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ABSTRACT 
 

Finding the strength of an edge in a network has always been a big demand. In the context of social 

networks, it allows to estimate the relationship strength between users. The best-known method to compute 

edge strength is the Neighbourhood Overlap. It computes the ratio of common neighbours to all neighbours 

of an edge terminal nodes. This method has been initially proposed for unweighted networks and later 

extended for weighted ones. These two versions of the method are not mathematically equivalent: In fact, 

an unweighted network is commonly considered as weighted with all edge weights equal to one. Using both 

existent versions of Neighbourhood Overlap on such network produce completely different values. In this 

paper, we tackle this problem and propose a new generalization for Neighbourhood Overlap that works 

equally for unweighted and weighted networks. Experiment performed on networks with various 

parameters showed similar performance of our measure to the existing measures. 
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1. INTRODUCTION 
 

A social network is a set of interconnected individuals, groups or organizations. For 

computational purposes, it is naturally represented by graph where a set of nodes are connected 

by edges. There are many analysis approaches that could be done to infer hidden information 

from the topology of the network only, without knowing the details of interaction between the 

nodes. One of the important analysis measures is the Neighbourhood Overlap (NO) [1]. NO 

measure assigns a weight to each edge in the network representing its strength. The strength and 

weakness in this context have special definitions [2, 3]. A strong edge is an edge in which its 

terminals share relatively high number of their neighbours. A weak edge is a local bridge in 

which its removal would make the shortest path between its terminals higher than 2, in other 

terms, they don't share any neighbour. NO gives a value for strength by calculating the ratio of 

common neighbours to all neighbours of both nodes, excluding themselves. Another approach is 

to weight the edge by the number of hops of the shortest path between its terminals if the edge 

were removed. This approach is computationally expensive, and it weights the edge according to 

its weakness not its strength, in other words, two nodes having 100 neighbours in common and 

two nodes with one common neighbour will have the same weight. NO proved to be useful in 

many applications. One of the most important is community detection [4, 1, 5, 6] where nodes are 

partitioned into subsets, each subset has a relatively larger internal edge density among its 

members than with the nodes of different subsets. 

 

The early proposed NO measure works for unweighted networks only. According to our 

knowledge, only one extension to weighted networks has been proposed in [7]. As will be 
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explained in sections 2 and 3, this measure is not mathematically equivalent to the original 

measure if applied to unweighted network, i.e. if we consider edge weights to be all 1s or if an 

unweighted network is handled as weighted with weights being all 1s. In this case, the existing 

extension produces different values than the original NO. In this paper we propose a new measure 

that solves this point. It works equally for unweighted and weighted networks while having 

similar performance in complex networks compared to the existing measures. 

 

The article is structured as follows. In section 2, we present a literature review related to edge 

strength computation in complex networks with focus on Neighbourhood Overlap and its 

applications. Section 3 presents the proposed measure and its mathematical characteristics. In 

section 4 we present an evaluation study that confirms the performance of our measure. 

Conclusion and future work are reported in section 5. 

 

2. RELATED WORK 
 

The neighbourhood overlap of an edge (i,j) [1] is defined as the number of nodes who are 

common neighbours of both i and j divided by the number of nodes who are neighbours of at least 

one of the two nodes i or j (excluding each other). It is equal to: 

 

                                     𝑂𝑖𝑗 =  
𝐶𝑖𝑗

𝑘𝑖 + 𝑘𝑗−2−𝑐𝑖𝑗
                                                (1) 

 

where 𝑘𝑖 and 𝑘𝑗 are, respectively, the degrees of nodes i and j, and 𝑐𝑖𝑗 is the number of common 

neighbours of both i and j. The factor of 2 in the denominator is to account for excluding vertices 

i and j who are neighbours of each other. Low values of this measure indicate weak ties between 

the corresponding nodes. 

 

In [2], the authors defined strong and weak ties, and based on them, they used the formula above 

to quantify the strength of an edge by a real number instead of just being weak or strong. In [8], 

the authors confirmed the results by using a phone call data that allowed them to weight an edge 

by the number of minutes spent on a call between two nodes in the network.  

 

They realized that the curve of neighbourhood overlap as function of their percentile in the sorted 

order of all edges is almost linear, which means that this measure could be actually used to infer 

tie strength. In [9] authors applied the notion of strong and weak edges in social networks, 

actually, they redefined the weak ties in a different way that suits better an online social network 

like Facebook. 

