

Natarajan Meghanathan et al. (Eds) : ACSTY, NATP, ADCOM, ITCSS - 2019

pp. 11-24, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.91002

AUTOMATED REGRESSION TESTS AND AUTO-

MATED TEST OPTIMISATION FOR GETRV

Neil Kevin Patalita Arcolas1 and Shahid Ali2

1Department of Information Technology, AGI Institute, Auckland, New Zealand

2 Department of Information Technology, AGI Institute,

Auckland, New Zealand

ABSTRACT

Regression testing is a type of testing that is performed to validate that new changes pushed to

the system does not have any adverse effect to the existing features. Automated regression testing

greatly reduces the time spent by testers to perform these repetitive and mundane tests and al-

lows them to work on more critical tests. The first problem addressed in this project is to add

two automated regression scripts to increase test coverage of the existing test automation

framework. The second problem is to optimise the automated regression test run to reduce the
test run times. Additionally, to improve the automated test run times, redundant expressions were

removed and handled in the outermost loop of the automated test run. The project resulted in the

addition of two automated test scripts for the automated test run and a significant test run time

reduction of at least 60%.

KEYWORDS

Automated regression, Agile scrum, Automated test run

1. INTRODUCTION

Information Technology enabled services and web applications are ubiquitous nowadays. The

range and areas of application for web-enabled services and applications are ever-increasing. It is
commonplace to find web-based applications in short-term home rentals, an example being

AirBnB, hotel booking like Trivago, restaurant rating like Zomato and so. This project was car-

ried out for GetRV company, the largest provider of Recreational Vehicles (RV’s) both for sales

and for rent in Australia and New Zealand. The company currently has a web application that
serves as a platform for their RV providers to create and manage their products, product contents,

pricing, scheduling, and booking.

GetRV’s web application is subject to changes throughout its development and post-development

phases. Reasons for these changes range from changes in requirements, updates in the underlying
technologies used by these applications, and an addition of new features. Regression testing has

become a necessary testing practice to make sure the changes implemented are not affecting the

parts of the software application that are not part of the changes [1]. Since regression testing is
essentially doing the same tests multiple times, it can be time consuming and mundane, albeit

necessary, for the testers that are performing them. This is especially true with front end testing

where testers need to interact with the front-end user interface and do these numerous times. To
address this, GetRV’s Quality Assurance (QA) Team has created a scenario-based regression test

automation framework that is run whenever there are changes and updates to their web applica-

tion.

The test automation framework allows members of the QA Team to conveniently define new test
scenarios in Gherkin statements using SpecFlow. Creation of new automation test scripts for new

12 Computer Science & Information Technology (CS & IT)

test scenarios come with minimal to no changes to the underlying test automation framework.
Additionally, it also allows the testers to structure their tests into features composed of related test

scenarios for easy maintenance. The integrated NUnit NuGet will allow the testers to see the

structure of the tests in a Test Explorer View Window. Additionally, NUnit is also used to run

individual tests, multiple tests, or all of the regression test scenarios from their own workstation
and see the returned test results in the Test Explorer View Window. The regression test automa-

tion framework is built using C# Language on a .Net Framework and using Microsoft Visual Stu-

dio 2017 as an Integrated Development Environment (IDE). The automated tests were performed
on GetRV’s web application in Google Chrome with the use of Coypu, a wrapper for Selenium

WebDriver. The mentioned set up mimics what a manual tester would do when performing their

manual testing on the user interface. Finally, the existing framework is an implementation of a

page object pattern test automation framework which models the web pages as objects in the pro-
gram. These objects contain the web elements that are present in the page and methods are creat-

ed within the objects to perform the actions that will be done on that page.

Moreover, as the number of features of the web application increases there was a need for the

following:(1) grow the number of regression tests to accommodate those changes; and (2) opti-

mise the automated regression test run to reduce test run times. This project aims to contribute to
the existing regression test scenarios by adding two new test scenarios. The first scenario is the

“Update Content Details”, which is a feature under the web application’s Content module. This

module allows users to create and manage product contents and media. These are then picked up

and displayed in the Products module. The “Update Content Details” test scenario was used to
test if the current web application configuration allows users to update the details of an existing

content. The second scenario is the “Update Rental Details”, which is a feature under the web

application’s Booking module. This module allows users to create and manage existing booking
or rentals for a certain product. The “Update Rental Details” test scenario will test if the current

web application configuration allows users to update existing rental details. Both of which are

features that are already available in GetRV’s web application but is currently not covered by the
existing regression test scenarios. Consequentially, adding test scenarios will increase the run

time of the whole test run. To address this, this project has created one test run optimisation that

has reduced the test run time of each test scenario and consequently the whole test run. In addi-

tion, this project has also retrofitted existing test scenarios to accommodate the test run optimisa-
tion. Due to the limited time frame of the project, only details that are marked as mandatory in the

web application’s user interface have been updated for the mentioned scenarios. Additionally,

only two test scenarios have been retrofitted for the test run optimisation. Those were the “Updat-
ing Existing Content’s Details” and “Updating Existing Rental’s Details” scenarios which were

previously created in this project.

