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ABSTRACT 
 
We present a methodology for automatic generation of football match “highlights”, relying on 

the commentator voices and leveraging two multimodal NNs. 
 

The fist model (M1) classifies sequences and provides a representation of such sequences to be 

elaborated by the second model. M2 exploits M1 to decode unbound streams of information, 
generating the final set of scenes to put into the match summary. 
 

Raw audio, along with transcriptions generated by an ASR, extracted from 369 football matches 

provided the source for feature extraction. We employed such features to train M1 and M2; for 

M1, the feature streams were split in sequences at (nearly) sentence granularity, while for M2 
the entire streams were employed. The final results were promising, especially if adopted in a 

semi-automatic, real-world video pipeline. 
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1. INTRODUCTION 
 

There are many motivations behind this project. First of all, living in a modern era were people 

have such easy access to information everywhere at any time has made them willing to be 

constantly and immediately updated. In this sense, sport fans have become more and more 

hungry; this can be easily seen by the amount of web sites updated with the results of each match 
in real time, the streaming services to watch the events, and the video sharing platforms. 

 

However, it would require a huge amount of time to watch all the events, even for a single sport. 
Sport highlights, which are becoming more and more popular and heavily used by broadcasting 

companies, provide a recap of the most exciting parts of a sport event. It is a convenient way for 

knowing what happened in, for example, a round of your preferred football championship. 
 

So far, such highlights are created by manually edit the raw video recordings, but we think there 
is room for improving the current video pipeline, by means of a tool that speeds up the process. In 

particular, we envision a semi-automatic pipeline where a tool generates a first version of the 

highlights, while the human editor only needs to refine them. 
 

The aim of SFERAnet (Selection of Football Events by Recorded Audio) is to train a Neural 
Network (NN) able to identify top moments inside a football match through the analysis of the 

commentators’ voices. In practice, the idea is to detect the segments where the speakers show 

excitement.  
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We designed two models: one able to perform sequence classification and one, encapsulating the 

former, able to deal with the entire event stream and giving a continuous output on the 

importance of the sequences of the event. Starting from that importance measure it would be 
possible to extract what should belong to the final event highlights. 

 

We didn't make use of video-based features, like scoreboard graphics or sophisticated scene 
recognition, as the former depends on the broadcasting network and the latter requires a huge 

corpus. 

 
SFERAnet is thought to be used inside a semi-automatic video pipeline, where a human editor 

refines the video generated by the tool. 

 

2. RELATED WORK 
 
Our work is based on “excitement recognition” through speech analysis, which is conceptually 

similar to the common task of emotion recognition. Moreover, we also leveraged literature on 

automatic detection of sport highlights. In the following we present some relevant papers on both 

topics. 
 

2.1. Automatic Emotion Classification from Speech 
 

Focusing our analysis to NNs, we found that the approach evolved considerably through time, 

especially in the last few years. End-to-end NN solutions were first brought by a work [1] 

proposing a simple densely-connected NN with three hidden layers to transform acoustic features 
–computed from utterances sub-splits– into sequence of probability distributions over the target 

emotion; then, probabilities were aggregated into utterance-level features using simple statistics 

(such as maximum, minimum, average etc.) that an Extreme Learning Machine (ELM) model 
used to classify the utterances. 

 

A following work [2] proposed an improvement replacing densely-connected layers with 
recurrent ones; in particular, they used Long Short-Term Memory (LSTM) layers. However, they 

continued using local-probability aggregation into a global features vector, and Extreme Learning 

Machines (ELM) on top of them, to perform the classification task, as in [1]. 

 
The use of simple and naïve aggregation functions and ELMs resulted not only in a drawback for 

these two approaches, but also in criticism; another work [3] aimed at getting rid of the 

drawbacks discussed above by applying fully end-to-end pipeline without handcrafted parts in the 
middle. The proposed solution consisted, again, in an LSTM architecture with Connectionist 

Temporal Classification (CTC) approach [4] to assess the class, which proved to be useful also to 

deal with the different lengths of the utterances. 
 

