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ABSTRACT 

 

A comparison between two machine learning approaches viz., Genetic Fuzzy Methodology and Q-learning, 

is presented in this paper. The approaches are used to model controllers for a set of collaborative robots 

that need to work together to bring an object to a target position. The robots are fixed and are attached to 

the object through elastic cables. A major constraint considered in this problem is that the robots cannot 

communicate with each other. This means that at any instant, each robot has no motion or control 

information of the other robots and it can only pull or release its cable based only on the motion states of 

the object. This decentralized control problem provides a good example to test the capabilities and 

restrictions of these two machine learning approaches. The system is first trained using a set of training 

scenarios and then applied to an extensive test set to check the generalization achieved by each method. 
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1. INTRODUCTION 
 

This paper discusses a comparison between two Machine Learning (ML) methodologies, viz. 

Genetic Fuzzy Methodology (GFM) and Q-learning, to design controllers for a set of 

collaborative robots that should work together to achieve a common goal without the need for any 

explicit inter-robot communication. There has been a lot of research conducted in the field of 

collaborative robotics. These include development of controlled physical compliance for external 

contacts [1-5] that could be useful for human-robot collaborative tasks, swarm intelligence 

control algorithms [6-9] as well as multi-robot collaboration with minimal communication 

between the robots [10, 11].Such intelligent collaborative robots can help in various applications 

such as material handling [12], mapping the interior of buildings [13], exploration [14], factory 

automation [15] etc., to name a few. 

 

This research focuses on a different type of problem where a team of independently controlled 

robots work together to achieve a common goal while they are also physically connected to an 

object through elastic cables. The collaboration enables the total workload on the system to be 

shared among the set of robots. Such a decentralized system is applicable to various collaborative 

applications. Specifically in the field of robotics, such a team of decentralized controllers can be 

used for (a) lifting or moving tasks that involve multiple collaborative robots or human-robot 

collaboration [5,12], (b) robotic soccer where team of robots have to work together to achieve the 

common objective of scoring more goals than the opponents [16,17], (c) swarm of Unmanned 

Aerial Vehicles (UAVs) [18] that work together on reconnaissance missions, just to name a few. 

The advantage of developing decentralized controllers is that the success of the team is not just 

dependent on one centralized controller. In centralized control applications, if the centralized 

controller malfunctions, then the entire system fails, whereas when using a series of decentralized 
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controllers, even if one of the individual controllers were to fail, the rest of the system may still 

be able to achieve the overall goal. We can also say that as the size of the team of robots increase, 

the dependency on a single individual decreases.  

 

For the problem considered in this paper, the robots are trained to work together using two 

separate ML methodologies, GFM and Q-learning, for comparing the two methodologies with 

each other. Since there is no communication between the robots,e ach robot is unaware of the 

state and specific future action of the partner robots although all the robots are aware of their 

common goal. 

The last decade has seen a huge rise in the use of machine learning approaches, mainly due to the 

increase in computational capability as well as accessibility to huge amounts of data. As these 

intelligent systems learn from data, it provides adaptability, scalability, robustness to uncertainties 

etc.Another advantage of intelligent systems is that it providesthe ability to make decisions based 

on a variety of inputswhich in turn leads to increased efficiency. 

 

Fuzzy logic system (FLS) is one such intelligent system. As fuzzy logic provides a smooth 

transition between the fuzzy sets, FLSs provide an inherent robustness to the design of robotic 

controllers. Although expert knowledge canbe used to build FLSs and this capability is appealing 

to alot of applications, it makes sense to have a mechanism to tune the parameters of the FLS 

automatically using a search heuristic such as Genetic Algorithm (GA). This methodology of 

using GA to train an FLS is called a GFM and the resulting system is known as a Genetic Fuzzy 

System (GFS). Such GFSs have been developed with much success for clustering and task 

planning [19], simulated air-to-air combat [20], aircraft conflict resolution [21] etc. An FLS 

design requires a set of membership functions for each input and output variable, as well as a rule 

base for designing the relationship between the input and output variables.  Since it is trained 

using GA, differentiable cost function such as integral squared error is not required. So, as long as 

the mission requirement can be defined using a mathematical cost function, we do not need to 

have any ground truth data available. GA will traverse the search space looking for the optimal 

set of membership functions and rule base that minimizes the cost function, which makes it a 

form of reinforcement learning. 

