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Abstract. In the recent years, object detection has experienced impressive progress. Despite
these improvements, there is still a significant gap in the performance between the detection
of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a
challenging dataset, MS COCO. We show that the overlap between small ground-truth objects
and the predicted anchors is much lower than the expected IoU threshold. We conjecture this
is due to two factors; (1) only a few images are containing small objects, and (2) small objects
do not appear enough even within each image containing them. We thus propose to oversample
those images with small objects and augment each of those images by copy-pasting small objects
many times. It allows us to trade off the quality of the detector on large objects with that on
small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve
9.7% relative improvement on the instance segmentation and 7.1% on the object detection of small
objects, compared to the current state of the art method on MS COCO.

Keywords: object detection, small object detection, instance segmentation, small objects, data
augmentation.

1 Introduction

Detecting objects in an image is one of the fundamental tasks of todays computer
vision research, as it is often a starting point for many real world applications,
including robotics and self-driving cars, satellite and aerial image analysis, and the
localization of organs and masses in medical images. This important problem of
object detection has recently experienced a lot of progress. The top-1 solution on
MS COCO object detection competition,5 has progressed from the average pre-
cision (AP) of 0.373 in 2015 [1] to 0.525 in 2017 (at IoU=.50:.05:.95 which is a
primary challenge metric.) Similar progress can be observed in the instance seg-
mentation problem in the context of MS COCO instance segmentation challenge.

5 http://cocodataset.org/\#detection-leaderboard
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Fig. 1. In the top submissions for MS COCO instance segmentation challenge, the AP detection
metric for small objects is 2-3 times lower than that for large objects. The leaderboard snapshot
was taken in the summer of 2018.

Min rectangle area Max rectangle area

Small object 0×0 32×32
Medium object 32×32 96×96

Large object 96×96 ∞×∞
Table 1. The definitions of the small, medium and large objects in MS COCO.

Despite these improvements, existing solutions often underperform with small ob-
jects, where small objects are defined as in Table 1 in the case of MS COCO. It is
evident from the significant gap in the performance between the detection of small
and large objects. See for instance Figure 1, which lists the top ranking submis-
sions for the MS COCO instance segmentation challenge. A similar issue is observed
in the instance segmentation task as well. For instance, see the sample predictions
from the current state-of-the-art model, Mask-RCNN, in Figure 2, where the model
has missed most of the small objects.

Small object detection is crucial in many downstream tasks. Detecting small or
distant objects in the high-resolution scene photographs from the car is necessary to
deploy self-driving cars safely. Many objects, such as traffic signs [2, 3] or pedestrians
[4], are often barely visible on the high-resolution images. In medical imaging, early
detection of masses and tumors is crucial for making an accurate, early diagnosis,
when such elements can easily be only a few pixels in size [5, 6]. Automatic industrial
inspection can also benefit from small object detection by the localization of small
defects that can be visible on the material surfaces [7, 8]. Another application is
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Fig. 2. Sample predictions from the Mask-RCNN, where many small objects were missed by the
system, despite their clear visibility within a reasonable context. For instance, only six birds were
detected out of hundreds of them.

satellite image analysis, where objects, such as cars, ships, and houses, must be
effectively annotated [9, 10]. With an average of 0.5-5m per pixel resolution, these
objects are again just a few pixels in size. In other words, small object detection and
segmentation requires more attention, as more complex systems are being deployed
in the real world. We, therefore, propose a new method to improve small object
detection.

We focus on the state-of-the-art object detector, Mask R-CNN [11], on a chal-
lenging dataset, MS COCO. We note two properties of this dataset regarding small
objects. First, we observe that there are relatively fewer images that contain small
objects in the dataset, which potentially biases any detection model to focus more
on medium and large objects. Second, the area covered by small objects is much
smaller, implying the lack of diversity in the locations of small objects. We con-
jecture this makes it difficult for the object detection model to generalize to small
objects in the test time when they appear in less explored portions of an image.

We tackle the first issue by oversampling those images containing small objects.
The second issue is addressed by copy-pasting small objects multiple times in each
image containing small objects. When pasting each object, we ensure that pasted
objects do not overlap with any existing object. This increases the diversity in the
locations of small objects while ensuring that those objects appear in the correct
context, as shown in Fig. 3. The increase in the number of small objects in each
image further addresses the issue of a small number of positively matched anchors,
which we quantitatively analyze in Section 3. Overall, we achieve 9.7% relative
improvement for the instance segmentation and 7.1% for object detection for small
objects, compared to the current state-of-the-art method, Mask R-CNN, on MS
COCO.

