,C)
and (g,C) that has only got the scheduling order changed, however Q2,2 and Q2,3 of the same
tier have got the same scheduling set and order of jobs held in the first generation. On the other
side, some other queues would neither maintain the same scheduling set nor the same scheduling
order of jobs in the last generation, such as queue Q1,2 of Chromosomes (1,n) and (g,n). Thus,
if Chromosome (g,1) is later selected as the best chromosome of the genetic solution, the state of
the multi-tier environment is represented as follows:

• Queues of resources R1,2 and R1,3 of the first tier T1 would maintain the same schedules of
jobs of the first generation.

• The queue of resource R1,1 of the first tier T1 would just get a new scheduling order of the
same set of jobs held in the first generation.

• Queues of resources R2,1, R2,2, and R2,3 of the second tier T2 would hold totally new
schedules of jobs.

5. EXPERIMENTAL WORK AND DISCUSSIONS ON RESULTS

The adopted cloud environment in this paper consists of two tiers, each of which has 3 computing
resources. The jobs generated into the cloud environment are atomic and independent of each
other. A job is first executed on one of the computing resources of the first tier and then moves for
execution on one of the resources of the second tier. Each job is served by only one resource at a
time, as the scheduling strategy is non-preemptive.

Jobs arrive at the first tier and are queued in the arrival queue (tier’s dispatcher) of the environ-
ment. The arrival behaviour is modeled on a Poisson process. The running time of each job in
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a computing resource is assumed to be known in advance, generated with a rate µ=1 from the
exponential distribution function exp(µ=1) [44]. In each tier Tj , job migrations from a queue to
another queue are permitted. The waiting time allowance ωALi of each job Ji is generated with
respect to the job’s total execution time ETi at the multi-tier level of the environment as follows:

ωALi = ETi ∗ 20% (24)

Accordingly, the differentiated waiting time allowance ωPTi,j of each job Ji is generated using
Equation 17.

5.1. The Experimental Approach
Two experiments are conducted, the system virtualized queue and segmented queue. To seek opti-
mal schedules that produce minimum SLA penalty among all jobs at the multi tier level, the system
virtual queue is employed and the multi-tier-driven genetic algorithm operates on all queues of the
multi-tier environment simultaneously. The system virtual queue starts with an initial system-state
and a QoS penalty that represent a schedule β of jobs. The genetic solution finds an enhanced
schedule that reduces the SLA penalty of the system-state at the multi-tier level, which in turn
is translated into an enhanced schedule of jobs in the resource queues of tiers. In contrast, the
segmented queue scheduling employs the genetic solution to seek an optimal schedule at the in-
dividual queue level of the tiers, in a reduced search space, such that the QoS penalty is reduced
at the queue level of the tier and consequently at the multi-tier level. However, the penalty expo-
nential scaling parameter ν is set to be ν=0.01. In both experiments, each population employs 10
chromosomes.

5.2. QoS Penalty Scheduling Evaluation of the Waiting Time Allowance ωALi
The job schedules have been conducted according to the multi-tier waiting time allowance ωALi
of each job Ji. The service-level violation time of each job Ji is measured at the multi-tier level
with respect to the ωALi of the job; accordingly, the SLA violation penalty payable by the service
provider is quantified. The system virtualized queue and segmented queue genetic solutions are
used to efficiently seek optimal job schedules. Overall, the scheduling approach has been proven
to enhance the performance by producing optimal job schedules that reduce the total service-
level violation time of jobs and their associated SLA penalty globally at the multi-tier level of the
environment (as shown in Figures 4 and 5, as well as Tables 1 and 2).

