
Natarajan Meghanathan et al. (Eds) : CSEIT, CMLA, NeTCOM, CIoT, SPM, NCS, WiMoNe, Graph-hoc - 2019
pp. 73-82, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.91306

UPGRADING CLOUD INFRASTRUCTURE –

CHALLENGES AND SOLUTIONS

Andrei Petrescu and Mihai Carabas

University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest,

Romania

ABSTRACT

In today’s fast-moving world, advances in technology occur at an alarming rate. Keeping up is

difficult, but mandatory, and we must find solutions that will make the process easy. Out of all

these technologies, cloud computing is one that is evolving the quickest. We will explore the

tools which will help us help us reach our goal and talk about the main subject of our paper,

namely keeping up to date with the latest releases in OpenStack private cloud technology. We

will also talk about the results and how we found the best solution for the context in which this

paper lies.

KEYWORDS

cloud, openstack, cinder, nova, keystone, glance, heat

1. INTRODUCTION

The term “cloud computing” has been around since the 1990s, but the first depiction was

observed in a 1977 drawing of a multi-network diagram that described connections between
ARPANET, SATNET and Packet Radio net. It was only in 2006 when the term cloud computing

[1] was used in the context that we know today, and the technology came to reality when Amazon

launched Amazon Web Services and offered S3 (Simple Storage Service) for cloud storage, EC2
(Elastic Compute Cloud) for infrastructure and SQS (Simple Queue Service) for messaging

queues.

The problem arising from the context which we described earlier is that institutions and

companies have problems keeping up with new releases of said software and cannot benefit from
the advances and fixes that they bring. The problem of keeping up with new releases arises from

the fact that development is done in an agile way in Openstack community [9]: there is a new

version once every six months. In the case of the Faculty of Computer Science and Information
Technology, their OpenStack cluster has been stuck to the same release since 2015, when

Openstack Liberty was developed. They did not upgrade the version of Openstack due to the fact

that there was not present any clean methodology to do the upgrade without breaking any

production services. Because there have been 5 releases since Liberty, the cluster suffers from a
lack of features and stability which new features provide [15]. Another problem is that the Liberty

release has reached its EOL (end of life) status, meaning that it will not receive any more updates.

As time passes by, more problems will arise because the difference between the versions will
grow, and it will become even harder to do upgrades without causing loss of data or increased

downtime.

This paper proposes a methodology on how to upgrade Openstack from Liberty to Queens
version without breaking anything in production. Thus, our main objective is to provide a way

74 Computer Science & Information Technology (CS & IT)

to upgrade a cloud infrastructure based on OpenStack framework to the latest release, which at
the time of writing this paper is Queens, from earlier releases.

The paper is structured as follows: Chapter 2 presents an overview of different cloud computing

technologies, chapter 3 shows how to do configuration management which is a trivial step in
managing cloud frameworks. Chapter 4 presents the proposed solution regarding the cloud

infrastructure upgrade and chapter 5 is doing evalution related to the services upgraded in

Openstack.

2. CLOUD COMPUTING TECHNOLOGIES

Cloud computing [6] is a modern concept that enables users to abstract the hardware layer by

using resources in a dynamic way and based on their needs, in a much faster way than using

standard baremetal servers [16]. This concept is based around virtual machines, which can share
physical resources and can be created and destroyed very fast. It all began with the concept of the

GRID architecture [7] that describes the close coupling of computational resources to act like a

single machine [2]. We can refer to a SMP (Symmetric Multiprocessor) as a grid of many
colocated CPUs that do the same work, and to an MPP (Massively Parallel Processor) as a grid of

SMPs interconnected by very fast busses. A cluster is a group of computers that share the same

purpose [10]. A very well-known example is SETI@Home, that comprised of 400000 CPUs

which belonged to computers all over the world, all serving the purpose of finding extra-
terrestrial life [2]. In recent years, the term as-a-service has been coined, which describes the

types of services that the cloud can offer [12]. The three big kinds of services, are as follows:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS).
Another type of service that appeared recently, where focus is shifted on the function that

resources do, and not on the resources themselves is called Function as a Service (FaaS).

OpenStack is an IaaS [1] solution for private clouds, and one of the most popular among them,
occupying second place, behind VMWare vSphere, and has been adopted by more than 1200

companies, including Best Buy, Comcast, PayPal, Walmart and Wells Fargo. It is an open source

project that was initiated in 2010 and is now backed by more than 1300 active contributors.