Computer Science & Information Technology (CS & IT) 121



Fig. 3. Examples of artificial augmentation by copy pasting the small objects. As we can observe
in these examples, pasting at the same image gives a high chance of the right surrounding context
of the small object.

2 Related Work

Object Detection Faster region-based convolutional neural network (Faster R-CNN)
[1], Region-based fully convolutional network (R-FCN) [12] and Single Shot Detec-
tor (SSD) [13] are three major approaches to object detection and they differ by
whether and where the region proposal is attached [14]. Faster R-CNN and its vari-
ants are designed to help with a variety of object scales, as differential cropping
merges all proposals into a single resolution. This, however, happens inside a deep
convolutional network, and the resulting cropped boxes may not align perfectly
with objects, which may hurt its performance in practice. SSD was recently ex-
tended into Deconvolutional Single Shot Detector (DSSD) [15], which upsamples
the low-resolution features of SSD by the transposed convolutions in the decoder
part [16], to increase the internal spatial resolution. Similarly, Feature Pyramid
Network (FPN) [17] extends the Faster R-CNN with decoder type sub-network.

Instance Segmentation Instance segmentation goes beyond object detection and
requires predicting the exact mask of each object. Multi-Task Network Cascades
(MNC) [18] build a cascade of prediction and mask refinement. Fully convolutional
instance-aware semantic segmentation (FCIS) [19] computes a position-sensitive
score map shared by every region of interest. [20], which is also a fully convolutional
approach, learns pixel embedding. Mask R-CNN [11] extends the FPN model with
a branch for predicting masks and introduces new differential cropping for both
object detection and instance segmentation.

Small objects Detecting small objects may be addressed by increasing the input im-
age resolution [21, 13] or by fusing high-resolution features with high-dimensional
features from the low-resolution image [22–25]. This approach of using the higher
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Fig. 4. Schematic illustration of anchors of different scales matching the ground truth objects.
Small objects have much less anchors matched. To overcome the problem, we propose to artificially
augment the images by copy-pasting small objects, so that there is more anchors positively matched
with small objects during training.

resolution, however, increases computational overhead and does not address the im-
balance between small and large objects. [26] instead uses a Generative Adversarial
Network (GAN) to build features in a convolutional network that are indistinguish-
able between small and large objects in the context of a traffic sign and pedestrian
detection. [27] uses different anchor scales based on different resolution layers in a
region proposal network. [28] shifts image features by the correct fraction of the
anchor size to cover gaps between them. [29–32] add the context when cropping a
small object proposal.
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3 Identifying issues with detecting small objects

In this section, we first overview the MS COCO dataset and the object detection
model used in our experiments. We then discuss the issues of the MS COCO dataset
and the anchor matching process used in training, that contributes to the difficulty
of small object detection.

3.1 MS COCO

We experiment with the MS COCO Detection dataset [33]. The MS COCO 2017
Detection dataset contains 118,287 images for training, 5,000 images for validation,
and 40,670 test images. 860,001 and 36,781 objects from 80 categories are annotated
with ground-truth bounding boxes and instance masks.

In the MS COCO detection challenge, the primary evaluation metric is the
average precision (AP). In general, AP is defined as the average of ratios of true
positives to all positives for all recall values. Because an object needs to be both
located and correctly classified, correct classification is only counted as a true posi-
tive detection if the predicted mask or bounding box has an intersection-over-union
(IoU) higher than 0.5. The AP scores are averaged across the 80 categories and ten
IoU thresholds, evenly distributed between 0.5 and 0.95. The metrics also include
AP measured across different object scales. In this work, our primary interest is
the AP on small objects.

3.2 Mask R-CNN

For our experiments, we use the Mask R-CNN implementation from [34] with a
ResNet-50 backbone and adapt the linear scaling rule proposed in [35] for setting
learning hyperparameters. We use a shorter training schedule than the baselines
in [34]. We train our models for 36k iterations distributed over four GPUs, using
a base learning rate of 0.01. For optimization, we use stochastic gradient descent
with the momentum set to 0.9 and weight decay, with the coefficient set to 0.0001.
The learning rate is scaled down with a factor of 0.1 twice during training, after
24k and 32k iterations. All the other parameters are kept as in the baseline Mask
R-CNN+FPN+ResNet-50 configuration from [34].

