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ABSTRACT 
 
Deep learning has facilitated major advancements in various fields including image 

detection. This paper is an exploratory study on improving the performance of 

Convolutional Neural Network (CNN) models in environments with limited computing 

resources, such as the Raspberry Pi. A pretrained state-of-art algorithm for doing near-real 

time object detection in videos, YOLO (“You-Only-Look-Once”) CNN model, was selected 

for evaluating strategies for optimizing the runtime performance. Various performance 

analysis tools provided  by  the Linux kernel were used to measure CPU time and memory 

footprint. Our results show that loop parallelization, static compilation of weights, and 

flattening of convolution layers reduce the total runtime by 85% and reduce memory 

footprint by 53% on a Raspberry Pi 3 device. These findings suggest that the 

methodological improvements proposed in this work can reduce the computational 

overload of running CNN models on devices with limited computing resources. 
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1. INTRODUCTION 
 

Deep learning has fundamentally transformed the way we think about machine learning and 

artificial intelligence, and numerous research and real-world application of deep learning in 

various fields such as medicine [1], finance [2], and image analysis [3]. Recent trends in deep 
learning focuses heavily on improving the accuracy and reducing the training time of the 

model through various methods. However, the biggest impediment in bringing deep learning 

to everyday usage is mainly the amount of computation that needs to be done in   a large 
cluster or GPU setting – one that is not available in everyday devices that most people 

interact with, such as mobile phones or embedded devices. 
 

Convolutional neural networks (CNN), one of the most successful deep learning techniques, 
are inspired by the visual cortex of the brain and are designed to process multiple types of 

data. This paper  studies  ways  to  enhance the  runtime  (feedforward)  performance of CNN 

models  through  profile-guided  optimizations  and compile optimizations on an embedded 
device.  To  bring  in  a realistic context to the research, this paper focused on optimizing the 

feedforward runtime of a pre-trained CNN-based model used for real-time  video  processing 

called YOLO (“You-Only-Look-Once”) model [3] to  perform  better on a Raspberry Pi 3 

device, which runs a  64-bit ARMv8 CPU with a 1GB DDR2 RAM. The rationale behind 
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studying ways to optimize performance of a pre-trained model is that most training happens 
on a server-class machines with access to plenty of resources. However, the context at which 

these models need to perform at runtime is usually equipped with much less resource than the 

context at which they were trained. Therefore, the focus for this study was set at optimizing a 

model that was already trained, instead of trying to create an optimized or compressed CNN 
model at train-time. 

 

2. FORMAT GUIDE 
 

2.1. Background 
 

2.1.1. You-Only-Look-Once (YOLO) Algorithm 

 
YOLO is an object detection algorithm used for real-time object detection [3]. YOLO is a 

state-of-art object detection algorithm that outperforms most known peers by only  applying  

a  single  neural  network  to  the  entire  image instead of reapplying classifiers at multiple 
locations of  the  image, which is what most of the  latest object detection algorithms use. 

Because of this, YOLO has a significant performance advantage  compared  to its peers 

which is  that  it  only  needs  to  perform  a  single  network  evaluation forits task, as 

opposed to hundreds or thousands  of  evaluations  that need to be done on its peers such as 
Faster R-CNN [4]. 
 

2.1.2. Previous Studies on Optimizing Performance of Convolutional Neural Network 

(CNN) models 
 

Many researchers have already attempted to optimize the performance of CNN models using 

various methods[4]. Gong,  Yunchao,  et  al. suggested using singular vector decomposition 

(SVD) to compress each layer in the network. In particular, this method compresses each 
weight matrix by  only keeping  the  singular  values  with  largest  magnitude,  which  

significantly reduces the memory footprint of the model at  feedforward  runtime while 

keeping the accuracy loss to roughly 1%. [5] 
In CNN, the “flattening” step involves coversion of multidimensional convolution matrices to 

1-dimensional  array. For instance, a  convolution  matrix of size X x  Y x Z  becomes 3 

different  convolution  matrices,  each  with size X x 1 x 1,  Y  x  1x  1,  and  Z  x  1  x1,  

respectively).  has  been done to reduce memory – this  reduces  memory  footprint  
significantly  because the number of parameter gets reduced from O(XYZ) to O(X + Y+ Z). 

Jin, et al. showed that this method can reduce both training and classification time by more 

than half. [6] 
 

Lastly, Han, et al. proposed a way of reducing network size  by  iterative pruning of the 

network. [8] In a method similar  to  pruning  a  decision tree, Han proposed a way  of  

removing  unimportant  nodes  out of the network by pruning the network for connections 
with weights whose magnitude is less than  a  certain  threshold.  Following  this,  the  

network  gets retrained with a new structure. The retrained  network  then  goes  through 

another pruning process in an iterative manner. 
 