Figure 1. Flow of data in the OpenStack architecture

Its architecture is based mainly around controller and compute nodes but can also have optional

nodes such as networking and storage nodes [8]. The controller nodes are the control plane of the
cluster by holding the APIs of the services and performs authentication and scheduling of

resources. They can also hold resources that are shared between components all over the cluster

such as the database or the messaging queue [14]. The compute nodes are the ones that hold the

Computer Science & Information Technology (CS & IT) 75

virtual machines and are usually in greater number than controller nodes and also can provide
virtual machine live migration services [13]. The networking nodes are responsible for DHCP

(Dynamic Host Configuration Protocol), VLANs (Virtual Local Area Networks), tunneling,

routing and also for the flow of traffic in the cluster. The storage nodes are assigned the role of

providing block storage volumes and are typically backed by LVM (Logical Volume Manager).
There can also be nodes dedicated to generic object storage and image storage.

In this project we will focus mainly on a handful of important services but will briefly discuss

others too. The most important services that are found in OpenStack are Keystone, Nova,
Neutron, Cinder, Glance, Heat and Horizon.

Much of the current literature which describes the upgrade of OpenStack focuses on upgrading

from release N to release N+1 by doing rolling updates with no downtime. This is not helpful in
the context of the problem that this project will solve, because the difference of releases that will

be covered will be 5, from Liberty to Queens.

3. CONFIGURATION MANAGEMENT

This section is focused on describing the notion of configuration management. The most
important role of configuration management is to provide an easy and fast way to provision

servers by using automation, thus eliminating human error. Before con-figuration management,

the setup of servers was mainly done by hand, or by the use of bash scripts. The main problem
with the old way of configuring servers is that it was error prone and it was not modular. Since

the invention of configuration management, the term Infrastructure as Code has been brought up.

Infrastructure as code enables infrastructure to be treated as application code and be edited,
reviewed and version controlled. System administrators could now track errors in their code and

treat them as bugs, have repositories for their code and have different branches for testing and

production. There are two types of Infrastructure as Code software on the market right now. The

first type focuses on creating infra-structure, i.e. virtual machines, networks, IP allocation and so
on. Examples of soft-ware that are specialized for these kinds of tasks are Terraform and Salt-

cloud and work by accessing the APIs of the cloud platforms that they target. The second kind is

the one that focuses on configuring servers by installing software, managing con- figuration files
and ensuring that certain services are up and running. This is the type of Infrastructure as Code

software that we will focus on and that we have used in my project.

Puppet is a configuration management software written in Ruby that is developed by Puppet Labs
and is one of the first modern CM software, being launched in 2005. Puppet is based around a

master-slave architecture, where the code resides on the master and the agents pull the code and

run it locally.

Puppet code is based around the idea of modules, each serving a different purpose. In turn,

modules are composed of three folders: files, manifests and templates. The files folder is used for

static files, the templates are used for dynamically generated files, for example a template that

generates a MySQL configuration file and the IP that it listens on is determined at run-time, and
finally, there are manifests. Mani-fests are the core of Puppet and contain the actual code. They

are made up of classes, each doing a specific task. Classes can build on other classes and modules

can build on other modules. In OpenStack installation, there is a module named Open- Stack,
which builds on two other modules, OpenStack Controller and OpenStack Compute, and installs

either one depending on the type of computer that is executing the code. OpenStack Controller

builds on Puppet modules that install RabbitMQ, Memcached, Apache, MySQL, Keystone, and
parts of Neutron and Nova that be-long on a controller node. OpenStack

76 Computer Science & Information Technology (CS & IT)

Compute builds on two Puppet modules that install the Neutron OpenVSwitch agent and the
Nova Compute service.

4. PROPOSED SOLUTION AND IMPLEMENTATION DETAILS

As stated in the introduction, the purpose of this project is to upgrade the current version of

OpenStack, which is Liberty, to the latest version, Queens. Because these two versions are 5
releases apart, the two main goals which we will achieve are to execute the upgrade fast and to

preserve all the data. To be able to do this, we pro-pose a solution where there are as few

upgrades between services as possible. Traditional OpenStack upgrades are executed on every
service that the cluster is running. In the case of the cluster that is running on the servers of the

faculty, there are 7 ser-vices, 3 of which also run on different nodes than the controller node.

Cinder runs on two servers, the controller and the storage node, Nova runs on the controller and
each compute node and Neutron runs on the controller, the network node and on each compute

node. Suppose we have 1 storage node, 1 network node and 4 compute nodes. There would be 35

upgrades on the controller, 40 upgrades on the compute nodes, 5 on the storage node and 5 on
the network node. In total, there would be 85 upgrades. The solution that we propose will

introduce downtime, but it will preserve data and it will be relatively fast for getting through 5

releases.