The last work we cite [5] used both acoustic and linguistic features (i.e., features coming from the 

textual transcription of the speech). The author compared three different models: audio-only, text-

only, and mixed. This work, which reported an overall accuracy of 74.3% for the mixed model on 
the IEMOCAP corpus [6], clearly showed that a multimodal approach provides the best accuracy. 

For this reason, we decided to follow the same approach. 

 

2.2. Identification of Sport Event Highlights from Speech 
 

A first attempt proposed a system for automatic detection of baseball highlights [7], based solely 
on audio analysis of the commentator. The hypothesis that guided this work was that high 

correlation exists between speaker’s voice excitement and relevant events. However, since not all 

events could count on the presence of speech into the background, they also considered a 
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baseball-specific feature: the presence of a baseball hit in the audio track. So, authors considered 

two distinct SVM models: identification of excited speech and identification of baseball hit 

candidates. Then the results from these two models were fused to provide a final estimation of the 
probability that the analysed segment was exciting. Eventually they reported an overall accuracy 

of 75%. 

 
Another work [9] proposed an audio-based model for tennis, combining long- and short-term 

features. Authors presented a cascaded architecture composed of two levels. The first one, 

worked only on short-term features using a SVM with Radial Basis Function (RBF) kernel; on 
top of them a Bayesian inference model combined the results from both and generated the 

prediction for the considered window. The second level took both long-term features and class 

predictions from the first one. For both audio classifiers at the base of the model, only Mel 

Frequency Cepstral Coefficients (MFCC) vectors were considered as input, while the output 
classes were: silence, applause, and speech. Authors reported precision of 98% and recall of 96%. 

 

In [10], instead, authors proposed a system architecture based on Piecewise Gaussian Modelling 
(PGM) and NNs to detects highlights, but still working only on the audio signal. In this work they 

tried to detach from the energy-based features, like in [7], by employing the Mel Frequency 

Spectral Coefficient (MFSC) representation of the audio signal as a short-term feature. The 

resulting feature vectors are combined through PGM to achieve a long-term description of non-
overlapping, fixed-size frames of the Mel Spectrogram that are classified by the NN as “action” 

and “no-action” (i.e. the labels they considered for the scenes into the highlights). Authors 

underlined two key points about their system: it only needs a few seconds of audio samples to 
build the classifier, and the architecture, being based only on audio features, can be effectively 

employed in different sports by providing results for tennis and football. In fact, they achieved a 

precision of 87.2% and a recall of 97.6% in detection of highlights for tennis, and an average 
precision of 86.7 % in the three football matches used for tests.  

 

2.3. Identification of Sport Event Highlights from Speech and Video 
 

One of the first systems leveraging both audio and video clues was presented in [8], where 

authors proposed an audio-visual framework for sport event detection. In their work, authors 
pointed out some useful information, in fact they noticed how sport-specific approaches typically 

yielded successful results within the targeted domain because of the dramatic variances in 

commentary styles for different sports. However, their intention was to build a general model able 

to work with different sports, and this is why their data set was composed of events from football, 
rugby, and Gaelic football. The solution they proposed was based on a SVM classifier able to 

separate eventful and non-eventful sequences; for this goal the SVM took as input an aggregated 

features vector composed by: crowd image detection, speech band audio activity, on screen 
graphics tracking, motion activity measures, and field line orientation. Authors reported in the 

case of Gaelic football an event retrieval ratio of 97%, this was the best achieved scored among 

their classifiers 

 
Other relevant results in this field came from a work [11], where authors focused on visual 

features. The proposed system was composed of two main blocks: an unsupervised framework for 

event decomposition based on Hidden Markov Model (HMM), which performs diarisation of the 
clips (i.e. segmentation and clustering) iteratively, and a subsystem for detection of highlights, 

which takes out the classification task on the events to discriminate between highlight and non-

highlight, based on a Linear SVM. The system worked with “easy-to-extract,  low-level” visual 
features: the Colour Histogram (CH) and the Histogram of Oriented Gradients (HOG), which 

were projected to a lower dimensional space through Principal Component Analysis (PCA) in 

order to avoid the curse of dimensionality. The authors trained and tested the system using video 

clips from cricket matches (they were provided with 14000 clips that they split in half for this 



