
Natarajan Meghanathan et al. (Eds) : NLP, ARIA, JSE, DMS, ITCS - 2019

pp. 35-42, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.91204

SEMI-SUPERVISED APPROACH FOR HINDI

STEMMING

Amit Anand, Sanjay Chatterji and Shaubhik Bhattacharya

IIIT Kalyani West Bengal, India 741235

ABSTRACT

Stemming is one of the most fundamental requirement of any Natural Language Processing

tasks such as Information Retrieval. In simple words, it is the process of finding stem of a given

word. This paper presents an algorithm to find the stem of a word in Hindi. The proposed
algorithm uses word2vec, which is a semisupervised learning algorithm, for finding the 10 most

similar words from a corpus. Then a mathematical function is proposed to achieve the above

mentioned task of finding stem. Significant amount of attention need to be given to Indo-Aryan

languages like Hindi, Bengali, Marathi etc. in the domain of Natural Language Processing

because of their highly inflectional properties. Moreover,it is very difficult to build a rule based

stemmer for such highly conflated languages. The proposed algorithm does not need any

annotated corpus and does not use any hardcoded rules for finding the stem. The results are

verified by selecting a set of 1000 Hindi words randomly taken from a corpus and comparing

the results given by the proposed algorithm and the actual results created manually.

KEYWORDS

Inflection, Stemming, Word2Vec, Unsupervised Machine Learning

1. INTRODUCTION

Hindi comes in the fifth position in the list of most spoken languages in the world according to
Ethnologue. Though it is one of the most spoken languages in the world, the linguistic resources

are scarce for Hindi language. Hindi language is prominent in the list of highly inflectional

languages. The number of morphological variants for a given word in Hindi can be in the order of
1000 depending on gender, number, person, tense, aspect, modality, parts-of-speech, case, etc. In

Natural Language Processing (NLP) tasks such as Information retrieval, stemming is one of the

fundamental tasks in preprocessing. Today most of the stemming tools for resource-poor lan-
guages are rule-based. The rule based approach is not a practical approach for regional languages

like Hindi since the formation of Hindi word does not always follow it. Due to inflectional nature

it is also very difficult to exhaustively define the set of rules. The words formed from the same

root word are called morphological variants of the words. For example: In English language
watches, watching, watched are morphological variants of word watch.

In Hindi words like: (Jaen) [Go to], (jaenge) [Will go], ” (jaayen) [Go to],
(jaen) [Go to], (jaoge) [Will go], (jaate) [Goes], ” (jaaten) [Go to], are different

morphological variants of the word (ja) [Go]. The aim of this paper is to find the root word

from different morphological variants of Hindi words.

In this paper, we wish to propose a novel stemming algorithm based on the context and three
structural features. The context is used to form the groups of words using a semi-supervised

36 Computer Science & Information Technology (CS & IT)

learning approach. This narrows down the search of root word in all the clusters to one cluster.

Further, we wish to introduce a mathematical function considering the three structural features to
find out the root word from each group. The features will be chosen on the basis of Size, Match

and Mismatch between the group of words and input word. The three features completely exploit

the structural property of the given word and we will prove that no more feature is needed. The

advantages of this algorithm is that it is computationally inexpensive and can be used for different
languages including low resource languages. It is helpful for other languages because of its

corpus-based approach.

2. LITERATURE SURVEY

In NLP, the root words of any given language is identified by its stem. So, stemming is the first

step in any NLP task. Some decades ago, people who had sound knowledge in a particular

language were involved with developing rule based tools of that language. This is a tedious and
rigid process. In other words, the rules formed for one language cannot be extended for the other

languages. In practical scenario, a rule based stemmer can be easily made for less inflectional

languages like English. But for languages that are highly inflectional like Hindi, Bengali, Nepali,

etc. it is almost impossible to create a perfect rule based stemmer.

In early days, most of the stemming algorithms were based on suffix stripping and it is basically

on English and some European languages. A list of appropriate suffixes were extracted by analyz-

ing the linguistic resources of that language. Some of the famous suffix stripping Stemming
algorithms of English language are Lovin’s [1], Porter Stemmer [2], Paice Stemmer [3] and for

Hindi language is MAULIK [4].