2. LITERATURE REVIEW

Over the years, many studies and publications have been reported in literature on the topic of re-
gression testing [2], [3] and [4]. In the following, only some of the approaches discussed in the

aforementioned papers in regression testing domain were surveyed. The survey is followed by a

discussion of those approaches that were relevant to this project.

A scenario-based functional regression testing for any integrated software application was

proposed [5]. This approach to regression testing closely resembles the existing approach
currently implemented by GetRV. While other techniques presented in the paper are code-based

using program slicing, program dependence graphs, and data flow and control flow analysis, the

proposed approach on regression testing focuses on the overall functional correctness of the

whole integrated software application. This type of approach will validate that all integrated
components of the software system (both internal and external), will together support the intended

 Computer Science & Information Technology (CS & IT) 13

business functions. In scenario-based testing, the test steps are structured to mimic what a
business user would do in the application. To perform this type of regression testing, test

scenarios are defined in thin-threads and conditions which are semi-formal representations of the

defined requirements. A thin-thread is a minimum user scenario that describes what the end user
will be doing in the system. Conditions are factors affecting the execution of the thin-thread’s

functionality. A thin-thread will serve as a basic translation of the product requirements to

functional regression test scenarios having defined inputs, actions, and outputs. Additionally,
similar test scenarios can be grouped together. Moreover, types of regression test selection

strategy that can be implemented with scenario-based testing have been defined in the paper. One

strategy that closely resembles the current approach of GetRV is “Random Testing”, in which the

reliability of the regression testing is observed to be proportional to the size of the regression
tests. This means that the larger the number of regression test scenarios, the more reliable it is [5].

Error! Reference source not found. highlights the main features of Scenario-based functional

regression testing.

Table 1. Scenario-based Functional Regression Testing [5]

Scenario-based Functional Regression Testing
Covers over-all functional correctness

Tests all integrated components that are used in the user scenario

Thin-threads are representations of user scenarios

Test automation framework for web applications was proposed which is easy to maintain and

easy to read [6]. This type of test automation framework is the page object pattern. In this
approach, pages are modeled into objects and all interactions to those pages are created as a

method within the page object. This makes it easy to access those methods and include them as

steps in the automated test cases. In their case study, they presented how the test object pattern is
used in creating and executing a simplified test case for a web application that allows flight

bookings.

Figure 1 shows the page view as seen in the web application and the source of the Flights

Search Page.

Figure 2 shows the page view and source of the Departing Flights Page.

Figure 3shows the web elements and the actions to be performed unto them.

Figure 4 shows a comparison of how the test cases are written without page object pattern

and with page object pattern. It can be noted that using the page object pattern, the crea-

tion of web elements and actions are separated from the actual test case which makes the

test case readable compared to the test case that is not implemented with a page object

pattern. This way, the web elements, and page actions can be reused in other test cases

without the need for creating the same code and introducing clutter [6].

Figure 1. Flight Search page and source [6]

14 Computer Science & Information Technology (CS & IT)

Figure 2. Departing flights page and source [6]

 Figure 3. Web Elements and Page Actions [6]

 Figure 4. Comparison of Search flights test without page object pattern (above)

 and with page object pattern (below) [6]

 Computer Science & Information Technology (CS & IT) 15

A code optimisation technique [7] that is applied in this project to reduce the runtimes of the test
scenarios. The proposed technique [7] is used to move redundant expressions to the entry of the

outermost loop where it is invariant or never changing. This avoids the code unnecessarily

redoing the calculations within the inner loops or path of the program. An experiment was
performed applying their proposed code optimisation and it was found to result in 30% to 60%

decrease in the run times of the code in observation and established that their proposed code

optimisation does not diminish the effectiveness of the code. (Morel & Renvoise, 1979).