Nodes other than the controller nodes, and the dashboard service, will be upgraded directly from

Liberty to Queens because the data in the database is not modified by them. The data in the

database is modified by the services which run on the controller node and synchronize the

database on each release. Synchronization does two things, it either upgrades schemas or migrates
data. Sometimes columns are renamed, or their type is changed, and not synchronizing the

database would cause the new version of the service to not start at all. Database version are called

migrations levels and they need to be sequential.

By doing upgrades this way, using the same scenario as before, we will have 18 upgrades on the

controller, 1 on the storage node, 1 on the network node and 2 on each compute node, so 22 in

total, compared to 85.

Another proposition is using Puppet for managing the upgrades, as it can speed up the upgrade

process and assure that every execution of the code will produce the same results. Even if we

have narrowed down the updates to 22, the upgrade still needs to be done with great care.
Because of this, the Puppet classes must do the least amount of work and be run manually so as to

make sure that errors have not occurred. There should be classes for each service upgrade and the

code should be copied on each node, so that it can be run using “puppet apply”. The connection

strings in the configuration files must also be changed so that the services can successfully
connect to the database. The user has updated the API endpoints or create new end- points if

necessary, which is the case for Cinder and Nova, because of the Placement API that is

introduced in the Ocata release. Lastly, and most importantly, before synchronizing the database
in Ocata, the user must create a database named “nova_cell0”, map cell0 and create a cell named

“cell1”. This is mandatory in Ocata, as Nova has switched to this new, more scalable, system of

managing compute nodes.

Lastly, the organization of the Puppet modules must be done so they cover all the possible

deployments of OpenStack cluster. Some examples of OpenStack deployments are presented in

Figure 2.

Computer Science & Information Technology (CS & IT) 77

Figure 2. The figure presents three OpenStack deployment examples

In Figure 2a, OpenStack is installed on only two nodes, on what we call a proof of concept
cluster. In Figure 2b, the Network and Storage nodes are separated from the Controller to provide

better resource management. Figure 2c presented a high availability OpenStack deployment

where there is more than one Controller node. Requests to the controller nodes go through a

proxy for the reason of simplifying access and ensuring equal load on the nodes.

The first thing which we needed to create was an automated, repeatable and fast deployment

mechanism in order start from scratch every time we have done a mistake that would cost us

more time to fix than to start over again. To do this, we made use of the existing OpenStack
cluster and created two virtual machines, with 4GB RAM each, which is the minimum

recommended for a proof of concept deployment of OpenStack Queens. Because we needed to

start from scratch every time, we made use of the rebuild feature that OpenStack Nova provides.
This enabled the reinitialization of the instance with a fresh install of CentOS in a short period of

time, so we could start over again and change the approach that we took to creating the up- grade

process. Below, in table 1, the times for rebuilding and bootstrapping the Liberty deployment on
the two nodes is presented.

Table 1. Deployment time benchmark.

Rebuild Time (s) Deployment on controller (s) Deployment on compute (s)

71 601.67 565.11

Information about upgrades between multiple releases is hard to find, so we chose to test the

upgrade of each service from Liberty to Queens. This would often fail, and the main indication

was that the synchronization of the database would fail.

Further, we will describe some interesting database errors that we have come across when

upgrading Nova and the usual errors which appears when trying to upgrade the database schema

of other services between releases which are too far apart. We will also present some packaging

errors and some bugs that we have found in the OpenStack code.

OpenStack Mitaka introduces an important change in the Nova database, more specifically, in the

compute_nodes table. There is one column that is added, named uuid, and because of this, it is

important to re-register the compute nodes after upgrading. Figure 3 is outputted from a 2 select
operations done on the compute_nodes table and describe how the uuid entry is filled after a

compute node reconnects to the Nova API.

Figure 3. Difference in output before and after the node registered

78 Computer Science & Information Technology (CS & IT)

If this step is skipped, when trying to upgrade to the Newton release, the upgrade script will
output an error message, as shown in Figure 4, and will not continue until all the entries in the

table with the value of NULL in the uuid column will be deleted.

Figure 4. Error outputed if nodes are not re-registered

When trying to upgrade to Ocata, it is also important to go through the Newton release, because

there are database entries which need to be migrated into the nova_api database. Figure 5 shows
the error message that the upgrade script outputs when data is not migrated.

Figure 5. Ocata - migrations were not done beforehand in Newton

An example of the data migration talked about earlier is presented in Figure 6. It shows the output
after the migration is done because, before that, the table was empty.

Figure 6. Select operation after data has been migrated in the Newton release

Another important aspect when taking into consideration the upgrade to Ocata, is to create the
nova_cell0 and the cell mappings, as they are mandatory from that release on. If these steps are

not done before the synchronization database, the upgrade script will out an error as show as in

Figure 7.