 

 

(a) System-Level (Total of 46
Jobs)

 

 

(b) Tier-1 (21 Jobs)

 

 

(c) Tier-2 (25 Jobs)

Figure 4. System Virtualized Queue Scheduling with Respect to Multi-Tier ωALi

The scheduling approach along with the system virtualized queue genetic solution has been applied
to seek an optimal scheduling of jobs. Figure 4 and Table 1 represent a state of a multi-tier
environment that contains 46 jobs; 21 jobs are allocated to tier T1 and 25 jobs are allocated to tier
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T2. At the start, the total service-level violation time of the initial scheduling order of the 46 jobs
on both tiers initiates with 184 units of violation time (as shown in Figure 4a). Then, the scheduling
approach along with the system virtualized queue genetic setup has formed an enhanced schedule
for the 46 jobs on resource queues of both tiers, that optimizes the performance at the multi-tier
level by 34% to reach 121 units of violation time. As a results, the SLA penalty payable by the
service provider is also optimized by 24%, a reduction from 1.2 for the initial schedule to 0.91 for
the enhanced schedule of the 46 jobs (as shown in Table 1).

Table 1. System Virtualized Queue Scheduling with Respect to Multi-Tier ωALi

Number
of Jobs

1 Initial2 Enhanced3 Improvement
Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 4a 46 184.39 1.2 121.69 0.91 34.01% 24.17%
Tier-1, Figure 4b 21 84.60 0.57 62.16 0.46 26.53% 18.91%
Tier-2, Figure 4c 25 99.80 0.63 59.53 0.45 40.35% 28.95%

1 Number of Jobs represents the total number of jobs in queues of the tier/environment. For instance, the first entry (46 jobs) shows that the multi-tier
environment contains 46 jobs in total. The second (21 jobs) and third (25 jobs) entries of the table mean that the 3 queues of tier-1 and tier-2 are allocated
21 and 25 jobs, respectively.

2 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the system virtualized queue genetic
solution.

3 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using the system virtualized
queue genetic solution.

The former enhancements achieved globally at the multi-tier level of the environment would con-
sequently optimize the performance of job schedules in each individual tier, thus, reduce the total
service-level violation time and SLA penalty of the virtual-queue of each tier. For instance, the
initial schedule of the virtual-queue (25 jobs) of tier T2 shown in Figure 4c began with 99.8 units
of violation time. Then, the performance has been optimized by 40% to reach 59.5 units of viola-
tion time for the enhanced schedule of jobs as a consequence of applying the scheduling approach
along with the system virtualized queue genetic setup. As such, the total SLA penalty of jobs
at tier T2 has been reduced by 28.95% (as shown in Table 1). Similarly, the results reported in
Figure 4b and Table 1 demonstrate the effectiveness of the system virtualized queue scheduling
approach in reducing the total service-level violation time and penalty of the virtual-queue (21
jobs) of tier T1 by 26.5% and 18.9%, respectively.

Table 2. Segmented Queue Scheduling with Respect to Multi-Tier ωALi

Number
of Jobs

Initial4 Enhanced5 Improvement
Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 5a 77 333.37 2.537 181.26 1.56 45.63% 38.51%
Resource-1 Tier-1, Figure 5b 10 62.13 0.463 17.34 0.16 72.09% 65.59%
Resource-2 Tier-1, Figure 5c 12 38.93 0.322 26.84 0.24 31.05% 27.00%
Resource-3 Tier-1, Figure 5d 12 43.08 0.350 28.41 0.25 34.06% 29.35%
Resource-1 Tier-2, Figure 5e 14 67.57 0.491 33.43 0.28 50.52% 42.15%
Resource-2 Tier-2, Figure 5f 15 59.86 0.450 33.77 0.29 43.58% 36.37%
Resource-3 Tier-2, Figure 5g 14 61.80 0.461 41.46 0.34 32.91% 26.37%
4 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the segmented queue genetic solution.
5 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using the segmented queue genetic

solution.

In contrast, the scheduling approach with the segmented queue genetic solution has been applied
on each individual queue of the tier to seek an optimal scheduling of jobs in that queue. The results
(reported in Figure 5 and Table 2) demonstrate the effectiveness of this scheduling approach in
optimizing the performance of the job schedule of 77 jobs in the environment so as to reduce the
service-level violation time and SLA penalty. Tier T1 is allocated 34 jobs distributed into 12, 10,
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Figure 5. Segmented Queue Scheduling with Respect to Multi-Tier ωALi

and 12 jobs in the resource queues Q1,1, Q1,2, and Q1,3, respectively. On the other side, tier T2
contains 43 jobs whereby Q2,1 is allocated 12 jobs, Q2,2 10 jobs, and Q2,3 12 jobs.