104                                   Computer Science & Information Technology (CS & IT) 

purpose) and explored the results when features were considered singularly and together, 

achieving an equal error rate of 12,1% when using both.  

 
More recent results [12] proposed a system for detection of rugby highlights, based on detection 

of acoustic events. In particular they built a multi-stage classifier, that considered two acoustic 

events to perform the classification task: commentator’s excited speech and referee’s whistle. In 
the proposed model a first-stage classification is applied to detect from the input audio features, 

then excited speech detection or whistle detection are performed; at this point, time stamps of 

positive classification from the second stage are stored in a buffer that is later scanned to detect if 
a minimum number of relevant frames are present in a fixed temporal window. Then the window 

is extended to cover all the relevant events for that particular scene. All the three classifiers were 

built using GMM, and the selected audio features were MFCC, together with their first order 

derivatives; in this case the reported precision was 93.4% and the recall 97.1%. 
 

The following year, with the spread of eSports championships, a video-based highlight detector 

for Multiplayer Online Battle Arena (MOBA) games was proposed [13]. The author proposed 
various solutions for frame-wise classifiers based on CNN and RNN, considering both single and 

cascaded architectures, and different shapes for the output; in fact, the data set was tagged 

considering four different levels of highlight, starting from non-highlight up to maximum 

relevance. The peak performances were achieved, mostly, considering only a binary output: one 
of the considered games reported a precision of 83.2% and a recall of 86.3%. A point to stress out 

about this model is that it was designed to work with real-time video streams. 

 
Finally, we mention H5 [14], a multimodal system for extraction of highlights from sport videos, 

based on sport-independent excitement measures (although in the paper only Tennis is analysed 

as a case study). The H5 system employed excitement markers, coming from different modalities, 
to score the scenes of the match; in particular, authors distinguished between audio- and text-

based markers, visual markers, and game analytics. Audio-based markers were extracted through 

a SVM built atop deep features (coming from a Deep Convolutional Neural Network used for 

audio classification purposes) to classify crowd cheer and commentator tone excitement; 
moreover, the commentator tone was complemented by a text-based marker that matched the 

transcription against a dictionary of expression indicative of excitement. Visual markers, instead, 

were computed through two classifiers, one for player reaction (scenes were a player was 
celebrating) and the other for facial expression (categorized in aggressive, tense, smiling, and 

neutral), both obtained fine-tuning pre-trained Deep Convolutional Neural Networks for image 

classification. Game analytics, instead, referred to Tennis specific information; in fact, since not 

every point in the match has equal relevance, a side court statistician provided information 
distinguishing between different points (e.g. volley winner, smash winner, match point, etc.). The 

sub-models composing H5 were trained separately on manually tagged audio and video clips to 

extract the markers, then a separate fusion model was trained to classify the proposed clips from 
the markers and discriminate the highlights. To test H5 a group of users was asked to rank from 0 

to 5 their interest in randomly selected clips from those proposed by H5, scores was averaged to 

compute the precision of the system that resulted to be 92.68%. 
 

2.4. Comments 
 
The results obtained by the presented works are really good; nevertheless, in many cases such 

systems took advantage of particular visual features, for example enabling scoreboard graphics 

tracking as in [8], which represented a strong aid (but made the system dependent on the 
broadcast network-specific graphics). In other cases, like [13], [14], that leverage DCNN to 

perform the analysis of the visual input, a higher computational capacity is required, not to 

mention the necessity of a large amount of data. In [14] authors tried to cope with this problem by 

fine tuning pre-trained models, but the demand of computation power remained high since the 
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transferred models were still huge and they still needed to build a personalized data set “by hand” 

to extract their markers. 