As discussed in [5] Hindi comes under the category of a relatively free word order language as
compared to English which is a well structured language. In Hindi the relation between words

is expressed by using postpositions and appropriate inflecting nouns and inflecting verbs which is

used to express case information and to reflect gender, number and person information

respectively. They had also categorized the inflections in Hindi language into various classes such
as Noun Inflections, Verb Inflections and Adjective Inflections.

People were successful in building and showing that probabilistic model [6] and statistical model

[7] are as effective as linguistic knowledge. N-Gram Stemmer [8] and YASS [9] are two famous
stemmers which uses statistical methods for finding stem. They are also corpus based stemmers.

The main idea behind the N-Gram Stemmer is based on the fact that similar words have a high

proportion of common n-grams. The YASS (Yet Another Suffix Stripper) also does not rely on
linguistic expertise. They have experimentally shown that the stemmer is more effective than the

suffix stripping for languages like: English, Hindi and Bengali.

3. PROPOSED METHOD

Our proposed algorithm comprises of two steps. In the first step we are using word2vec for
finding similarity between the words in a corpus. It is used for finding the Ten Most Similar

Words (TMSW). In the second step we are defining a new cost function by taking three structural

features.

Word2vec returns a set of related models which are used to create word embeddings. Word

embedding is basically a vector of features that define a word uniquely. The word embedding so

formed depends on the words surrounding the given word. Using the cosine similarity the similar
words from the corpus is collected. Using a corpus of English language, we found the 10 topmost

Computer Science & Information Technology (CS & IT) 37

similar words of tries are: trys, try, attempts, trying, scrambles, attempting, tried, seeks, wants and

attempts.

Likewise using a Hindi corpus we have developed a word2vec model for Hindi language. Using

this model we found TMSW for a given Hindi input word. We can say that these words are

contextually and semantically similar to the given input word. [9] had briefly explained that their
approach can return some cluster of words which are semantically different. So using word

embeddings obtained from word2vec, we can overcome this problem to some extent.

Then, in the second step, to extract root word from a cluster of words, we defined a cost function
in such a way that it will give minimum cost for the word which is the stem of the input word. We

have defined the cost function by taking into account three structural features as follows.

Feature 1: Sizei is calculated based on the difference of size between the input word and the i
th

word from the TMSW.

Feature 2: Matchesi is calculated based on the number of positions where the alphabets of the

input word and the i
th

 word from TMSW are matched.

Feature 3: Mismatchesi is calculated based on the number of positions where the alphabets of the

input word and the i
th

 word from TMSW are mismatched.

We will calculate all the above mentioned features separately and then combine them in a single
mathematical function to incorporate the effect of all the three features. Let us calculate these

three features first. For that let us consider the input word size is m and the word size of the i
th

word from TMSW is n.

i. Calculation of Sizei: We want to penalize the stem words if it is of large size. This is to

assure that the root word will always be of smaller size than the input word. Also to the

word which has higher size difference with the input word we wish to assign them
exponentially higher penalty. Mathematically, we have defined it as shown below.

 Sizei = 2
n−m

 (1)

ii. Calculation of Matchesi: For finding the reward for matches, we start matching the

characters of both the input word and the words in TMSW. We stop at the position where

the words’ character are first mismatched. The percentage of characters matches from
first character is defined as ‘t’.

Consider the English input word ’attacked‘ and the couple of words attacker and attack in the

corresponding TMSW. The value of t is 7 for attacker and is 6 for attack. It is to be noted that the
inflected word from TMSW generally has more matches in comparison to the root word.

Therefore we consider negative of these matches as penalty. Similar to the size penalty, we

consider exponential penalty for the number of matches also.

But what happens to the words which have no character match- ing with the input word or very
less number of characters are matching? We should give higher penalty to them. We have taken

1000 inflections of different Hindi root words. Then we have calculated the value of t is average

60%, minimum 0% (in case of root ya and inflected word gayaa) and maximum 94% (in case of
root Kinkartavyavimudha and inflected word Kinkartavyavimudhon). See the plot of number of

words versus the value of t in Fig 1.

38 Computer Science & Information Technology (CS & IT)

If we take the minimum case then we will be able to consider all the words. But then we will also

consider many unrelated words. Therefore, we consider the words which have minimum 40%
matches.

