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ABSTRACT 
 

The purpose of software defect prediction is to improve the quality of a software project by building a 

predictive model to decide whether a software module is or is not fault prone. In recent years, much 
research in using machine learning techniques in this topic has been performed. Our aim was to evaluate 

the performance of clustering techniques with feature selection schemes to address the problem of software 

defect prediction problem. We analysed the National Aeronautics and Space Administration (NASA) 

dataset benchmarks using three clustering algorithms: (1) Farthest First, (2) X-Means, and (3) self-

organizing map (SOM). In order to evaluate different feature selection algorithms, this article presents a 

comparative analysis involving software defects prediction based on Bat, Cuckoo, Grey Wolf Optimizer 

(GWO), and particle swarm optimizer (PSO). The results obtained with the proposed clustering models 

enabled us to build an efficient predictive model with a satisfactory detection rate and acceptable number 

of features. 
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1. INTRODUCTION 
 

Information technology companies need to develop and build high-quality software, which can be 

a challenging process since it leads to extremely high computational complexity [1]. Yet, such 

concerns can be eliminated, especially if we test the new software modules through learning from 
defect data [2]. Therefore, the software defect prediction process becomes an essential part of 

improving software reliability and predicting the potential defects during the early stages of any 

software development lifecycle. 
 

During building projects, an evaluation of software life-cycle activities, such as performance 

analysis and functional tests accompanied by the measurement of metrics, is highly 

recommended to decide at which point to apply quality assurance techniques [3]. Goodman 
defines software metrics as: “The continuous application of measurement-based techniques to the 

software development process and its products to supply meaningful and timely management 

information, together with the use of those techniques to improve that process and its products” 
[4]. 

 

Software metric tools have been applied to defect prediction to help in improving the quality of 
software project management [5]. Therefore, in any information system, every software module 

is depicted as a set of metrics values and contains binary fault‐proneness class label information. 

The resulting metric values are used to build predictive models to label the module as to whether 

it is fault-prone or not. 
 

http://www.airccse.org/journal/ijaia/current2021.html
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Throughout the past decade, data mining and machine learning methods have been widely 
recognized as solutions for a number of classification problems [6]. However, high 

dimensionality threatens the modelling process as most real-time datasets usually include 

irrelevant and redundant features. The high dimensionality problem has been subjected to 

numerous studies supporting the claim that it leads to extensive computational cost and 
degradation of the performance of certain specific models [7]. Therefore, a variety of feature 

selection methods were recommended to exclude irrelevant and unnecessary features. 

 
The concept of clustering addresses the discovery of natural groupings in datasets [8]. The 

essence of clustering techniques is to analyse data even in the absence of class label. In case of 

analysing software quality, defective and non-defective software modules will have similar 
software metrics and accordingly will likely form clusters. So, instead of inspecting and labelling 

software modules one at a time, software engineers can assign all of the modules with similar in 

quality label to the same cluster. 

 
Selecting a suitable clustering algorithm for a software defects prediction problem is worth 

investigating. This paper concerns implementation of clustering techniques for predicting 

software defects. In order to evaluate different feature selection algorithms, this article presents a 
comparative analysis involving the process of combining several swarm-based algorithms with 

the clustering method to finding optimal solutions. The performance of these algorithms is 

compared to each other by computational simulation results considering the National Aeronautics 
and Space Administration (NASA) data repository. 

 

The main contribution of this article is the implementation of a bio-inspired feature selection-

based clustering model for predicting software faults. We conducted a comparative analysis on 
the impact of applying several swarm-based feature selection methods to the defect prediction. 

We investigated deployment of multiple clustering techniques in an attempt to identify a 

collection of crucially needed software design processes. 
 

This paper is organized in several sections. The next section, Section II, discusses the related 

work. Section III explains the proposed algorithm. Section IV reflects the results and findings of 

the experiments, and Section V concludes this study. 
 

2. RELATED WORK 
 

For more than a decade, software defect prediction has been recognized an important research 
topic in software engineering. Software defect prediction has attracted the attention of scholars in 

knowledge discovery and data mining fields. Many scholars have considered numerous machine 

learning algorithms to tackle the classification problems related to software defect prediction [9–

18]. 
 

In [9], researchers studied and explored the data gathered from 27 moderated-size software sets 

using six classification models: (1) principal component analysis (PCA), (2) discriminant 
analysis, (3) logistic regression (LR), (4) holographic networks, (5) logical classification, and (6) 

layered neural networks. The classification models were evaluated with respect to 

misclassification rate, predictive validity, verification cost, and achieved quality. Results indicate 
that no model satisfied the classification criterion in discriminating the software defects. 

Researchers in [10], built a model to predict defect-prone software modules using support vector 

machine (SVM) using four NASA datasets, namely PC1, CM1, KC1, and KC3. In addition, the 

performance was compared with eight statistical and machine learning models. The researchers 
concluded that SVM outperformed the other techniques. In a study by [11], researchers 

performed a comparative experimental study of the effectiveness of artificial neural networks 
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(ANNs) and SVMs in the dataset obtained from NASA dataset. The performance was compared 
with the SVM Gaussian kernel function and indicated that SVM performed better than ANN. 