 
Keeping on with [14], there are two other key problems to point out: they were given access to 

game analytics provided by side court statistician that provided information in real time about the 

scored points (such information is hardly available, especially considering different sports) and 
they had the financial capabilities to pay a group of users to score their highlights. 

 

Moreover, as in the case of [7], metrics were computed “by hand”, in the sense that a human 
operator compared the resulting highlights on a small test set with the expected output, to 

circumvent errors due to misaligned highlights. Our corpus was composed of thousands of 

samples, making it impossible to follow the same approach. Therefore, we followed the usual 

cross-validation approach, without human intervention. 
 

Another particular case is that of [9], [10], where the crowd remains silent for the whole game, 

except to applaud immediately after a point is scored; so, highlights were basically located by the 
occurrence of applause. Using such a sport-specific clue wasn’t possible in our case. Actually, in 

[10] an alternative for football was proposed: take advantage of crowd’s noise together with 

commentator’s excitement. This choice resulted, in the authors’ own words, in an approach 

“extremely sensitive to the spectators’ and commentators’ behaviours” for both of the analysed 
sports. Moreover, in our dataset the recordings of the crowd weren’t provided as a separated 

audio channel, and it was only possible to hear them in the background of the commentators’ 

voices, making it very difficult to leverage such information. 
 

In [11], instead, two other problems were introduced. The former was that highlights were given a 

fixed definition (according to cricket terminology, the highlights were defined as video clips 
corresponding to either a 4-run, a 6-run, or a wicket) so what they actually produced was a system 

capable of identifying these exact events and nothing else; on the contrary, we wanted to avoid to 

impose a fixed rule to define the highlights. The latter was that even if the proposed system 

carried out event discovery within a clip, all the information from the events within  that same 
clip were employed for classification, so the system still relied on previously cut clips of fixed 

length; instead, we wanted to provide a system capable of finding also the cut points of the scenes 

to put into the highlights. 
 

Finally, authors of [12] employed a small data set, which was tagged manually to identify as 

“important” everything that they expected to trigger their system. This led, indeed, to good 

results, but they were a consequence of this ad-hoc choice. Differently, our corpus was based on 
highlights generated by professional video editors. 

 

Summing up, the system we are presenting leverages only speech and textual features from the 
match commentary, which can be considered as sport-genre independent; in this way, our system 

can be easily ported to other sports. Moreover, as shown in previous sections, various attempts in 

the past years proved the presence of a relationship between the excitement in the speaker voice 
and the importance of the related scene; this further convinced us to follow the same approach 

and leverage audio features. Finally, the choice of such features results in a smaller model, easier 

to train and faster to run.  
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3. DATA SET 
 

This section presents all the information about the data employed to train the NNs. 

 

3.1. Provided Data 
 

Data come from 369 football matches of the 2017-18 Italian “Serie A” championship; each video 
recording come with the corresponding hand-crafted highlights. Each match highlights were 

composed of about 20 short sequences (we call them scenes); see Figure 1. As the commentators’ 

audio tracks contained the chattering and interviews before and after the match, each video was 
manually searched for finding the actual starts and end of the two halves of the match. 

 

 
 

Figure 1.  Match video recording and its “highlights” scenes.  

 

3.2. Label Generation 
 

No proper tagging of the original data was provided. To deal with this problem, we realized a tool 
based on perceptual hashing of images. In practice, given the video of a match and the 

corresponding highlights, they were both down-sampled to a grey-scale, 160 × 90, 10 fps streams. 

Subsequently the pHash algorithm [15] was applied to each frame. 
 