The initial schedule of the 77 jobs in resource queues of both tiers has at the beginning started
with 333 units of violation time at the multi-tier level of the environment, as shown in Figure 5a.
Then, the scheduling approach with the segmented queue genetic setup has been applied on each
individual queue of each tier. This scheduling approach has formed an enhanced scheduling of
jobs in each queue that has reduced, at the multi-tier level, the total service-level violation time
of jobs by 45% to reach 181 units of violation time. As a result, the total SLA violation penalty
payable by the service provider has been optimized by 38.5%, a reduction from 2.537 for the
initial scheduling to 1.56 for the enhanced scheduling of jobs.

Similar observations are in order with respect to improving the total service-level violation time
and SLA penalty of each individual resource-queue in each tier as a result of employing the seg-
mented queue genetic solution. For instance, the resource-queue Q1,1 of tier T1 shown in Fig-
ure 5b contains 10 jobs, but its total service-level violation time and penalty is reduced by 72%
and 65.6%, respectively.

Thus, the system virtualized queue and segmented queue genetic solutions have efficiently ex-
plored a big solution search space using a small number of genetic iterations to achieve such
enhancements. Figure 4b shows that the system virtualized queue required a total of only 1,000
genetic iterations to efficiently seek an optimal schedule of jobs in tier T1, each iteration em-
ploys 10 chromosomes to evolve the optimal schedule. As such, 10×103 scheduling orders are
constructed and genetically manipulated throughout the search space, as opposed to 21! (approxi-
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mately 5×1019) scheduling orders if a brute-force search strategy is employed to seek the optimal
scheduling of jobs. Similar observations are in order with respect to the results reported on the
segmented queue genetic solution.

5.3. QoS Penalty Scheduling Evaluation of the Differentiated Waiting Time ωPTi,j
The job schedules have been conducted according to the differentiated waiting time allowance
ωPTi,j of each job Ji at the tier level, which is derived from the waiting time allowance ωALi of
the job at the multi-tier level of the environment. Thus, the service-level violation time of each job
Ji is measured with respect to the ωPTi,j of the job in the tier, and accordingly the SLA violation
penalty payable by the service provider is quantified. The system virtualized queue and segmented
queue genetic solutions are used to efficiently seek optimal scheduling orders of jobs. Overall, the
efficacy of the scheduling approach has been proven to produce optimal schedules that reduce the
total service-level violation time of jobs and their associated SLA penalty at the multi-tier level of
the environment (as shown in Figures 6 and 7, as well as Tables 3 and 4).

 

 

(a) System-Level (Total of 58
Jobs)

 

 

(b) Tier-1 (26 Jobs)

 

 

(c) Tier-2 (32 Jobs)

Figure 6. System Virtualized Queue Scheduling with Respect to Differentiated ωPT i,j

Figure 6a and Table 3 represent a multi-tier environment that comprises 58 jobs; 26 jobs are
allocated in tier T1 and 32 jobs are allocated in tier T2. At the start, the schedule of the 58 jobs
in both tiers produced 219.5 units of violation time. After the scheduling approach along with
the system virtualized queue genetic solution is applied on the tiers, an enhanced schedule for
the 58 jobs in both tiers has been formed. Consequently, the service-level violation time of the
enhanced scheduling of jobs is optimized at the multi-tier level by 31.85% to reach 149.6 units of
violation time. As a result, the associated SLA violation penalty presented in Table 3 is optimized
by 21.64%, a reduction from 1.34 for the initial schedule to 1.05 for the enhanced schedule of
jobs. Similarly, such enhancements reduce the total violation time and SLA penalty of the virtual
queue of each individual tier (as shown in Figures 6b and 6c, as well as Table 3). For instance,

Table 3. System Virtualized Queue Scheduling with Respect to Differentiated ωPT i,j