And then if the word has higher number of matches then exponentially we have assigned higher

penalty. Here, it is to be noted that for the word which has t value = 65 will have high penalty.
But as there is less chance of occurring a word who has t value between 40 and 65 in TMSW and

as we have not considered the t value between 0 and 40 therefore no small words will be there

with less penalty. However, if there is a word who has t value between 40 and 65 in TMSW then

that word has higher chance of becoming the root which also seems practical. Mathematically, we
have defined it as shown below.

Figure 1: Number of Words Vs Percentage of Matches (t)

iii. Calculation of Mismatchesi: This cost is defined by taking into consideration the extent of

mismatch of input word and the words in TMSW. Starting from 1
st
 mismatched character

till the minimum length of input word and the TMSW words is considered. Here, as the

length of input word is m and length of a contextually similar word is n and if the

mismatch starts at q
th

 position then the cost for mismatch is mathematically defined as

follows.

 Mismatchesi = 2
min(m,n)−q

 (3)

There are several methods of calculating the similarity and difference of two words. Consider the

following four basic distance measurement techniques.

 – Euclidean Distance

 – Hamming Distance

 – Cosine Similarity
 – Jaccard Similarity

Computer Science & Information Technology (CS & IT) 39

In Euclidean and Hamming Distance we consider the place of mismatch and do some processing

(insertion, deletion or substitution) on the mismatched characters. The number of processing re-
quired depends on the size difference between the words, number of matches and number of

mismatches. We are not considering Cosine and Jaccard Similarity while calculating the cost of

the input word and TMSW words. This is because, these corpus based equations are already been

taken care by the word2vec while selecting the TMSW words. So it is obvious that it is adequate
to consider these three features and the corresponding processing required to calculate the cost of

distance between two independent words.

4. EXPERIMENTS, RESULTS AND DISCUSSIONS

As told before, there may be some processing requires for each of the three features. Some feature

may need more processing than the other.

After finding the three different costs we have done some experiment to find the best way to

combine them. The combining should be done in such a way that it will assign minimum value

for the word which is the actual root. Following are the three possible ways we tried to combine

to calculate the Total Cost.

 i) First Case: Addition of the three different costs

 TotalCost = Sizei + Matchesi + Mismatchesi

 ii) Second Case: Multiplication of the three different costs

 TotalCost = Sizei×Matchesi×Mismatchesi

 iii) Third Case: Weighted addition of the three different costs

 TotalCost = w1×Sizei + w2×Matchesi + w3×Mismatchesi

Let us consider that there is a root word in the TMSW. Our target is to minimize the Total Cost

for root word and maximize the Total Cost for the non-root words. The first one is same as the

third one with weights being assigned to 1. But, the weights may not be 1. One may use a training
corpus to learn the weight values. But as we do not want to use use any training corpus as this is a

unsupervised technique.

Therefore, in these three different cases of Total Cost the second one fulfills the requirement i.e-
by multiplying three costs. In Third case we do not have to assign any weight because the effects

of the functions for Sizei, Matchesi, and Mismatchesi will be same.

For a given root word we store the TMSW words and their corresponding Total Costs. After

finding the Total Cost the row corresponding to the Minimum Total Cost (MTC) will be selected

provided that the second cost (M) of that row is greater then 1.5. If the second cost (Matchesi) of

the row of MTC is less than or equals to one and half then the input word is itself the root word.

We had also done experiment in order to find the optimal number of size of cluster formed. In

Table 1 we had shown that number of correct root words by taking five to fifteen most similar
words. We had experimentally observed that by forming a cluster of 10 or more words, the

stemmer gives highest accuracy. Thousand unique words were taken for calculation of accuracy.

40 Computer Science & Information Technology (CS & IT)

Table 1: size of cluster vs accuracy of stemmer

List Size of SW Correct Prediction

5 51.5

6 69.5

7 77.0

8 83.5

9 85.5

10 95.3

11 95.3

12 95.3

13 95.3

14 95.3

We will first explain the proposed algorithms using an English word and then using a Hindi word.

Experiment with English word: In previous section we have talked about the Ten Most Similar

Word (TMSW) for English word - tries. Now we will take one by one the TMSW words and then
find their Total Cost. Below is an example which shows how to calculate the costs.