The region proposal stage of the network is particularly important in our in-
vestigation. We are using a feature pyramid network (FPN) for generating object
proposals [17]. It predicts object proposals relative to fifteen anchor boxes from
five scales (322, 642, 1282, 2562, 5122) and three aspect ratios (1, 0.5, 2). An anchor
receives a positive label if it has an IoU higher than 0.7 against any ground-truth
box, or if it has the highest IoU against a ground-truth bounding box.
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Object Images Total Matched Average Average
Count Object Anchors matching max

Area anchors IoU

small 41.43% 51.82% 1.23% 29.96% 1.00 0.29
medium 34.32% 70.07% 10.18% 25.54% 1.03 0.57

large 24.24% 82.28% 88.59% 44.49% 2.54 0.66
Table 2. The MS COCO dataset objects statistics with respect to matched anchors in Mask-RCNN
based on RPN.

Fig. 5. Anchors positively assigned (IoU > 0.5) to ground
truth objects during training in the Mask-RCNN network.
It is necessary to enforce at least one anchor to be posi-
tively assigned to every ground truth object even if IoU is
below threshold. Otherwise, as on the top 2 images, most of
the small objects would be missed and never trained. The
other images are verifying the problem we are address-
ing. The large objects have many much more positively
assigned anchors than smaller objects.
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3.3 Small object detection by Mask R-CNN on MS COCO

In MS COCO, 41.43% of all the objects appearing in the training set are small, while
only 34.4% and 24.2% are medium and large objects, respectively. On the other
hand, only about half of the training images contain any small objects, while 70.07%
and 82.28% of training images contain medium and large objects, respectively. see
Object Count and Images in the Table 2. This confirms the first issue of small
object detection. The problem is related to the diversity of the objects and their
contexts. While for bigger objects, we have more images, meaning more diversity,
smaller objects seem to be grouped in the same images and scenes.

The second issue is immediately apparent by considering the Total Object Area
for each size category. A mere 1.23% of the annotated pixels belong to small objects.
Medium-sized objects take up already more than eight times more area, 10.18% of
the total annotated pixels, while the majority of pixels, 82.28% are labeled as parts
of the large objects. Any detector trained on this dataset does not see enough cases
of small objects, both across images and across pixels.

As described earlier in this section, each predicted anchor from the region pro-
posal network receives a positive label if it has the highest IoU with a ground-truth
bounding box or if it has an IoU higher than 0.7 for any ground truth box. This
procedure highly favors large objects, as a large object spanning multiple sliding-
window locations often has a high IoU with many anchor boxes, while a small
object may only be matched with a single anchor box with a low IoU. As listed in
Table 2, only 29.96% of positively matched anchors are paired with small objects,
while 44.49% of positively matched anchors with large objects. From the other per-
spective, it implies that there are 2.54 matched anchors per large object, while only
one matched anchor per small object. Furthermore, as the Average Max IoU metric
reveals, even the best matching anchor box of a small object has a low IoU value
typically. The average max IoU for small objects is only 0.29, while medium and
large objects have their best matching anchors at around two times higher IoU, 0.57
and 0.66, respectively. We illustrate this phenomenon in fig. 5 by visualizing a few
examples. These observations suggest that small objects contribute much less to
computing the region proposal loss, which biases the entire network to favor large
and medium objects.

4 Oversampling and Augmentation

We are improving the performance of object detectors on small objects by explic-
itly addressing the small object related issues of the MS COCO dataset that we
outlined in the previous section. In particular, we over-sample images containing
small objects and perform small object augmentation to encourage a model to focus
more on small objects. Although we evaluate the proposed approach using Mask
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R-CNN, it can be used with any other object detection network or framework, as
both oversampling and augmentation are done as data preprocessing.

Oversampling We address the issue of relatively fewer images containing small
objects by oversampling those images during training [36]. It is an effortless and
straight-forward way to alleviate this problem of the MS COCO dataset and im-
prove performance on small object detection. In the experiments, we vary the over-
sampling rate. We investigate the effect of oversampling not only on small object
detection but also on detecting medium and large objects.

Augmentation On top of oversampling, we also introduce dataset augmentation
focused on small objects. Instance segmentation masks provided in the MS COCO
dataset allow us to make a copy of any object from its original location. The copy
is then pasted to different positions. By increasing the number of small objects in
each image, the number of matched anchors increases. This, in turn, improves the
contribution of small objects to computing the loss function of the RPN during
training.

Before pasting the object to a new location, we apply random transformations
on it. We scale the objects by changing the object size ±20% and rotate it ±15◦.
We only consider non-occluded objects, as pasting disjoint segmentation masks with
unseen parts in-between often results in less realistic images. We ensure that the
newly pasted object does not overlap with any existing object and is at least five
pixels away from the image boundaries.

In Fig. 4, we graphically illustrate the proposed augmentation strategy and how
it increases the number of matched anchors during training, leading to a better
detector of small objects.