Then, the hashes of consecutive frames belonging to the same scene in the highlights were 

grouped together in temporal order. In this way not only the entire video scene from the 
highlights could be searched at once, but the results come out to be more robust since the 

similarity score was averaged on the entire scene. To split the highlights into scenes the similarity 

score between each frame and its successive was computed; in this way a drop under a fixed 

threshold could identify a scene change. 
 

Each group of hashes, representing a scene, was searched computing the average similarity score 

against a sliding window, of the same length of the currently searched hash group, scanning the 
whole match. The starting frame of the window corresponding to the highest similarity score was 

retrieved. Once the time markers for each scene had been identified, close segments were joined; 

this step was necessary because sometimes either the highest similarity score didn’t lead to a 
perfect alignment or a part of the scene had been cut away during the editing of the summary 

video. 

 

At the end, we divided and tagged the match segments:  
 

Relevant: segments showing scenes used to compose the highlights. 
 

Non-relevant: here are all discarded segments of the match. 
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3.3. Corpus Internal Structure 
 
The corpus is composed of audio recordings of the match commentaries and, through an 

Automatic Speech Recognition (ASR), the corresponding transcriptions. Using the Google 

Speech-to-Text API permitted to obtain word-level timing alignment and speaker differentiation. 
 

Each match contained about 2h of data but only the in-game spoken parts were considered. In this 

way the total amount of recordings resulted to be 640h, divided in 13h of Relevant segments and 

627h of Non-relevant segments. Because of this unbalance, samples from the Non-relevant class 
were randomly selected in order to obtain a balanced data set so that the NN won’t be badly 

influenced; Moreover, the “subsampling” was performed file-wise so that from each match the 

same amount of segments per class could be used. 
 

In this case the term sample refers to the constitutive element of the data set: a scene containing 

audio and textual data, aligned, and coupled together. To cut the Non-relevant segments we 

employed a heuristic algorithm that grouped consecutive spoken parts, identified through Voice 
Activity Detection (VAD), in clusters of, approximatively, the same length of the Relevant ones. 

 

These sentences were grouped into the development set, composed of segments coming from the 
first 50 matches, which helped to identify possible network models and hyper-parameters, and the 

actual data set, which used all the 369 matches segments to train, validate and test the most 

promising configurations and find the best one. 
 

The content of the data sets, in terms of number of samples and duration, is reported in Table 1. 

 
Table 1.  Corpus information. 

 

 
 

The corpus is composed by the voice of 20 different male speakers. Having a wide, different 
speaker presence in the data set is critically significant since it helps the network to avoid being 

dependent on the specific speaker’s behaviour, especially for speaker-dependent features. 

 

4. DATA PREPROCESSING AND FEATURE EXTRACTION 
 
The raw audio signals sampled at 48 kHz were the starting point from which the input features 

were extracted to feed the NN-based models, this extraction process required some critical 

preprocessing steps that consisted, mostly, in noise suppression and downsampling; moreover in 
many cases, depending on the feature typology, some additional post-processing, like outlier 

deletion and filtering, was also required. 

 

4.1.Audio Preprocessing 
 

In the commentators’ audio files, it was possible to hear the crowd cheering in the background. 
Since this noise was frequently overlapping with the voice signal to analyse, the RNNoise tool 

[16] was employed to get rid of it. 
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To reduce the amount on information to be processed, the audio tracks were down-sampled at 

16kHz and the features were computed with a 20 ms wide sliding window, with a hop size of 10 

ms, obtaining 100 samples per second. 
 

Then, the preprocessing workflow executed VAD and speaker diarisation, whose results were 

later used for the computation of the features. In particular, results from the latter were employed 
to reach speaker independence. Anyhow, their use will be better explained in the following 

section. 