The chosen methodology for this project is the Agile Scrum methodology. GetRV is already

following this type of methodology. The implementation and benefits of Agile Scrum

methodology have been discussed in literature by Schwaber. Agile Scrum is described as a type
of iterative methodology which assumes that the software development process is an

unpredictable and complicated process that can be approximately described as an overall

progression. In contrast to the waterfall process that is linear in nature and does not define how to
handle any unexpected output from its adjacent processes, Scrum methodology is flexible to

unpredictable outcomes of its processes and employs continuous review and feedback of both the

process and the artefacts involved. The main phases of the Scrum methodology are shown in
Figure 5. Since review and feedback is necessary with this type of process, testing is done in

parallel with the development to shorten the feedback loop when there are issues that need to be

addressed. This is especially true in developing modern web applications where businesses
usually have more features to add or tweak when they have already seen the application in use

[8].

Figure 5. SCRUM Methodology [8]

4. PROJECT EXECUTION

This section describes the actual execution of the project and the application of the knowledge

from the reviewed literature. This project leveraged the existing processes and tools that are cur-

rently used by GetRV. The existing STLC (Software Testing Life Cycle) used in GetRV is one
that is integrated into their existing Scrum methodology and are done in Grooming, Planning,

Sprint, and Release phases. The five-week project was divided into three sprints: Sprint 0, Sprint

1, and Sprint 2. Sprint 0 was only for one week because it was reserved for the familiarisation of
the organisation, its processes and best practice, and the tools that they are using, the finalisation

of the project proposal, and the Grooming and Planning phases of Scrum. Sprint 1 and Sprint 2

were two weeks long. Both Sprint 1 and Sprint 2 were the actual sprints unlike Sprint 0. In addi-

16 Computer Science & Information Technology (CS & IT)

tion, Sprints 1 and 2 each had their own release. For the purposes of this project, the Scrum phas-
es were structured as shown in Error! Reference source not found.

Figure 6. Project Scrum Phases

4.1. Grooming Phase

This phase covered the establishment of a communication plan, the introduction of the existing
regression test automation architecture and framework, the creation of Epics that will be planned

into the sprints, and introduction to additional tools. This phase was done during Sprint 0.

4.2. Planning Phase

Similarly, with Grooming, this phase was done in Sprint 0. During this phase, the Epics were

planned in the remaining sprints (Sprints 1 and 2). Sprints 1 and 2 each had their own release
phase because the Epic in Sprint 2 were dependent on Sprint 1. Error! Reference source not

found. shows how the Epics were planned into Sprint 1 and 2 including their start and end dates,

and the allocated time to complete the Epics.

4.3. Sprints Phase

During these phases, tasks have been carried out to complete the Epics planned for each sprint.
In the following subsections, the main tasks carried out in each Sprint are briefly described.

4.3.1. Sprint 1

A test scenario was created for each epic as shown in . Each of the test scenarios were then given

Gherkin statements that describes the test steps and written in a SpecFlow feature file as shown in

Figure for the “Update Content Details” and Figure 6 for “Update Rental Details” tests. Both

scenarios were written in a Scenario Outline. This will repeat the tests depending on the number

of Examples taking in the examples as inputs. These tests are then available in the test explorer

and runner as shown in Figure 7.

Table 2. Epics mapped to Test Scenarios

Epics Test Scenarios

Update Contents Details Successfully update the content

Update Rentals Details Successfully update the rental

 Computer Science & Information Technology (CS & IT) 17

Figure 9. Update Content Details Feature file

Figure 6. Update Rental Details Feature file

Figure 7. Test explorer and runner

The first Epic that was addressed is named “Update Contents Details”. This included creating a

page object class as shown in

18 Computer Science & Information Technology (CS & IT)

Figure 8 and the steps definition class as shown in Figure 9. These code changes were then

pushed to a working branch in GitHub and a review and pull request was sent to the industry su-

pervisor as shown in Figure 10. While waiting for the review comments or approval for the pull

request, the next Epic which is “Update Rental Details” was started. This also involved the crea-

tion of the page object class, step definitions class and subsequently proceeding with the code

push, then a review request and pull request was sent to the industry supervisor. Review inputs
from the industry supervisor were then applied to the code and further requests were made for

further reviews until there were no more review comments.

Figure 8. Content Details Page object class

 Figure 9. Step Definitions for update contents

 Figure 10. Pull request

 Computer Science & Information Technology (CS & IT) 19

4.3.2. Sprint 2

This sprint started with the identification of a common step in all the test scenarios. It has been

found that the login steps are common in the existing test scenarios within their step definition
classes as shown in Figure 11, including the scripts that were created in Sprint 1. Additionally, it

has also been found that browser instantiation is done before the execution of each test scenario

through the SpecFlow “Before Scenario” attribute in its Hooks class as shown in Figure 11. These
steps have been found to cause unnecessary additional runtimes because they were not part of the

tests but were only necessary to be set up before the start of the tests. These steps were removed

from the scenario and were handled in the “Before Feature” attribute in the Hooks Class as shown

in Error! Reference source not found. Additional codes were created in the “Before Feature” at-
tribute in the Hooks Class so that only one browser instance is created and only one login is per-

formed when running multiple test scenarios in a single test run. An additional check for an exist-

ing browser instance and login was also added to catch any unexpected browser instance disposal
and logouts during the test run. This was also done to skip browser instantiation and log in when

transitioning from one feature class to another during the test run. It was found that the login steps

were not available for modification because they were written in a class within an internal assem-

bly file made by GetRV testers to consolidate all common steps.