Number
of Jobs

1 Initial2 Enhanced3 Improvement
Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 6a 58 219.53 1.34 149.62 1.05 31.85% 21.64%
Tier-1, Figure 6b 26 112.47 0.68 68.03 0.49 39.51% 26.91%
Tier-2, Figure 6c 32 107.07 0.66 81.58 0.56 23.80% 15.14%

1 Number of Jobs represents the total number of jobs in queues of the tier/environment. For instance, the first entry (58 jobs) shows that the multi-tier
environment contains 58 jobs in total. The second (21 jobs) and third (25 jobs) entries of the table mean that the 3 queues of tier-1 and tier-2 are allocated
26 and 32 jobs, respectively.

2 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the system virtualized queue genetic
solution.

3 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using the system virtualized
queue genetic solution.
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Figure 7. Segmented Queue Scheduling with Respect to Differentiated ωPT i,j

the violation time and SLA penalty of the virtual-queue (26 jobs) of tier T1 have respectively been
reduced by 39.5% and 26.9%, as shown in Figure 6b.

Furthermore, similar observations are in order with respect to the segmented queue genetic solu-
tion shown in Figure 7 and Table 4, where the total service-level violation time and penalty of the
109 jobs in the resource queues of both tiers are reduced at the multi-tier level by 35.7% and 11%,
respectively. Also, these enhancements affect the total violation time and penalty of the job sched-
ules in each individual queue of each tier. For instance, the total violation time of Q1,1 (17 jobs)
shown in Figure 7b is reduced by 40.5%, which accordingly reduced the SLA violation penalty of
jobs in the queue by 29.5%.

Table 4. Segmented Queue Scheduling with Respect to Differentiated ωPT i,j

Number
of Jobs

Initial4 Enhanced5 Improvement
Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 7a 109 558.33 3.61 358.73 2.69 35.75% 25.49%
Resource-1 Tier-1, Figure 7b 17 94.88 0.61 56.49 0.43 40.46% 29.57%
Resource-2 Tier-1, Figure 7c 17 81.28 0.56 53.34 0.41 34.37% 25.70%
Resource-3 Tier-1, Figure 7d 15 78.71 0.54 54.11 0.42 31.26% 23.30%
Resource-1 Tier-2, Figure 7e 21 94.92 0.61 62.42 0.46 34.25% 24.25%
Resource-2 Tier-2, Figure 7f 16 92.29 0.60 57.35 0.44 37.86% 27.58%
Resource-3 Tier-2, Figure 7g 23 116.25 0.69 75.03 0.53 35.46% 23.21%
4 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the segmented queue genetic solution.
5 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using the segmented queue genetic

solution.
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5.4. Comparison of the Approaches
Figure 8 and Table 5 contrast the performance of the scheduling approaches with respect to the
total service-level violation time of jobs. The initial job schedules in the resource queues, and by
implication, that of the system virtualized and segmented queues are the same. The WRR-based
scheduling of jobs entails 3,812 units of violation time, whilst the WLC-based scheduling entails
3,563 units of violation time (as shown in Table 5). The scheduling approach along with the
system virtualized queue and segmented queue genetic solutions has been applied to efficiently
find optimized schedules that reduce the service-level violation time of jobs at the multi-tier level.

Table 5. Total SLA Violation Time

Multi-Tier
ωPTi,j Based Scheduling

Multi-Tier
ωALi Based Scheduling WLC WRRSystem

Virtualized Queue Segmented Queue System
Virtualized Queue Segmented Queue

1,859 2,495 2,363 2,700 3,563 3,812

The multi-tier based scheduling with respect to the total waiting allowance ωALi along with the
segmented queue genetic solution entails 2,700 units of violation time, a 29% reduction compared
with the WRR strategy and 24% reduction compared with the WLC strategy. For the system
virtualized queue genetic setup, the multi-tier ωALi based scheduling produces job schedules that
entail 2,363 units of violation time, which is a reduction of 38% compared with the WRR strategy
and 34% compared with the WLC strategy. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Comparison of the Approaches