 

This paper presents a comparison of the GFM with Q-learning, which is widely regarded as the 

current state-of-the-art in the field of reinforcement learning. Q-learning approach involves 

creating a dataset of states and actions which is then used to train an Artificial Neural Network 

(ANN) that outputs the best action based on the current input state. Control agents can be trained 

using reinforcement learning to take optimal actions at every instant to reach a final desired state. 

Q-learning, which is a form of reinforcement learning, has gained a lot of popularity recently in 

training ANNs and Convolutional Neural Networks (CNNs) for various applications including 

training agents to autonomously play Atari games [22], the development of the Alpha Go system 

that defeated professional human Go players [23] etc. 

 

Our previous works [24, 25] showed the effectiveness of the GFM to three and five robot 

collaborative systems. In this paper, we build upon those previous efforts to do a comparison 

study of our GFSs with those trained using Q-learning. In the GFM, GA is used to tune the 

parameters of the FLS. In the Q-learning approach, Q-learning algorithm is used to create a 

dataset of states and corresponding optimal actions that is then used to train an ANN. Both GFS 

and ANN can model nonlinear systems very well. GFS has the added advantage of being 

inherently robust, although ANNs can also be trained to achieve improved robustness. 
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Figure1. The research work presented in this paper takes inspiration from this game played collaboratively 

by a group of people. The objective of the individuals is to collaboratively control the cables to bring the 

object to the target position [25]. 

 

2. PROBLEM DESCRIPTION 
 

This problem is inspired from a game involving people working collaboratively to bring an object 

to a target position by pulling or releasing the cables, as shown in Figure 1. The participants do 

not communicate with each other. This game showcases human ability to learn and adapt to 

situations that require collaboration. As each human makes their own decisions, this game can 

also be considered as a decentralized control problem. Taking inspiration from this game, we are 

developing decentralized control strategy and algorithms to allow individual robots to perform 

similar activities showing the capability of multi-robot collaboration. Although humans are very 

adept at these kinds of collaborative activities, it isquite challenging for robots due to the current 

limitations ofrobot intelligence. The robots have to learn to work together in order to achieve their 

common goal. 

 

The motion plane of the robots and the object is assumed to be horizontal. The robots are fixed at 

the vertices of a regular polygon. The robots can only pull or release the cable attached to it. A 

top-down view of the setup for the5-robot case is shown in Figure 2. The robots are placed at a 

distance of 0.5m from the center. The objective is to have the robots to work collaboratively to 

bring the object to an arbitrarily defined target position by pulling or releasing the elastic cables 

that are connected to the object. One major constraint is that each robot only has information 

about the target and the object and does not have any knowledge about the states of the partner 

robots. Thus, this problem provides a great example to test the capability of robots to work 

collaboratively without the need for any centralized control or inter-robot communication. The 

robots need to be trained for different scenarios to come up with an effective strategy to achieve 

the common goal while following all the constraints of the problem. The training is done using 

GFMas well as using Q-learning in order to perform a comparison between the two approaches. 
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Figure 2. Setup for the 5-robot problem. The robots are placed on the vertices of a regular pentagon. The 

dotted lines are the cables connecting the object to each of the robots.