Figure 7. Error of the Ocata upgrade - cell mapping was not done beforehand

Other common errors are related to packages which the package manager does not upgrade

automatically, and the services either fail to start or the database migration fails because of them.
Below we describe one of them and the process that we went through to fix it and others which

were related.

When trying to migrate Cinder from Liberty to Newton, because the package manager sometimes

does not update all dependencies. This error can be resolved by upgrading the

python2-os-brick package. Other errors like these can be resolved the same. We looked at

packages that were imported by the Python module and searched what version is installed by
using the command “yum list installed” and then piping the output to grep.

Upgrading services too far will cause errors to be outputted by the management script. One

example is shown in Figure 8 and checking the current migration level in the database is shown in
Figure 9.

Figure 8. Error output if Heat is upgraded too far

Computer Science & Information Technology (CS & IT) 79

Figure 9. Finding the current migration level of the database

The most interesting kind of errors were those where all the imported packages in the Python

modules were up to date and changes in the code were needed. These occurred when upgrading

Cinder to the Newton release or Nova to the Ocata release.

These errors were caused by small bugs in the api.py module from the “sqlalchemy“ database

upgrade packages. Because they were looking for a profiler group in the configuration files of

both services, and because those did not exist, the synchronization of the database would fail.
Fixing the errors was done by adding a check for profiler attribute in the CONF object.

Each step of the process is done automatically by the classes from the Puppet module that we

have developed. To satisfy the constraint of modularity, where the kind of deployment does not

matter, we have created 4 types of classes, those with “api” in the name are applied to the

controller nodes, those with “comp” in the name are applied to the compute nodes, those with
“net” in the name are applied to network nodes and those with “store” in the node are applied to

the storage nodes. It does not matter which type is upgraded first, but it is important that all the

types of nodes are running OpenStack Queens when starting all the services. The recommended
order of upgrading for the controller nodes is presented in Figure 10. The other types of nodes can

be safely upgraded directly from Liberty to Queens because they do not store data anywhere.

Figure 10. The figure presents the correct order of applying the classes

5. CLOUD INFRASTRUCTURE UPGRADE EVALUTION

In this section we will describe the tests which we have created to benchmark OpenStack after it

was upgraded to Queens. We will focus on functional tests which will demonstrate that the cluster

works as expected. To verify the functionality of the newly upgraded cluster, we decided to use 3
types of operations on 2 categories of resources, namely add, delete and edit on new and old

resources. Table 2 shows what resources have been tested and the results.

80 Computer Science & Information Technology (CS & IT)

Table 2. This table enumerates the types of test that we performed and the results

Name Type Add Delete Edit

Instances Old - Yes Yes

 New Yes Yes Yes

Images Old - Yes Yes

 New Yes Yes Yes

Key Pairs Old - Yes Yes

 New Yes Yes Yes

Networks Old - Yes Yes

 New Yes Yes Yes

Routers Old - Yes Yes

 New Yes Yes Yes

Security Groups Old - Yes Yes

 New Yes Yes Yes

Projects Old - Yes Yes

 New Yes Yes Yes

Users Old - Yes Yes

 New Yes Yes Yes

Roles Old - Yes Yes

 New Yes Yes Yes

6. CONCLUSIONS

In the beginning of the paper we have presented a brief introduction into the notion of cloud
computing and have discussed about the context in which the subject of the paper lies, the

problems which arise in this context, the objectives that the paper will meet, the proposed

solution to meet these objectives, and an overview of the structure and the sections. The

motivating factors which led us to choose this project were mainly of technical nature and had to
do with advances which would benefit the students of the faculty in area such as artificial

intelligence, machine learning and container orchestration. Moreover, there were personal reasons

too that related to learning these new technologies which were used and providing an open source
solution that the community can build upon and add new features.

To give an overview of the state of the art we provided a detailed overview of the technologies

which form the subject of this paper. The first major technology discussed was cloud computing
and how it came to be, as well as the types of services it provides. There are three important types

of services which are discussed: Infrastructure as a Service, Platform as a Service and Software as

Computer Science & Information Technology (CS & IT) 81

a Service. We discussed the main type of cloud provider for private and public clouds,
OpenStack, which is the subject of this paper. We presented its architecture and the types of

services that it is composed of, like the image service, the compute service, the block storage

service, the identity service and the networking service. The second technology we have talked

about is configuration management (Puppet) and how it is used to create infrastructure as
code.We discussed about our proposed solution and the objectives that it should meet, namely

that it should be faster than normal upgrades, simple to use, and most important of all, keep the

data intact. It also presents in detail on what services should be upgraded to what release and how
it should suite any type of OpenStack deployment. The last section discusses benchmarking by

performing functional after the cluster was upgraded to ensure that the data was not corrupted and

that old resources were still usable.