In contrast, the multi-tier based scheduling with respect to the differentiated waiting time al-
lowance ωPTi,j generally produces better performance than the multi-tier ωALi based scheduling.
The ωPTi,j based scheduling along with the system virtualized queue genetic solution has pro-
duced job schedules that entail 1,859 units of violation time, a reduction of 51% compared with
the WRR strategy and 48% compared with the WLC strategy. On the other side of using the seg-
mented queue genetic solution, the ωPTi,j based scheduling entails 2,495 units of violation time,
which gets 35% and 30% reductions compared with the WRR and WLC strategies, respectively.

Figure 8 depicts the average and maximum waiting performance of the scheduling strategies.
Though, the ωPTi,j based scheduling along with the system virtualized queue genetic strategy
shows the shortest average violation time and, therefore, the best performance among all the strate-
gies; approximately an average of 9 units of service-level violation time. Using the segmented
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queue genetic solution, the ωPTi,j based scheduling produces 13 units of average service violation
time, which is close to the multi-tier ωALi based scheduling along with the system virtualized
queue genetic solution that shows approximately 14 units of average violation time. Nevertheless,
the WRR and WLC job scheduling strategies delivered inferior performance.

Furthermore, similar observations are in order with respect to the maximum waiting performance.
The WRR and WLC scheduling strategies produce the highest values of the maximum violation
time of jobs, approximately 37 units of violation time for the WRR and 32 units of violation
time for the WLC. The ωPTi,j based scheduling along with the system virtualized queue genetic
strategy delivers the best performance in minimizing the total service-level violation time and thus
the lowest SLA penalty; a maximum of 16 units of violation time.

6. CONCLUSION

This paper presents a penalty-driven approach that addresses the optimal scheduling and alloca-
tion of jobs of various QoS obligations and computational demands in a multi-tier cloud environ-
ment. The approach employs the job’s waiting time and service-level violation time to measure the
penalty payable due to SLA violations, thus establishes a multi-tier-driven framework for quan-
tifying and facilitating the management of a penalty that a cloud service provider can utilize to
formulate penalty-based schedules.

The scheduling approach contemplates the impact of schedules optimized in a given tier on the
performance of schedules on subsequent tiers. The approach accounts for dependencies between
tiers of the cloud environment to produce minimum penalty schedules at the multi-tier level. The
performance of job schedules in a tier is optimized such that the potential of shifting and escalation
of SLA violation penalties are mitigated when jobs progress through subsequent tiers.

The multi-tier-based biologically inspired genetic algorithm efficiently facilitates optimal schedul-
ing of jobs, in a reasonable time. System virtualized and segmented queue abstractions mitigate
the operator complexities of the scheduling process at the multi-tier level. Each queue abstrac-
tion represents a realization of an execution scheduling order of jobs. The virtualized abstraction
collapses and reduces the solution search spaces of all queues of the multi-tier environment into a
simple search space with one searching operator, that helps using the PGA efficiently seek optimal
job schedules at the multi-tier level.

The scheduling approach employs the multi-tier waiting time allowance ωALi and the differen-
tiated waiting time allowance ωPTi,j of each job to make multi-tier-driven scheduling decisions.
Both experiments demonstrate the efficacy of the scheduling approach in optimizing the perfor-
mance of job schedules, thus minimizing the service-level violation time and penalty payable by
the cloud service provider at the multi-tier level. This scheduling approach with respect to both
types of waiting time allowances, along with the system virtualized queue genetic solution, pro-
duces superior performance compared with the WRR and WLC scheduling strategies.

7. FUTURE WORK

The penalty model presented in this paper treats the violation penalty of different job waiting
times to be identical. In fact, jobs of equal waiting times might not necessarily be similar in QoS
penalty as such jobs tend to have different sensitivities to waiting and SLA violation. Therefore, it
is imperative to design a penalty model that accounts for various QoS penalty classes, so that the
performance of schedules is optimized at the tier and multi-tier levels to reflect such sensitivities.
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