 

3. SYSTEM DYNAMICS 
 
The equations of motion for an N

 

Eqn. (1) is a 2-D vector equation pertaining to the motion of the object which is connected to the 

robots through the elastic cables. The vectors in the equation can be understood 

which shows the vector representations for a 5

connecting the object B to robot 

is valid when all the cables are taut, i.e. the length of the cables are within 

cables go slack, the tension in that cable can be considered as zero. The maximum length of the 

cables is considered as 2m, beyond which the cables break.
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The equations of motion for an N-robot system is givenbelow [24, 25]. 
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robot problem. The robots are placed on the vertices of a regular pentagon. The 

dotted lines are the cables connecting the object to each of the robots. 

                                       (1) 
 

D vector equation pertaining to the motion of the object which is connected to the 

robots through the elastic cables. The vectors in the equation can be understood from Figure 3, 

is the unit vector along the line 

refers to the length of the cable reeled in by robot i. Eqn. (1) 

is valid when all the cables are taut, i.e. the length of the cables are within 1-2m. If any of the 

o slack, the tension in that cable can be considered as zero. The maximum length of the 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.10, No.2, March 2019 

5 
 

 
Figure 3. Relation between the position vectors for the object B and robot1, shown for the 5-robot system 

[25]. 

 

Eqn. (1) shows that the dynamics of the object is dependent on the lengths of the cables reeled in 

by each robot. Each robot can control its cable through a setup of DC motor and spool around 

which the cable can wind. For the sake of brevity, we do not delve into the dynamics of the DC 

motors that control the spools. But, it is to be noted that the controller for each robot directly 

controls the voltage of the motor which in turn causes the spool to rotate, providing each robot the 

capability to pull or release its cable to control the position of the object. The objective of this 

problem is to train these decentralized robots to work collaboratively to achieve the common goal 

of bringing the object to any predefined position within the workspace of the robots. 

 

4. METHODOLOGIES 
 

4.1. Genetic fuzzy methodology 
 

Each robot is modeled as a GFS. Through the training process assisted by GA, the robots learn to 

work together to achieve the common goal without the need for any centralized control. The 

schematic of the GFS controller for robot i is shown in Figure 4. Each GFS takes in four inputs 

and gives one output. The inputs to each GFS controller include the distance between the current 

object position and the target position measured with respect to the vector connecting the robot to 

the target, and the angle between the object-robot vector and the target-robot vector. Additionally, 

the object velocity along the x and y axes arealso provided as inputs. The object velocity helps the 

robots to understand the current direction of motion of the object. We believe these four inputs 

should be sufficient to make a good decisions by each of the robots in order to collaboratively 

achieve the common goal. The GFS outputs a voltage, V, at each time-step which is used to 

control how much the robot pulls or releases the cable at that time-step. 
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Figure 4. Schematic of the GFS controller for robot i 

 

The robots are trained on a set of training scenarios. The target positions are arbitrarily defined 

for these 20 scenarios. During training, each individual in GA, which consists of a vector of GFS 

parameters, is evaluated on the training set of scenarios. The object is assumed to always start at 

the origin. During the training process, GA tunes the membership functions and rulebase for each 

controller to minimize the mean of the following cost function that is evaluated for each scenario. 

 

� �  � dist�t	�� + 50�! � �"#$	
%

�
                                      (2) 

 
T is the maximum time and tend refers to the time at which the simulation stops. The simulation 

stops when maximum time, T, is reached or when any cable length becomes greater than 2m or in 

other words, any of the cable breaks. In Eqn. (2), the 50(T-tend) term is used to penalize such early 

stoppage situations, where the multi-robot system is not satisfying the physical constraints. dist(t) 

is the distance between the object and the target at each time step. Thus, the objective is to bring 

the object to the target position within a minimum time, while following the constraints of the 

system. 

 

The schematic of the training process is shown in Figure 5.GA starts off with a set of individuals 

for the population. Each individual is a vector that consists of parameters for all the robots in the 

system. These parameters include the membership function boundaries as well as the consequents 

of the rule base. For each individual in GA, the scenario could be simulated to evaluate the cost 

function defined by Eqn. (2). The individuals with lower cost values have more likelihood of 

being selected for crossover and mutation and being chosen into the next generation. The 

individualswith high cost values have a greater likelihood of getting kicked out of the population. 