Test scripts created in Sprint 1 were retrofitted to use this optimisation. The codes highlighted in

Figure 11 were removed from each of the tests’ Test Step Definitions classes. The review and
feedback process proceeded similarly with Sprint 1.

 Figure 11. Common Steps

20 Computer Science & Information Technology (CS & IT)

 Figure12. Hooks Class

4.4. Release Phase

There were some changes implemented in the code, those changes were merged to the master

branch provided there were no code conflicts between the working branch and master branch. In
cases of code conflicts, these were first resolved before merging. Figure 13 shows a sample of a

working branch merged to the master branch using Source Tree.

Figure 13. Source Tree merge to master

5. RESULTS

The following are the results of this project:

1. Test results for the two new test cases. Figure 14 shows the results and execution time of

the completed “Successfully update the content” test shown in the test runner. Figure 15

shows the result and the execution time of the completed “Successfully update the rental”

test shown in the test runner. Table shows a table of consolidated test results of both test

runs.

 Figure 14. Success fully Update The Content Test Result

 Computer Science & Information Technology (CS & IT) 21

Figure 15. Successfully Update The Rental Test Result

Table 8. Consolidated Test Results (showing un-optimised test scripts runtimes)

Test Status
Runtime

(h:mm:ss)

SuccessfullyUpdateTheContent Passed 0:03:00

SuccessfullyUpdateTheRental Passed 0:04:00

2. Comparison of runtimes between un-optimised and optimised test scripts. Run times of

un-optimised test scripts are shown in Table. Figure 16 shows the run times of the test
scripts after the optimisation has been applied

3.

Figure 16 - Optimised test scripts run times

The percent improvement was computed with this formula:
% Improvement = Before runtime – after runtime * 100

 Before runtime

Table shows a comparison of the test run times and the percent improvement. It is found that

there was a substantial improvement in the test run times of the individual scenarios when the test
run optimisation was applied.

Table 9. Percent improvement of runtimes

Runtimes (mm:ss)

Test Before After % Improvement

Update Content Details 03:00 01:00 66.67%

Update Rental Details 04:00 00:59 75.42%

22 Computer Science & Information Technology (CS & IT)

6. DISCUSSION

GetRV constantly releases new features or updates to their existing features on their web applica-
tion, and with these releases, there was a need to validate that the existing features that are not

part of the new releases or updates should still be working as expected. GetRV’s existing auto-

mated regression test does not have updated regression test scenarios to accommodate recent fea-

ture releases and updates. To address this, there was a need to align the regression tests to include
the new features for regression testing.

As with modern web applications, doing front end regression tests is time consuming even with
the help of automated test frameworks. Moreover, adding new test scripts to the automated re-

gression tests will also add to the overall run time of the whole regression test which will negate

the benefits of having an automated test framework, to begin with.

The addition of the new additional automation test scripts to cover “Update Content Details” and

“Update Rental Details” scenarios add to the overall test coverage of the regression test to in-

crease the confidence of GetRV that when they put out new releases or updates not related to the
mentioned scenarios, any failures affecting the scenarios can be caught during the running of the

automated regression tests and will not persist to the production environment. Catching these

failures before production reduces the costs of fixing them and will prevent any negative feed-
back from end users.

Applying the approach of Morel et. al., (1979) for removing redundancies in the program greatly

reduced the test run times. The test run optimisation was made possible by utilising the Hooks
class, a component of SpecFlow to transfer the redundant steps from the start of each test scenario

to the start of the test run. From the comparison of the test run times of the optimised and un-

optimised test run, it can be deduced that the redundant steps that were removed (browser instan-
tiation and login) account for more than 60 percent or two-thirds of the test run time. These long

runtimes may have been caused by slow network connection or hardware and software limitations

of the local machine the test is running on. Since all test scenarios performed in the user interface
of the web application will require a browser instantiation and log in, the reported improvement

on the individual test runs will translate to the same percentage improvement in the overall test

run of the regression test. This will help testers to get results quickly and allow for more time to

evaluate and plan an appropriate course of action.