2.2. Measuring Performance of CNN Model 
 

Feedforward runtime speed is the most important factor to consider when measuring the 

performance of deep neural  networks.  Many  efforts  have been undertaken to predict the 
runtime of a CNN model at train time. [7] The most straightforward metric for evaluating the 

runtime  of  a  model  is  FLOPS, which is the number of floating point operations that need 
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to be performed. This is due  to  the  nature  that  floating  point  operations  are  very 
expensive, and much of  the  time  during  runtime  is  spent  on performing floating point 

operations.  

 

However, Yunchao, et al. showed that the relationship  between  a  CNN  model’s FLOPS 
and its runtime is nonlinear, and may vary by 3-4 times depending on many different  

conditions.  [5]  Several  factors  were  pointed as culprit for such nonlinearity, including 

cache optimizations,  disk  I/O,  as well as memory footprint. 
 

Memory is another important factor to consider when measuring the performance of a CNN 

model due to the  fact  that  memory  is  often  just  much of a constraining factor in an 

embedded environment as CPU  is  –  perhaps even further. For  example,  a  Raspberry  Pi  3  
has  a  memory  size of 1GB, whereas most server machines used for  deep  learning  run  

with  64GB or more memory –  a  difference  of  64  times.  Excessive  memory  usage may  

lead  to  disk  swapping,  which  impacts  the  runtime  of  the  model very heavily because 
disk swapping may involve disk I/Os. Large  memory footprint negatively impacts cache 

performance as well. 
 

2.3. Method 
 

To optimize the performance of YOLO model on a Raspberry Pi, an architecture-specific 

profile  guided  approach  was  taken  to  identify  potential performance bottlenecks at 

feedforward runtime. The profile data was collected by using the perf tool on Raspbian OS,  

on  a  Raspberry  Pi  3 device by running pre-trained YOLO models on DarkNet [], a small 
open-source neural network framework. Various model sizes were used to ensure that the 

profile data was neutral.  
 

2.4. Results 
 

2.4.1. CPU Profile 
 

To find out which part of the DarkNet contributes  most  heavily  to  the  runtime of 
classification task, a CPU based-sample  was  taken  on  a  Raspberry Pi 3 using perf [4]. perf 

is a performance analysis tool available     on Linux systems and it reports the percentage  of  

CPU  time  spent  in  specific parts of the code. perf was run on a DarkNet  process  that  was 
running a pre-trained YOLO model which was a 106-layer CNN network. 
 

 
 

Figure 1. CPU profile 
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2.4.2. Memory Profile 
 

To find out how much memory is being used by DarkNet at runtime, valgrid [9] was used to 

collect memory profile on DarkNet. valgrind is a Linux-based tool that is used for various 

heap analysis purposes, such as memory profiling and memory leak detection. Similar to 
what perf does with CPU, it samples the heap regularly to construct a map of the heap usage 

of a process over time. 
 

 
 

Figure 2. Memory profile data collected on DarkNet valgrind was run 

 

Figure 2. Memory profile data collected on DarkNet valgrind was run on the same hardware, 
running the same network as part 1). Figure 2 shows that roughly 6.6GB of memory footprint 

is hit very quickly and stays at 6.6GB until classification is complete. Because this exceeds 

the amount of memory available on a Raspberry Pi 3, or most embedded device, it clearly 
shows that the computational overload of the model needs to be reduced. 
 

2.4.3. Loop Parallelization 
 

In Section III, CPU profile data collected using perf clearly pointed at over 87% of the CPU 
time was spent inside a single function, gemm_nn, in DarkNet. gemm_nn is a function that is 

used to multiply two matrices containing the weights – because weights are represented as 

floating point matrices, this ends up performing a lot of floating point operations. 
 

 
 

Figure 3. Source code of DarkNet - gemm_nn 

 

As shown in Figure 3, gemm_nn updates a 3 dimensional matrix, and is a clear example of a 
“embarrassingly parallel” workload. To speed this up, a loop parallelization was performed 
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using OpenMP [10]. Using OpenMP, another binary was compiled that made use of the loop 
parallelization, and the CPU time was evaluated using the same YOLO model. 
 

 
 

Figure 4. Runtime before and after loop parallelization 

 

Figure 4 shows the result of the overall runtime before and after the loop parallelization. The 

overall runtime reduced from 61 seconds to 13 seconds, which is an overall improvement of 
over four times. 