 

4.2. Selected Features 
 

Even though it’s a common practice to leave DNNs learn the features by themselves, this 
approach may lead to sub-optimal solutions and incredibly complex models with subsequent 

waste of computational resources, as suggested by the authors of RNNoise. For these reasons, the 

classifiers were trained on a set of carefully selected, pre-computed features that already proved 

their relevance. In particular, the features we used can be classified into three groups [3]: 
 

Prosodic. These features describe voice intonation, rhythm, and stress; we used: pitch, intensity, 

harmonicity, jitter, shimmer (along with their first- and second-order derivatives), chroma, 
silences (pauses), short-term energy with its entropy, and syllabic rhythm. 

 

Acoustic. These features describe the spectral properties of voice; we used: MFCC, Mel bands 
decomposition, centroid, spread, entropy, flux, roll-off, and zero-crossing rate. 

 

Linguistic. These features describe the semantic information contained in speech; we used word 

embeddings. 
 

Prosodic and acoustic features were selected because of their correlation with perceptual aspects 

of the signal [17], [18], for example the pitch expresses the sentence intonation. 
 

Apart from these features, another one represented the relative time position of the analysed 

segment with respect to the entire recording (the very beginning and the end of the match are very 
likely to be put into the highlights). 

 

All the computed features were post-processed before being fed to the NNs, in particular we 

adopted a speaker-wise approach in order to obtain speaker-independent features. The post-
processing steps were: standardisation, making the values of each feature in the data have zero-

mean and unit-variance, outlier trimming, silent segments zeroing, and signal smoothing. 

 

5. MODELS 
 

Our model is actually composed of two sub-models: 
 

 M1: for scene classification. 

 M2, incorporating M1: for stream decoding, producing a continuous classification output. 
 

The reason behind this choice stands in the structure of the former model as well as in the 
experiences coming from other projects. In fact, the main processing element of M1 stands in the 

BLSTM layer, that provides a powerful tool to analyse a scene by scanning it from start to end 

and vice-versa at the same time. However, as a drawback, having to deal with too long scenes, as 

in the case of an entire football match audio features stream, will most certainly produce poor 
results since the portions analysed by the forward and the backward LSTMs will be too 

uncorrelated. 
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The proposed solution for this particular problem is to train M1 separately such that it’s able to 

classify a single scene of known length; after that, M2 can be trained applying transfer learning 

from M1, that will be used to provide a useful windowed representation. To be more detailed, the 
second model will perform continuous stream labelling from feature windows computed from the 

transferred part of the first classifier and will use a mono-directional recurrent layer to add the 

context from the previously analysed windows. 
 

5.1. M1: Multimodal Scene Classifier 
 
M1 is designed to classify a scene of variable but known length (see Figure 2); it was trained on 

short video scenes, namely less than a minute, however it can ideally work with unbounded ones 

even though performances are not ensured to be the same. 
 

 
 

Figure 2.  M1: scene classification. 

 
As shown by Figure 3, this classifier takes the raw features of a scene and feeds them to a one-

dimensional, time-distributed convolutional layer with dilation, immediately followed by a one-

dimensional, time-distributed, max-pooling layer. Then, the intermediate results from the input 
layers are passed to a BLSTM provided with an internal attention mechanism; the BLSTM layer 

produces a continuous output that is weighted by the output of the attention mechanism. These 

weighted values are then summed up along the time to have a compressed representation of the 

entire scene, and the sum is scaled using a logarithmic function. The resulting intermediate 
representation of the entire scene is then passed to two subsequent fully-connected layers before 

arriving to the softmax layer with two output that represents the probabilities to belong to one of 

the two classes. 
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Figure 3.  M1: scene classifier DNN.  

 
 

5.2. M2: Multimodal Stream Decoder 
 
M2 is designed to classify a scene of variable is designed to decode an entire stream providing a 

continuous classification output; it was trained on streams corresponding to entire matches. 