This process of modifying the individuals through crossover and mutation continues for a 

predefined number of generations. During each generation, the best system of robots is also 

evaluated on a validation set. The validation set consists of new scenarios with arbitrarily defined 

target positions different from those in the training set. The validation allows us to check if the 

team of robots are generalizing well on new scenarios. After GA has reached he maximum 

number of generations, the individual with the best training and validation cost is chosen. This 

individual defines the trained system of collaborative robots that can work together to achieve the 

common goal. 
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Figure 5. Training process for the N-robot system. The parameters of each robot are tuned using GA 

simultaneously to minimize the cost function. 

 

 
Figure 6. Membership function: The 5 points a, b, c, d, e are tuned for each input using GA. 

 
Figure 6 shows the structure of the membership functions for each input variable. Three triangular 

membership functions are used for each input. The y-axis of Figure 6 shows the degree of 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.10, No.2, March 2019 

8 
 

membership of a value of particular input variable. The membership values of each input variable 

is needed when evaluating the linguistic rules in the rule base [24].In order to do that, the 

membership functions of each input variable need to be defined. As three triangular membership 

functions are used for each variable, the boundaries of the three triangles need to be defined. It is 

assumed that the membership functions, mf1 and mf3, peak at the left and right extremes, 

respectively.  The x-coordinates of the five vertices are tuned using GA for each input variable. 

The number of membership functions for each input and output variable is chosen such that it 

provides the robots enough capability to learn as well as generalize. Having larger number of 

membership functions will increase the learning capacity, but also increases chances of 

overfitting. As can be seen from Figure 6, the membership functions are modeled as triangles and 

GA tunes five membership function parameters for each input variable. GA tunes only one 

boundary of each of the two extreme membership functions viz., mf1 and mf3, while tuning all 

three parameters of mf2.  

 

On the other hand, the output variable is defined using five triangular membership functions and 

all vertices of the five triangles are tuned using GA. This means that GA tunes 15 parameters of 

the output membership functions for each robot. This provides sufficient learning capacity for the 

robots. Additionally,  GA also tunes the rule base of the GFS for all the robots. Since each GFS 

has four inputs and each input variable is defined using three membership functions, there will be 

3
4
 = 81 rules in the rule base of each GFS. The number of membership functions can be modified 

according to the problem, if needed. Some of the rules can be predefined which can reduce the 

search space for GA. In this work, no such assumptions are made and GA is used to tune the 

entire rule base of each robot. 

 

4.2. Q-learning 

 
We also apply the Q-learning methodology to train each robot. This would require developing a 

Q-table, where each row consists of a state-action pair along with the corresponding Q-value by 

running various training scenarios. The Q-value is a measure of the quality of the action at taken 

at the current state, st. For ourN-robot problem, we will have N separate Q-tables. During the 

training process, we start off with empty Q-tables and as we run the N-robot system for various 

scenarios, each Q-table gets populated with the state-action pairs and their corresponding Q-

values. At any instant, to be consistent with our GFS schematic, each robot has 4 states and one 

output, viz. the voltage, applied to the controller (V) that creates the pulling or releasing action on 

the cable. Thus, the Q-table for each robot will have six columns. At each time step, each of the 

Nrobots perform N actions that moves the object to anew position. Based on the object 

movement, we can assign a reward to each robot (at time t) that is evaluated according to Eqn. 

(3). Here, rBT represents the connecting object B to target T. As seen from Eqn. (3), the robots 

obtain a positive reward for every time the object is moved closer to the target. 

 

&' �  ‖
�)��	‖ � ‖
�)�� + 1	‖                                            (3) 

 

Thus, the robots collect rewards at each time step toachieve the overall goal of bringing the object 

to the targetposition. After each time step, the Q value corresponding tostate action pair (st, at) is 

updated for robot i using Eqn. (4).α is the learning rate whereas γ is called the discount 

factor,which is a measure of the importance of future rewards ascompared to the current reward. 