In conclusion, OpenStack will not stop here, and we will see new releases every year in the

future, maybe at an even faster pace than today. To keep up with the changes in technology we

decided to make our project available as open source on GitHub and will write blog posts on how
to use it on our faculty’s blog.

ACKNOWLEDGEMENT

The work has been funded by the Operational Programme Human Capital of the Ministry of

European Funds through the Financial Agreement 51675/09.07.2019, SMIS code 125125.

REFERENCES

[1] Aniruddha S. Rumale, D.N.Chaudhari , „Cloud Computing: Infrastructure as a Service”, International

Journal of Inventive Engineering and Sciences, vol. 1, no. 3, pp 1-7, 2013

[2] Swarnpreet Singh and Tarun Jangwal , „Cost breakdown of Public Cloud Computing and Private

Cloud Computing and Security Issues”, International Journal of Computer Sci-ence & Information

Technology, vol. 4, no. 2, pp 17-31, 2012

[3] Sumit Goyal, „Public vs Private vs Hybrid vs Community - Cloud Computing: A Criti-cal Review”,

I.J. Computer Network and Information Security, pp 20-29, 2014

[4] Borja Sotomayor, Ian Foster, Rubén S. Montero and Ignacio M. Llorente, „Virtual Infra-structure

Management in Private and Hybrid Clouds”, 2009. [Online]. Available:

https://www.researchgate.net/profile/Ian_Foster/publication/224587421_Virtual_Infrastructure_

Management_in_Private_and_Hybrid_Clouds/links/00b49519a475a2ad95000000/Virtual-
Infrastructure-Management-in-Private-and-Hybrid-Clouds.pdf

[5] Tiago Rosado, Jorge Bernardino, „An Overview of Openstack Architecture”, IDEAS '14 Proceedings

of the 18th International Database Engineering & Applications Symposium, pp 366-367, 2014

[6] JoSEP, A.D., KAtz, R., KonWinSKi, A., Gunho, L.E.E., PAttERSon, D. and RABKin, A., 2010. A

view of cloud computing. Communications of the ACM, 53(4).

[7] Foster, I., Zhao, Y., Raicu, I. and Lu, S., 2008. Cloud computing and grid computing 360- degree

compared. arXiv preprint arXiv:0901.0131.

[8] Sefraoui, O., Aissaoui, M. and Eleuldj, M., 2012. OpenStack: toward an open-source solution for

cloud computing. International Journal of Computer Applications, 55(3), pp.38-42.

[9] Kumar, R., Gupta, N., Charu, S., Jain, K. and Jangir, S.K., 2014. Open source solution for cloud

computing platform using OpenStack. International Journal of Computer Science and Mobile

Computing, 3(5), pp.89-98.

82 Computer Science & Information Technology (CS & IT)

[10] Yadav, S., 2013. Comparative study on open source software for cloud computing platform:

Eucalyptus, openstack and opennebula. International Journal Of Engineering And Science, 3(10),

pp.51-54.

[11] Corradi, A., Fanelli, M. and Foschini, L., 2014. VM consolidation: A real case based on OpenStack

Cloud. Future Generation Computer Systems, 32, pp.118-127.

[12] Merlino, G., Dautov, R., Distefano, S. and Bruneo, D., 2019. Enabling Workload Engineering in

Edge, Fog, and Cloud Computing through OpenStack-based Middleware. ACM Transactions on

Internet Technology (TOIT), 19(2), p.28.

[13] Hao, J., Ye, K. and Xu, C.Z., 2019, June. Live Migration of Virtual Machines in OpenStack: A
Perspective from Reliability Evaluation. In International Conference on Cloud Computing (pp. 99-

113). Springer, Cham.

[14] Balmakhtar, M., Persson, C.J. and Rajagopal, A., Sprint Communications Co LP, 2019. Secure cloud

computing framework. U.S. Patent Application 10/243,959.

[15] Cotroneo, D., De Simone, L., Iannillo, A.K., Natella, R., Rosiello, S. and Bidokhti, N., 2019.

Analyzing the Context of Bug-Fixing Changes in the OpenStack Cloud Computing Platform. arXiv

preprint arXiv:1908.11297.

[16] Moges, F.F. and Abebe, S.L., 2019. Energy-aware VM placement algorithms for the OpenStack Neat

consolidation framework. Journal of Cloud Computing, 8(1), p.2.