 

NO measure was used in various community detection algorithms, in which some of them 

depends heavily on it. The algorithm proposed in [4] depends on the principle that low NO-

weighted edges represent local bridges between edges. It removes edges in increasing order of 

their NO weight, thus removing the local bridges one after another, then finding the case that 

gives highest quality function value (called modularity) [10]. Another algorithm based on NO 

was introduced in [5], which uses the notion of weak ties to sort nodes into communities. 
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The existing NO measure (equation 1) computes the strength of an edge no matter the weight 

associated to it in the input graph. In weighted graphs, the weight of an edge between two nodes 

vehicles information about the strength of their relationship. Hence, computing NO in weighted 

graphs should involve both the weight of the edge along with the proportion of common 

neighbours of its terminal nodes. According to our knowledge, the only research that extended the 

concept of NO to weighted networks is the work proposed in [7]: 
 

 

                                 𝑂𝑖𝑗
𝑤 =  

∑ (𝑤𝑖𝑘+𝑤𝑗𝑘)𝑘∈𝑁𝑖∩𝑁𝑗

𝑆𝑖+𝑆𝑗−2𝑤𝑖𝑗
                               (2) 

 

Where 𝑁𝑖  (𝑁𝑗) is the set of neighbours of node i (j), 𝑤𝑖𝑘 denotes the weight associated with the 

edge between nodes i and k, and 𝑆𝑖 (𝑆𝑗) denotes the strength of node i (j), where 𝑆𝑖 =  ∑ 𝑤𝑖𝑘𝑘∈𝑁𝑖
. 

The authors of this measure showed its performance in estimating edge strengths. The main 

problem is that this measure is not equivalent to the original measure (equation 1) if all edge 

weights are 1s, i.e. similar to unweighted network. Consider the following unweighted graph 

where we consider edge weights to be all 1s. 
 
 

 
 

The NO of edge [1,2] is computed as follows: 

 

 

𝑂12
𝑤 =  

𝑤10 + 𝑤20

𝑆1 + 𝑆2 −  2𝑤12
=  

1 + 1

3 + 2 − 2
=  

2

3
 

 

where 𝑂12 =  
1

3 + 2 − 2 − 1
=  

1

2
 

 
 

In this article we propose a new measure that solves this problem mathematically while 

maintaining the performance of estimating edge strengths. 

 

3. PROPOSED MEASURE 
 

Our proposed measure (called NO) is calculated using the following equation: 

 
 

                       𝑁𝑂𝑖𝑗
𝑤 =  

∑ min (𝑤𝑖𝑘,𝑤𝑗𝑘)𝑘∈𝑁𝑖∩𝑁𝑗

∑ max (𝑤𝑖𝑘,𝑤𝑗𝑘)𝑘∈𝑁𝑖∪𝑁𝑗−{𝑖,𝑗}
                                 (3) 

 

Where 𝑁𝑖 ∩ 𝑁𝑗   is the set of common neighbors of nodes 𝑖 and 𝑗, and 𝑁𝑖 ∪ 𝑁𝑗 − {𝑖, 𝑗} is the union 

of the set of neighbors of both nodes, without i and j that are neighbours to each other. 
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This formula was meant to be a generalization to the neighbourhood overlap measure 𝑂𝑖𝑗 on 

unweighted graphs (cf. equation 1). To achieve the generalization, we represent the network as 

sets of nodes, each set contains the neighbors of a node, the original neighbourhood overlap 𝑂𝑖𝑗 

between nodes 𝑖 and 𝑗 can then be written as the size of intersection over the size of union of 

neighbors of both nodes (excluding 𝑖 𝑎𝑛𝑑 𝑗 themselves): 

 

                                                 
|𝑁𝑖∩𝑁𝑗|

|(𝑁𝑖−{𝑗} ∪ (𝑁𝑗− {𝑗})|
                                       (4) 

 

Let us define a partial belonging set (a set that its elements partially belong to it) as a mapping 

from the set of all nodes in the graph to the set of positive real numbers: 𝑀: 𝐺 → 𝑅+ that maps 

each node to its membership in the set. Nodes outside the set are mapped to zero. 

 

We define the size of a mapping to be  ∑ 𝑀(𝑥)𝑥∈𝐺 , in our case it is the summation of all 

memberships of any node x in the set. In an unweighted network, where all nodes have 

memberships 1, this is equivalent to the cardinal of the set. In the case of a weighted network, we 

represent the set of neighbours 𝑁𝑖 of a node 𝑖 as a mapping 𝑀𝑁𝑖 defined as the 

following:  𝑀𝑁𝑖
(𝑥) =  𝑤𝑖𝑥, thus, making the membership of the node 𝑥 to the set 𝑁𝑖 as the weight 

of the edge connecting it to 𝑖. 
 

Now the problem of generalization has transformed into a problem of defining the intersection 

and union operators between two partial belonging sets, then it will be straight forward to replace 

the size of intersection between the neighbours of two nodes in equation 4 to the size of 

intersection between the partial belonging sets of the same two nodes, the same for union. In 

regular sets, the union between sets A and B is the set of elements which are in A, in B, or in 

both. In fact, it is the smallest set that is bigger than both. In the context of sets with partial 

belongings, the mapping corresponding for the union of A and B is the maximum of the 

mappings 

 

corresponding to A and B, because it is the only mapping that matches being the smallest 

mapping that is bigger than both: 

 

 

                    ∀𝑥 ∈ (𝐴 ∪ 𝐵), 𝑀𝐴∪𝐵(x) = max(𝑀𝐴(𝑥), 𝑀𝐵(𝑥))                   (5) 

 
The intersection between sets A and B is the set that contains all the elements that are in both sets. 