5 Experimental Setup

5.1 Oversampling

In the first set of experiments, we investigate the effect of oversampling images
containing small objects. We vary the oversampling ratio between two, three, and
four. Instead of actual stochastic oversampling, we create multiple copies of images
with small objects offline for efficiency.

5.2 Augmentation

In the second set of experiments, we investigate the effects of using augmentation
on small object detection and segmentation. We copy and paste all small objects
in each image once. We also oversample images with small objects to study the
interaction between the oversampling and augmentation strategies.
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Segmentation AP Detection AP
small medium large all small medium large all

baseline 0.113 0.300 0.418 0.28 0.167 0.329 0.393 0.303

oversampling 2× 0.120 0.299 0.409 0.279 0.173 0.328 0.387 0.304

oversampling 3× 0.123 0.300 0.404 0.279 0.177 0.329 0.382 0.305

oversampling 4× 0.120 0.299 0.398 0.276 0.174 0.329 0.374 0.302
Table 3. Experiments with different oversampling ratios. We observe that oversampling helps
regardless of the ratio for detecting small objects. The ratio allows us to make a trade-off between
small and large objects.

We test three settings. In the first setting, we replace each image with small
objects by the one with copy-pasted small objects. In the second setting, we du-
plicate these augmented images to mimic oversampling. In the final setup, we keep
both the original and augmented images, which is equivalent to oversampling the
images with small objects by the factor of two, while augmenting the duplicated
copies with more small objects.

5.3 Copy-Pasting Strategies

There are different ways to copy-pasting small objects. We consider three separate
strategies. First, we pick one small object in an image and copy-paste it multiple
times in random locations. Second, we choose numerous small objects and copy-
paste each of these exactly once in an arbitrary position. Lastly, we copy-paste all
small objects in each image multiple times in random places. In all the cases, we use
the third setting of augmentation above; that is, we keep both the original image
and its augmented copy.

5.4 Pasting Algorithms

When pasting a copy of a small object, there are two things to consider. First, we
must decide whether a pasted object would overlap with any other object. Although
we choose not to introduce any overlap, we experimentally verify whether it is
a good strategy. Second, it is a design choice whether to perform an additional
procedure to smooth the edge of a pasted object. We experiment whether Gaussian
blurring of the boundary with varying filter sizes could help compared to no further
processing.

6 Result and Analysis

6.1 Oversampling

By sampling the small object images more often during training (see Table 3),
AP on both small object segmentation and detection can be improved. The most
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Segmentation AP Detection AP
small medium large all small medium large all

baseline 0.113 0.300 0.418 0.28 0.167 0.329 0.393 0.303

aug 0.108 0.299 0.422 0.278 0.161 0.328 0.4 0.302

aug+oversample 2x 0.117 0.300 0.406 0.277 0.168 0.333 0.387 0.302

original+aug 0.124 0.301 0.41 0.28 0.179 0.329 0.386 0.304
Table 4. Augmentation experiments. The best performance, in terms of both small objects and
overall, is achieved when the original images with small objects and their copy with copy-pasted
small objects are used for training.

gain is observed with 3× oversampling, which increases AP for small objects by
1% (corresponding to a relative improvement of 8.85%). While performance on
the medium object scale is less affected, large object detection and segmentation
performance consistently suffer from oversampling, implying that the ratio must be
chosen based on the relative importance between small and large objects.

6.2 Augmentation

In Table 4, we present the results using different combinations of the proposed
augmentation and oversampling strategy. When we replace each image with small
objects by its copy that contains more small objects (the second row), the perfor-
mance degraded notably. When we oversampled these augmented images by the
factor of two, the segmentation and detection performance on the small objects
regained its loss, although the overall performance was still worse than the base-
line. When we evaluated this model on an augmented validation set, instead of
the original one, we, however, saw a 38% increase in the small object augmenta-
tion performance (0.161), suggesting that the trained model effectively overfit to
“pasted” small objects but not necessarily to the original small objects. We be-
lieve this is due to the artifacts from pasting, such as imperfect object masks and
brightness differences from the background, that are relatively easy for a neural
network to spot. The best results were achieved by combining oversampling and
doing augmentation with a probability of p = 0.5 (original+aug) with the ratio of
original to augmented small objects is 2:1. This setting yielded better results than
oversampling alone, confirming the effectiveness of the proposed strategy of pasting
small objects.