This will also align future creation of test scenarios to follow the coding standard (excluding the

browser instantiation and login steps from the actual test steps) brought about by the test run op-
timisation and eliminate the execution of redundant steps.

Due to the feedback and review-oriented approach Scrum methodology, risks of breaking the ex-

isting test automation framework were avoided. Furthermore, because of the limited time frame
of this project, Scrum has helped in creating a manageable process and breaking down tasks to

minimise risks of not achieving those tasks at the end of the project life cycle.

7. CONCLUSION

In conclusion, this project has found two new test scenarios that were not covered by the existing

automated regression test and created automated test scripts for them that will be included in the

existing automation test framework and in future automated regression test runs. Additionally,
this project has filtered the redundant steps that are executed in every scenario and found out that

these can be executed once for the whole test run to dramatically reduce both the individual test

 Computer Science & Information Technology (CS & IT) 23

run times and the overall test run time. Furthermore, the two test scripts created in this project
was retrofitted to run with the implemented test run optimisation.

8. RECOMMENDATIONS

Due to time restrictions, only two new user scenarios were converted to automated test scripts to
increase the test coverage. The following are the recommendations for GetRV’s Automated Re-

gression Test:

 GetRV’s testers should review their automated regression test scripts periodically to
make sure that new features are covered by the regression tests.

 Checking of the existing test scenarios that may have been skipped or are not run fre-

quently during automated regression test runs and make sure that they are not obsolete.

 Retrofit existing test scripts to run with the test run optimisation by removing the login

steps from the step definitions.

 Expose the login methods and steps in the assembly file for modification to avoid code

duplication and ease of maintenance.

REFERENCES

[1] Yoo, S., & Harman, M. (2012). Regression testing minimization, selection and prioritization: a
survey. Software Testing, Verification and Reliability, 67-120.

[2] Gupta, Harrold, & Soffa. (1997). An Approach to Regression Testing using Slicing. Proceedings The

Eighth International Symposium on Software Reliability Engineering (pp. 264-274). Albuquerque,

NM, USA, USA: IEEE.

[3] Leung, H., & White, L. (1989). Insights into regression testing (software testing). Proceedings.

Conference on Software Maintenance - 1989 (pp. 60-69). Miami, FL, USA, USA: IEEE.

[4] Tarhini, Ismail, & Mansour. (2008). Regression Testing Web Applications. 2008 International

Conference on Advanced Computer Theory and Engineering (pp. 902-906). Phuket, Thailand: IEEE.

[5] Tsai, Bai, & Paul. (2001). Scenario-Based Functional Regression Testing. 25th Annual International

Computer Software and Applications Conference. COMPSAC 2001 (pp. 496-501). Chicago, IL,

USA, USA: IEEE.

[6] Leotta, M., Clerissi, D., Ricca, F., & Spadaro, C. (2013). Improving Test Suites Maintainability with

the Page Object Pattern: An Industrial Case Study. 2013 IEEE Sixth International Conference on

Software Testing, Verification and Validation Workshops (pp. 108-113). Luxembourg, Luxembourg:

IEEE.

[7] Morel, E., & Renvoise, C. (1979). Global Optimization by Suppression of Partial Redund

ancies. Communications of the ACM, 96-103.

[8] Schwaber, K. (1997). SCRUM Development Process. Business Object Design and Implementation

(pp.117-134). Austin, Texas: Springer, London.

24 Computer Science & Information Technology (CS & IT)

AUTHORS

Neil Kevin Patalita Arcolas is a graduate of B.S. Electronics and Communications

Engineering in the Philip pines and has 2 years background in Software Development.

He recently moved to New Zealand to take up Graduate Diploma in Software Testing

at AGI Education Limited. This was where he started to explore Soft ware Testing

concepts and practices and has taken interest in Functional Test Automation. AGI Ed-

ucation Ltd has opened new opportunities for him in New Zealand and is currently

working as a Junior Software Test Analyst in one of the IT companies in New Zealand.

Dr. Shahid Ali is a programme leader of information technology and full-time lecturer
at AGI, Auckland, New Zealand. He has completed his Doctorate and master’s degree

from New Zealand from UIT and AUT respectively. He has published number of re-

search papers in ensemble learning. His expertise and research interests include classi-

fication machine learning, data mining, ensemble learning and knowledge discovery.

	Abstract
	Keywords
	Automated regression, Agile scrum, Automated test run
	4.1. Grooming Phase
	This phase covered the establishment of a communication plan, the introduction of the existing regression test automation architecture and framework, the creation of Epics that will be planned into the sprints, and introduction to additional tools. Th...