 

+�
#",�-', /'	 � �1 � 0	+��-', /'	 + 0�&' + 1. max6�+�-'7�, /		           (4) 

 

Figure 7 shows the schematic of the development process of the Q-tables for the team of robots. 

As mentioned before, each robot has a Q-table associated with it during training. The Q-tables get 

populatedwith different state-action pairs and their correspondingQ-values as the system of robots 
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encounter new states during the training runs

scenarios, the system will achieve a reduced cost

use the Q-tables to create a dataset of states and best actions for each robot. The best action for 

any state is the one that has the highest Q

different datasets can then be

limited to discrete states and actions. The ANN

state. Thus, each robot is modeled as an ANN that takes in the four state values

estimate of the best action (V

neurons, as this provided good fitting and generalization on the Q

from running the robots in the collaborative

work together to achieve their

tested on a large test set. 

Figure 7 - Schematic that shows the development of the Q

 

5. RESULTS 
 

Both GFS and Q-learning approaches were applied to the

robots. The different training scenarios 

to have a diverse set of scenarios

the control space of the robots

the object to almost any target location within their control space. 

separately using GFM and Q

tested on 100 different scenarios for both the three robot as well as the five robot cases.T

performance on one of the three robot and five robot scenario

respectively. The main observations and
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encounter new states during the training runs. After simulating the system over 

scenarios, the system will achieve a reduced cost value, defined in Eqn. (2). At this stage, 

tables to create a dataset of states and best actions for each robot. The best action for 

any state is the one that has the highest Q-value. This is done for all N robots and

different datasets can then be used to train ANNs. This has the added advantage that

limited to discrete states and actions. The ANN will provide an action output for any contin

robot is modeled as an ANN that takes in the four state values

Vi). The ANN used for this work has only one hidden layer with 30 

neurons, as this provided good fitting and generalization on the Q-table. As the

from running the robots in the collaborative environment, the N different robots 

together to achieve their desired common goal. The trained system of robots

 

Schematic that shows the development of the Q-tables for the multi-

learning approaches were applied to the problem consisting of three and five 

The different training scenarios are created using different target locations. It makes sense 

have a diverse set of scenarios that have the target positions scattered over 

space of the robots. This ensures that the team of robots, after training, is able to bring 

the object to almost any target location within their control space. Once the systems are trained 

eparately using GFM and Q-learning, the multi-robot systems trained using both methods were 

tested on 100 different scenarios for both the three robot as well as the five robot cases.T

three robot and five robot scenarios are shown in Figures

. The main observations and comparisons are as follows: 

s (IJAIA), Vol.10, No.2, March 2019 
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. After simulating the system over several training 

Eqn. (2). At this stage, we can 

tables to create a dataset of states and best actions for each robot. The best action for 

robots and these N 

. This has the added advantage that we are not 

provide an action output for any continuous 

robot is modeled as an ANN that takes in the four state values and provides an 

The ANN used for this work has only one hidden layer with 30 

the data is obtained 

different robots should be able to 

e trained system of robots can then be 

 

-robot system. 

problem consisting of three and five 

different target locations. It makes sense 

scattered over different regions of 

This ensures that the team of robots, after training, is able to bring 

Once the systems are trained 

using both methods were 

tested on 100 different scenarios for both the three robot as well as the five robot cases.Their 

shown in Figures8and 9, 
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1) As can be seen from Figures8 and 9, the GFS controllers were able to settle the object to 

the target position faster. But, it should be noticed that the ANNs provide a smoother path 

as compared to the GFS controllers. The reason for the faster settling time could be 

because of the cost function in Eqn. (2) used to train the GFS controllers that is evaluated 

over the entire scenario as opposed to the rewards in Eqn. (3) (for Q-learning) that just 

considers the reward based on the current time step. 