6.3 Copy-Pasting strategies

Copy-pasting of a single object In Table 5, we see that copy-pasting a single object
results in a better model on small objects; however, at the cost of a slight perfor-
mance drop on large images. These results are also better than two times over-
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Segmentation AP Detection
small medium large all small medium large all

baseline 0.113 0.300 0.418 0.280 0.167 0.329 0.393 0.303

1× pasted 0.122 0.303 0.405 0.281 0.174 0.333 0.384 0.307

2× pasted 0.122 0.300 0.408 0.279 0.175 0.330 0.382 0.304

3× pasted 0.121 0.301 0.403 0.280 0.175 0.330 0.386 0.305

4× pasted 0.120 0.298 0.403 0.277 0.174 0.328 0.383 0.304

5× pasted 0.116 0.298 0.405 0.277 0.171 0.328 0.386 0.304
Table 5. Copy-pasting of a single object. We observe that it is often best to copy-paste a single
object only a few times (1× or 2×,) especially to achieve the high overall performance.

Segmentation AP Detection
small medium large all small medium large all

baseline 0.113 0.300 0.418 0.280 0.167 0.329 0.393 0.303

1× pasted 0.122 0.303 0.405 0.281 0.174 0.333 0.384 0.307

2× pasted 0.121 0.300 0.406 0.279 0.175 0.329 0.385 0.305

3× pasted 0.124 0.303 0.411 0.281 0.178 0.331 0.387 0.306

4× pasted 0.120 0.299 0.403 0.279 0.179 0.329 0.382 0.305

5× pasted 0.119 0.301 0.412 0.279 0.176 0.330 0.389 0.305
Table 6. Copy-pasting of multiple objects. Compared to copy-pasting of a single object, it is
better to make more copies (3×).

sampling in itself. The performance, however, peaks already at one or two pastes.
Adding the same object more times does not yield any performance improvement.

Copy-pasting of multiple objects As it can be seen in Table 6, it is better to copy-
paste multiple small objects per image than to copy-paste only a single object. In
this case, we see the benefits of pasting up to three times per object.

Copy-pasting of all small objects Finally, Table 7 lists the results where all the
small objects in each image are copy-pasted. We found the best results concerning
both the segmentation and detection at augmenting with all the objects once. We
suspect two possible causes behind this. First, By having multiple copies of all small
objects the ratio of original to pasted small objects rapidly decreases. Second, the
number of objects in each image multiplies, and this causes a more considerable
mismatch between training and test images.
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Segmentation AP Detection
small medium large all small medium large all

baseline 0.113 0.300 0.418 0.280 0.167 0.329 0.393 0.303

1× pasted 0.124 0.301 0.410 0.280 0.179 0.329 0.386 0.304

2× pasted 0.119 0.299 0.410 0.279 0.179 0.328 0.388 0.304

3× pasted 0.113 0.299 0.405 0.276 0.167 0.330 0.383 0.302
Table 7. Copy-pasting of all small objects. It is best to make only one copy of every small object,
and this strategy does not outperform the strategy of copy-pasting multiple (but not all) objects
many times.

Segmentation AP Detection
small medium large all small medium large all

original+aug 0.124 0.301 0.41 0.28 0.179 0.329 0.386 0.304

overlapping 0.118 0.301 0.411 0.279 0.173 0.331 0.389 0.305

blur 3 0.117 0.299 0.408 0.278 0.17 0.329 0.389 0.304

blur 5 0.119 0.3 0.408 0.279 0.173 0.328 0.383 0.303
Table 8. Results with different pasting algorithms. We observe that it is crucial not to introduce
any overlap when copy-pasting a small object, and that it is not advisable to Gaussian-blur the
edge of a pasted object.

6.4 Pasting Algorithms

As shown in the Table 8, pasting randomly into images without considering what
other objects already occupy areas leads to inferior performance on small images. It
justifies our design choice to avoid any overlap between a pasted object and existing
objects. Further, Gaussian blurring of the edge of a pasted object did not show any
improvement, suggesting that it is better to paste an object as it is, unless with a
more sophisticated strategy of fusing in the object.

7 Conclusion

We investigated the problem of small object detection. We showed that one of the
factors behind the reduced average precision for small objects is the lack of repre-
sentation of small objects in training data. This is especially true with the existing
state-of-the-art object detector, which requires the presence of enough objects for
predicted anchors to match during training. We proposed two strategies for aug-
menting the original MS COCO database to overcome the issue. First, we show the
performance on small objects can easily improve by oversampling images contain-
ing small objects during training. Second, we propose an augmentation algorithm
based on copy-pasting small objects. Our experiments proved a 9.7% relative im-
provement for the instance segmentation and 7.1% for object detection for small
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objects compared to the current state of the art, obtained by Mask R-CNN, on MS
COCO. The proposed set of augmentation methods offers the trade-off between the
quality of predictions for small and large objects, as verified by the experiments.
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