 
As shown by Figure 4, this classifier takes the raw features stream as input, then slices it using a 

fixed-size sliding window of 7.5s with a 3.75s hop. Windows are fed in sequence to an internal 

time-distributed model, realised using M1, which generates an internal representation of the entire 
window content. These intermediate representations of the widows are then passed in sequence to 

an LSTM that will provide some sort of “context” among successive windows.  

 

The continuous output of the LSTM is further elaborated by a time-distributed, fully-connected 
layer before the time-distributed softmax layer accomplishes the decoding task. This last layer 

associates the probability to belong to one of the two classes to each of the windows generated at 

the beginning of the pipeline. We then applied a threshold of 0.5 to identify the start and end 
points in time of the Relevant segments. 

 

 
 

Figure 4.  M2: stream decoding with sliding window.  



Computer Science & Information Technology (CS & IT)                                     111 

 

Figure 5 shows the structure of the M2 classifier. Notice that the size of the sliding window is a 

parameter to be decided at “run time”, is not part of the definition of M2, and does not constraint 

in any way the length of the retrieved scenes. 
 

 
 

Figure 5.  M2: stream decoder DNN.  

 

As a final remark, our approach shows interesting features: 
 

 It won’t be necessary to train the entire network of M2 from scratch; in fact, thanks to 
transfer learning, only the top portion of the network requires training. 

 

 Size and hop of the sliding window fed to M2 can be modified, within certain limits, 

without having to train the M1 network from scratch, this is due to that fact that the 

BLSTM layer in M1 is designed to deal with and trained on variable length scenes. 
 

5.3. SFERAnet 
 

Figure 6 shows SFERAnet, inside a hypothetical semi-automatic video pipeline for generation of 
highlights. The pre-processed speech audio is passed to an ASR and enters, along with the 

transcription the SFERAnet models. The result is a set of cut points (i.e., time instants where the 

video stream should be cut to extract the relevant scenes). Then, some video editing tool (for 
example, FFmpeg) could be used to generate the proposed highlights. Finally, a human expert 

composes the final version by means of her/his usual video editing tools. 

 
The proposed solution for this particular problem is to train M1 separately such that it’s able to 

classify a single scene of known length; after that, M2 can be trained applying transfer learning 

from M1, that will be used to provide a useful windowed representation. To be more detailed, the 

second model will perform continuous stream labelling from feature windows computed from the 
transferred part of the first classifier and will use a mono-directional recurrent layer to add the 

context from the previously analysed windows. 
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Figure 6.  The SFERAnet semi-automatic pipeline.  

 

6. TRAINING AND VALIDATION 
 

This section will deal with the description of the training and validation process to find the best 
architecture. 

 

6.1. Approach 
The procedure to find the best model followed the same steps for both models. M1 was trained 

and validated on the samples of the data set we described in Table 1; for M2, instead, we 

considered as a sample the entire feature stream coming from a whole match. 
 

The first step consisted in a grid search vowed to find the best model structure; at this stage the 

objective was to obtain the main structure of the model, without refining it, using a development 
set obtained by random-subsampling the data set. 

 

The second step consisted in the refinement of the hyper-parameters of the best model found 
through the grid search, again on the development set. Differently from the previous stage, in this 

case there was a tree search (to lower time complexity, although at the cost of finding a sub-

optimal model). 

 
In the last step, the most promising models were compared using the results from the training on 

the entire data set. 

 
In each of the presented steps, the evaluation of the model was obtained through a 10-fold cross-

validation; in this way a more robust estimate of the performances could be obtained. In the train 

phase relative to each fold, a further split of the train set was created to be used as a validation set. 
 

Training was performed using categorical cross-entropy as loss function, RMSProp as optimiser, 

and adopting the early stopping strategy. As performance metrics we computed Accuracy (using 

it also as a reference for early stopping), Precision, Recall, F1, Specificity, and AUC. 
 