It is the largest set that is smaller than both. In partial belonging sets, it is the minimum of the two 

mappings as it is the biggest mapping smallest than both, which is: 

 

                    ∀𝑥 ∈ (𝐴 ∩ 𝐵), 𝑀𝐴∩𝐵(x) = min(𝑀𝐴(𝑥),  𝑀𝐵(𝑥))                   (6) 
 

 

 

 

 

 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.11, No.1, January 2020 

97 

Accordingly, the neighbourhood overlap for a weighted edge (i,j) is the fraction of the size of the 

mapping 𝑀𝑁𝑖∩𝑁𝑗
 to the size of the mapping 𝑀𝑁𝑖∪𝑁𝑗

 that leads to the equation (3). The proposed 

measure is a generalization of the original neighbourhood overlap (equation 1 and 4), i.e. it gives 

same results in the case of unweighted graph (supposing the weight of each edge is 1). In fact, 

when the weights of all edges are ones, the minimum of weights of the two edges to each 

common neighbour will be also 1, thus the numerator will be equal to the count of common 

neighbours. Likewise, the denominator will be equal to the number of all neighbours without i 

and j themselves. In this case it gives the proportion of common neighbours to all neighbours 

similarly to the original measure. 

 

4. EVALUATION 
 

In order to evaluate our measure, we compared it to the reference measure 𝑂𝑖𝑗
𝑤, the only existing 

extension on weighted networks (cf. section 2). We compared the values obtained by our measure 

𝑁𝑂𝑖𝑗
𝑤 to 𝑂𝑖𝑗

𝑤 using the well-known Lancichinetti-Fortunato-Radicchi (LFR) benchmark. LFR 

benchmark is a reference algorithm that generates benchmark synthetic networks that resemble 

real-world networks [11]. This method allows to generate weighted networks and the underlying 

community structure that satisfy the user’s parameters. Some of the parameters specify properties 

of communities in the network: n (number of nodes), cmin and cmax (minimum and maximum 

community size). The other parameters specify properties of the generated network: k (average 

degree), kmax (maximum degree), μt (mixing parameter for the topology: each node shares a 

fraction μt of its edges with nodes in other communities), and μw (mixing parameter for the 

weights: each node shares a fraction μw of its total edge weights with nodes in other 

communities). We consider it is important to evaluate NO on such networks with well-known 

community structure as well as NO helps identifying communities as showed in section 2. In fact, 

it has been shown that NO is a significant feature that allows to partition the network into 

communities. NO is related to the network size and node degrees. Moreover, the distribution of 

the edge weights and the topology of the network should have high influence on the obtained 

values. Figures 1 and 2 show the results obtained by our measure and the reference measure 𝑂𝑖𝑗
𝑤 

while varying the LFR parameters n, k, μt, μw. Each point is the plots is averaged over 50 

networks. The main conclusion across all plots in both figures is that there is a linear relation 

between our measure and 𝑂𝑖𝑗
𝑤. Our measure is simply a linear translation of 𝑂𝑖𝑗

𝑤 and hence it can 

replace it in all circumstances. Moreover, our measure shows a consistent profile for all network 

sizes and mixing parameters where 𝑂𝑖𝑗
𝑤 seems to be sensitive for high mixing parameters (μt and 

μw) in which it is hard to partition the network into communities. The obtained results confirm 

the validity of our measure in estimating the neighbourhood overlap of edges in weighted 

networks. 
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Figure. 1: The effects of network size, average degree and mixing parameter for the weights μw on LFR 

weighted networks. Plots show average neighbourhood overlap of the network according to our method and 

the method proposed in [7]. All results are from networks with mixing parameter for the topology = 0.3 and 

maximum degree = 50. All results are averaged over 50 networks with each set of parameters. 
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Figure. 2: The effects of network size, average degree and mixing parameter for the topology μt on LFR 

weighted networks. Plots show average neighbourhood overlap of the network according to our method and 

the method proposed in [7]. All results are from networks with mixing parameter for the weights = 0.3 and 

maximum degree = 50. All results are averaged over 50 networks with each set of parameters. 

 

5. CONCLUSION AND FUTURE WORK 
 

Neighbourhood Overlap measures edge strength in complex networks. In this article we proposed 

a new generalization of this measure in the context of weighted networks. In contrast to the 

existing measure 𝑂𝑖𝑗
𝑤, our measure 𝑁𝑂𝑖𝑗

𝑤can be applied to both weighted and unweighted 

networks as it is mathematically equivalent to original Neighbourhood Overlap if the edge 

weights are all 1s. Large experiment on the well-known LFR benchmark proved the validity of 

our measure. It has similar performance compared to the existing measure. Furthermore, our 

measure is stable across all network parameters while 𝑂𝑖𝑗
𝑤 is influenced by the topology and 

weights distribution of the network. As part of future work, we plan to validate our method on 

weighted directed networks and to use it in existing community detection algorithm. 
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