 

2) Both GFS and ANN were tested on 100 different scenarios for both the 3-robot and 5-

robot cases. Both GFS and ANN achieved the final goal in all of the 100 scenarios tested 

in the case of 3-robot problem. For the 5-robot problem, the GFS was able to bring the 

object to the target position for 88 scenarios whereas ANNs trained using Q-learning did 

the same for only 82 scenarios. It is possible that this performance could be improved 

with more training of both the systems. 

 

3) It was noticed that GFM required more training time as compared to Q-learning, 

especially in the case of the 5-robot problem. For the 5-robot case, GFM needed 50% 

more training time than Q-learning. This was expected as the cost function (in Eqn. (2) 

used for evaluating the GFS requires the entire scenario to be simulated and this needs to 

be done for each individual in GA over a number of generations. 

 

4) Both GFS and ANN required more number of training scenarios and more training time 

for the 5-robot case as compared to the 3-robot cases. Since we are dealing with 

collaborative robotsthat do not communicate their states or actions with each other, the 

problem gets more complicated as robots are added to the system. On the other hand, 

having more number of robots increases the workspace of the system and the reliability 

of success as the success of the team is not dependent on a single robot. 

 

5) Finally, it was also noticed that the GFS controllers required a much smaller training set 

as compared to ANN to achieve generalization. For example, the GFS controllers for the 

5-robot problem were trained on 12 scenarios whereas the ANN controllers required 50 

different training scenarios. 
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(a) Object’s path towards target 

 
(d) Object’s path towards target 

 
(b) Distance plot 

 
(e) Distance plot 

 
(c) Controller torques of the three robots 

 
(f) Controller torques of the three robots 

 
Figure 8. GFS v/s Q-learning: A 3-robot scenario. The left column (a)-(c) shows the results obtained using 

GFS controllers, and the right column (d)-(f) shows the results for the same scenario obtained using ANN 

controllers trained using Q-learning. 
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(a) Object’s path towards target 

 
(d) Object’s path towards target 

 
(b) Distance plot 

 
(e) Distance plot 

 
(c) Controller torques of the five robots 

 
(f) Controller torques of the five robots 

 
Figure 9. GFS v/s Q-learning: A 5-robot scenario. The left column (a)-(c) shows the results obtained using 

GFS controllers, and the right column (d)-(f) shows theresults for the same scenario obtained using ANN 

controllers trained using Q-learning. 

 

6. CONCLUSIONS 
 
A comparative study between GFM and Q-learning for a class of multi-robot collaborative 

control problem has been presented. The problem discussed had an additional constraint that the 

robots cannot communicate with each other. Thus, the methods presented had to train the 

individual robots to work collaboratively to achieve the common goal of bringing the object to 

any arbitrarily defined target position without any inter-robot communication. By applying GFM 

and Q-learning separately for solving this problem for the case involving three and five robots, 
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we were able to do a comparative study and show the pros and cons of the two approaches. The 

GFM required a smaller training set of scenarios compared to Q-learning, but the Q-learning 

methodology provides faster training. It was also seen that the success rate of the GFM was 

higher than that of Q-learning for the case of the five robots. We also proved that these machine 

learning approaches are scalable even though the problem becomes more complex as more robots 

are added .In the future, we plan to expand on this work for larger number of robots. Future work 

will involve testing the scalability of these approaches to systems consisting of larger number of 

robots. 

 

The use of decentralized control and the lack of any inter-robot communication reduces any 

overhead requirement. Such a decentralized methodology also ensures that even if one of the 

robots were to malfunction, the system will still be able to function even though the overall 

functionality maybe reduced. This will be especially true for problems with larger number of 

robots. 

 

The trained system of robots were able to bring the object to the target region very quickly (less 

than 20s) using both GFM and Q-learning. The team of robots performed so efficiently in spite of 

several constraints considered in the system including the maximum length of the cable, the 

limited degrees of freedom of the robots, etc. 
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