To deal with the class unbalance inside the data set, we considered two different approaches, 

depending on the model. For what concerns M1, we randomly sub-sampled the class of Non-
relevant to get an equal number of scenes. For M2, instead, loss and Accuracy were weighted 

differently depending on the class, so that an error on the Relevant segments would be 60 times 

that of the Non-relevant class; the choice of that weight was done in order to reflect the available 

hours of recordings of each class inside the corpus. 
 

 

Preprocessing

ASR

SFERAnet

Relevant scenes borders (time)

V
id

e
o

 c
u
t 

&
 p

a
s
te

Final editing

Final highlights



Computer Science & Information Technology (CS & IT)                                     113 

 

6.2. Results 
 
Table 2 shows quantitative values for both models. For what concerns M1, considering the best 

model, and in particular the results from the single best fold, it showed a high Precision. This 

means that M1 is particularly good in discarding the Non-relevant scenes, making it suitable for a 
real-world video pipeline. Moreover, it is important to stress how, with a balanced data set, 

Accuracy, F1 and AUC –which are used as global measure considering all the classes– show 

good values. 

 
Table 2.  Best results achieved by M1 and M2. The reported results are these of the models with the highest 

cross-validation (weighted) accuracy score. 

 

 
 

M2, instead, showed way lower scores with respect to M1. However, these scores are to be taken 

with a grain of salt. In fact, we found two different error categories: model specific and 
summarisation specific. 

 

The model-specific errors are due to the fact that the output probability stream may be noisy 
around the classification threshold; in this case the problem may be fixed improving a post-

processing phase. Moreover, the output probability stream may rise above the classification 

threshold before it is done in the target scene, and/or similarly may fall down after it, as depicted 
in Figure 7 (left); as scores are computed for each instance of the sliding window (i.e., every few 

milliseconds), even if the retrieved scene contains the correct one, several window instances fall 

outside the right interval and the computed scores are badly affected. Another typical scenario is 

depicted in Figure 7 (right), where a single retrieved scene contains multiple correct ones. Once 
again, the scores could be very low even if the model prediction is substantially correct. 

 

 
 

Figure 7.  Output of M2 (blue), extracted scene (orange), and ground truth scene(s) (green).  
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The summarisation-specific errors are due to the fact that there is no “correct” metric to assess the 

goodness of a summary. In fact, scene cut points are somewhat arbitrary and the selection of the 

scenes is, to some extent, arbitrary: usually there are more relevant scenes than the ones found in 
the final highlight; such scenes in “excess” are cut due to time limitations (highlights shouldn’t 

last more than 3 minutes) but are not Non-relevant per se. For that reason, the figures we report in 

Table 2 are based on the usual metrics computed comparing samples in a classification task 
(where a sample is a decoded window of the match feature stream). 

 

As a further validation step for M2, one should appeal to human evaluation, as some research 
papers we cited did. However, on one hand our corpus was too big to allow for this solution; on 

the other hand, a human evaluation is subjective and, in our opinion, should be avoided. 

 

Unfortunately, in this way the problem of finding remains open but, on the other hand, it is a 
well-known issue even in the much more mature field of text summarisation [19]. As a final 

remark, better metrics could be very useful for improving the train of the model. 

 

7. CONCLUSIONS AND FUTURE WORK 
 
The results that are not easy to be evaluated. If M1 proved good in selecting Relevant scenes, M2 

is probably not manure enough. However, in a real-world video pipeline, SFERAnet will be just a 

tool for a human operator. For her/him, cutting a useless scene (false positive) would be easier 
than add a missing scene (false negative). From this point of view, the Recall of M2 is not bad 

and thus SFERAnet could be actually useful, as long as it is employed in a semi-automatic 

pipeline. 
 

As a future improvement, assuming to get a bigger corpus, we aim at testing more complex 

architectures, like GANs, which proved very powerful tools for “generation via emulation” and 

thus could produce more human-like highlights. 
 

Finally, we expect to carry out some experiments on the field, by generating the highlights of 

matches “unseen” by SFERAnet and observing users’ reception. 
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