Input Word: tries

First similar word: trys

i) First Cost(Sizei): Using equation 1

Size1 = 2
n−m

Here m is number of character in Input Word i.e-tries and n is number of

character in Similar Word i.e-trys

so, m = 5 and n = 4

Size1 = 0.5

Similarly we will find the first cost of all 10 similar words. In 3rd Col-

umn of Table 2 we had shown First cost.

ii) Second Cost(Matchesi): Using equation 2

Here the first and second characters are matched so, t = 2.

Matches1 = 1.75

This is mentioned in the 4th column of Table 2. This value is greater than 1.5.

Computer Science & Information Technology (CS & IT) 41

iii) Third Cost(Mismatchesi): Using equation 3

Mismatches1 = 2
x

Here mismatch starts after 2
nd

 character and length of input word is

5. Therefore min(m, n)−q = min(5, 4)−2 = 2 Hence Mismatches1 = 4

Mismatches1 = 8

It is mentioned in the 5
th

 column of Table 2. The Total Cost is men- tioned

in the 6
th

 Column of Table 2 .

Table 2: Cost Calculation for English word

Input Words Similar Words First Cost Second Cost Third Cost Total Cost

tries trys 0.5 1.75 4 3.5

tries try 0.25 1.75 2 0.875

tries attempts 8 1 32 256

tries trying 16 1.75 8 28

tries scrambles 2 1 32 64

tries attempting 32 1 32 1024

tries tried 1 1.9375 2 3.875

tries seeks 1 1 32 32

tries wants 1 1 32 32

tries attempts 4 1 32 128

Experiment With Hindi Word: We had shown above with the help of an example the working of
our stemmer for English language similarly we will show for Hindi language . As we had

discussed Hindi Language is very high inflectional. In [4] they had categorized the different

inflections like: Noun Inflection, Adjective Inflection and Verb Inflection but in our proposed
algorithm there is no need for that.

Input Word :
The cost with all similar words are in Table 3

Table 3: Cost Calculation for a Hindi Word

42 Computer Science & Information Technology (CS & IT)

5. CONCLUSION AND FUTURE WORK

In India there are 179 regional languages with their own grammar. Due to such variety in regional

languages and their inflectional properties it is practically impossible to build the rule based
stemmer for every languages. Taking these factors into consideration we tried to build a stemmer

which is independent of the grammar of the given language. The proposed algorithm would have

been more accurate if corpus become more extensive, both in size and richness. It can also be

tested for other languages specially for English to compare its performance with the standard
stemmers.

REFERENCES

[1] J. B. Lovins, “Development of a stemming algorithm,” Mech. Translat. & Comp. Linguistics, vol.

11, no. 1-2, pp. 22–31, 1968. [Online]. Available: http://www.mt-archive.info/ MT-1968-Lovins.pdf

[2] M. Porter, “An algorithm for suffix stripping,” Program, vol. 40, no. 3, pp. 211–218, 2006. [Online].

Available: https://doi.org/10. 1108/00330330610681286

[3] C. D. Paice, “Another stemmer.” SIGIR Forum, vol. 24, pp. 56–61, 11 1990.

[4] U. Mishra and C. Prakash, “Maulik: An effective stemmer for hindi language.”

[5] A. Ramanathan and D. Rao, “A lightweight stemmer for hindi,” 2003.

[6] M. Bacchin, N. Ferro, and M. Melucci, “A probabilistic model for stemmer generation,” Inf. Process.

Manage., vol. 41, no. 1, pp. 121–137, Jan. 2005. [Online]. Available: http://dx.doi.org/10.

1016/j.ipm.2004.04.006

[7] D. Sharma, “Article: Stemming algorithms: A comparative study and their analysis,” International

Journal of Applied Informa- tion Systems, vol. 4, no. 3, pp. 7–12, September 2012, published by

Foundation of Computer Science, New York, USA.

[8] J. Mayfield and P. Mcnamee, “Single n-gram stemming,” 01 2003, pp. 415–416.

[9] P. Majumder, M. Mitra, S. K. Parui, G. Kole, P. Mitra, and K. Datta, “Yass: Yet another suffix

stripper,” ACM Trans. Inf. Syst., vol. 25, p. 18, 2007.