 

2.4.4. Static Compilation of Weights 
 

Various methods were explored to reduce the total memory footprint of DarkNet during 

runtime, and one of them was to turn the model into a statically compiled single executable. 

More specifically, the weight vectors were declared as static constant variables in the C code, 
and the entire model was re-compiled together with DarkNet into a single executable. 

 

Doing this reduces the memory footprint because it eliminates the need  of dynamically-
allocated memory which may reduce in memory fragmentation in the kernel heap. In addition 

to saving memory footprint from reduced memory fragmentation, it may also reduce the total 

CPU time as the extra cost of system calls to dynamically allocate heap space is removed. 

 
To statically compile the weight with the model, a simple Python script was written to take in 

a pre-trained weight file and generate a C header file that contains the weight matrix as hard-

coded static variables, which can be then included in the DarkNet CMakeFile to be linked 
together into a single executable. 

 

 
 

Figure 5. Memory footprint before and after static compilation of weight matrices 
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As shown in Figure 5, static compilation of weight matrices yielded roughly 28% reduction in 
the memory footprint of the process. While it did not yield as big of a reduction in memory 

footprint as loop parallelization did for CPU time, it successfully reduced a significant 

portion of the memory footprint. 

 
Doing this means that to use different model, the entire network needs to be recompiled and 

this reduces the portability of models because they need to be compiled on the target device 

again. Figure 6 is  a visualization of what happens to the overall input and output architecture 
of the classification system as a result of static compilation. As shown in the figure, weight 

vector can not be passed as a parameter to DarkNet because the network has already been 

hard-coded together with DarkNet. This sacrifices the flexibility of the network. 
 

 
 

Figure 6. Visualization of the Model Change Before and After Static Compilation of Weights 

 

However, in most embedded environments, this is a reasonable tradeoff because embedded 

devices would run a pre-trained model and reuse the same model until further update from the 
server with a newly-trained model anyway. Therefore, it can be assumed that the introduction 

of additional compilation time once per each set of newly trained weights is a reasonable 

additional cost for reducing memory footprint of the model. 
 

2.4.5. Flattening Weights 
 

Previous studies have shown that 3D convolutions improve the feedforward performance of 
CNN models (Ref for Jin et al. paper). More specifically, 3D convolutions dramatically 

improve the feedforward runtime of the model by breaking apart the convolutional layers in 

the network from a 3-Dimensional convolution matrix into a series of 1-Dimensional 

convolution vectors. This reduces the total number of parameters in the network by a large 
amount. The reduction in the total number of parameters can reduce both the feedforward 

time as well as the memory footprint of the model. 

 
Using this method, a flattening of the weight vector was performed after the static 

compilation weights has been done. Weight vectors for the convolutional layers were divided 

into three separate sequences of 1 dimensional convolutional layers and re-measured for 
performance using perf and valgrid utilities in Linux. 
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Figure 7. Memory Footprint at Each Optimization Level 

 

Figure 7 shows that use of both static compilation and flattening (SC+FL) resulted in a total 

memory footprint of about 3.1 GB, which was a 53% improvement compared to the model 

with no optimization applied (NO). Compared to the model with just static compilation 
optimization applied, the total memory footprint was reduced by 36%. 
 

 
 

Figure 8. Feedforward Runtime at Each Optimization Level 

 

Figure 8 shows the feedforward runtime of the same model at each optimization level. When 

loop parallelization and flattening is both applied (LP + FL), the runtime was reduced by 32% 

compared to the model where just loop parallelization was applied (LP). Compared to the 

original model without any optimization, the feedforward runtime was reduced by 85%.. 
 

3. CONCLUSIONS 
 

In this study various methods were explored to improve the performance of YOLO model in 

an embedded setting. Compared to similar studies, this study took a real-life example and 
showed that various procedures can be implemented to improve performance in a limited 

context.A total of three different methods including loop parallelization, static compilation of 

weight matrices, and flattening weight matrices were applied together to improve the overall 

feedforward time by more than 85% and the memory footprint by 45%, without a significant 
reduction in the accuracy of the model. 
 

Since this study was a largely exploratory study, there are some limitations. The current work 

was focused on a single type of CNN model. Additionally, due to limitation in computing 
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power, only a limited number of models were trained. Future work will focus on scaling the 
methodology to more generic models. The model optimization procedure can also be 

automated by creating an architecture-agonistic framework that allows any arbitrary model to 

be accelerated via automatic loop parallelization through static analysis, dynamic generation 

of statically compiled weight matrices, as well as flattening of the convolution layers. 
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