In a study by [12], researchers presented an application back-propagation neural network (BPNN) 

based on three cost-sensitive boosting algorithms and tested it over four NASA datasets. The 

designs of two of the BPNNs were based on weight updating, while the other was based on 
threshold. The empirical results indicated that the threshold-based feed forward neural network 

performed better than other methods particularly for object-oriented software modules. In a study 

by [13], researchers presented an experiment for comparing several statistical and machine 
learning techniques using AR1 and AR6 public domain datasets to find the relationship between 

the static code metrics and the fault proneness of a module. Performance was evaluated using 

area under the curve (AUC) values. Results revealed that decision tree achieved better results 
than other applied techniques. 

 

Researchers in a study by [14], detected faulty components by applying the radial basis function 

neural network with novel adaptive dimensional biogeography-based optimization model to 
investigate five NASA datasets from the PROMISE repository. Results were satisfactory 

compared to conventional models. Researchers in a study done in [15], constructed a graphical 

user interface (GUI) tool with the help of MATLAB for software defect prediction based on the 
Bayesian regularization neural network (BRNN) technique, which led to a reduction in the 

software cost by limiting the squared errors and weights. The performance of the technique was 

compared with Levenberg Marquardt and back propagation neural network algorithms, and 
according to the results, the BRNN performed better. 

 

Feature selection has a major role in detecting the most significant attributes and consequently 

improving software defect prediction to alleviate the high dimensionality concerns. Several 
studies have explored the effectiveness of feature selection methods on the performance of defect 

prediction models [16–18]. Researchers [16], detected faulty components by applying four 

feature ranking and two wrapper methods on the code change-based bug prediction over eleven 
software projects. They found that feature selection step led to an improvement in classification 

speed and scalability, and optimally reasonable results were obtained with only 3% of the total 

feature set. Researchers [17] built a prediction model based on several feature selection models. 

They applied seven feature ranking and two wrapper methods and one embedded method. They 
applied several changes and source code metrics, and they tested this system over the noisy 

NASA dataset. Results indicate no significant differences on defect prediction over the datasets 

were found. In [18], researchers combined the output of six feature-ranking based methods and 
thoroughly investigated the performance of two ensemble methods over three datasets. The 

results on NASA dataset showed that differences between ranking method, classifier and 

software dataset significantly impacted the classification outcomes, and the ensemble method 
improved the fault prediction results. 

 

In a study by [18], researchers combined the output of six feature-ranking based methods and 

thoroughly investigated the performance of two ensemble methods over three datasets. The 
results on the NASA dataset showed that differences between ranking method, classifier, and 

software dataset had a significant impact on classification outcomes, and the ensemble method 

led to an improvement in fault prediction results. 
 

3. MATERIALS AND METHODS 
 

The aim of this study was to suggest a feature selection-based clustering model for predicting 

software defects. This section describes the methodology used in this study. The proposed 
framework consists of three stages: (1) feature selection, (2) clustering, and (3) decision making. 

An experimental framework was implemented in two dimensions, and initially, datasets were 
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directly fed into classifiers before the feature selection stage. Yet, in the second dimension, the 
datasets started with the feature selection stage. We employed several classifiers to discover the 

best algorithms to resume feature selection step. 

 

3.1. Datasets 
 

The NASA benchmark datasets have been extensively used in software defect prediction. Each 
dataset implements a NASA-based software system, which includes different metrics that are 

closely related to software quality. The datasets contain records classified by a target class and 

consists of one value from two of the following: ‘Y’ or ‘N’. ‘Y’ indicates that the particular 

record (software module) is defective, and ‘N’ indicates that it is non-defective. Two cleaned 
version of NASA datasets are provided by [19]. The first version is called D’ and includes 

duplicate and inconsistent instances, whereas the second version D”, does not include duplicate 

and inconsistent instances. We used the D’’ version, available for download at [20]. This cleaned 
version has already been adapted in the literature [10–12,14,17,18]. Many researchers agree on 

considering D’’ superior to its predecessor dataset as it does not contain redundant records and 

has a lower complexity level of data. Seven cleaned NASA datasets were used in this research for 
experiment. The chosen datasets include KC1, KC3, MC2, MW1, PC1, PC3, and PC4 (Tables 1 

and 2). 

 
Table 1. National Aeronautics and Space Administration (NASA) cleaned dataset D” details 

 
Dataset No. Features No. of records Defective Non-Defective Defective (%) 

KC1 22 1162 294 868 25.3 

KC3 40 194 36 158 18.5 

MC2 40 124 44 80 35.4 

MW1 38 250 25 225 10 

PC1 41 1107 76 1031 6 

PC3 41 1563 160 1403 10.2 

PC4 38 1270 176 1094 13.8 

 
Table 2. Features of the D’’ dataset 

 

No. Feature KC1 KC3 MC2 MW1 PC1 PC3 PC4 

1.  LOC_BLANK        

2.  BRANCH_COUNT        

3.  CALL_PAIRS        

4.  LOC_CODE_AND_COMMENT        

5.  LOC_COMMENTS        

6.  CONDITION_COUNT        

7.  CYCLOMATIC_COMPLEXITY        

8.  CYCLOMATIC_DENSITY        

9.  DECISION_COUNT        

10.  DECISION_DENSITY        

11.  DESIGN_COMPLEXITY        

12.  DESIGN_DENSITY        

13.  EDGE_COUNT        

14.  ESSENTIAL_COMPLEXITY        

15.  ESSENTIAL_DENSITY        
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No. Feature KC1 KC3 MC2 MW1 PC1 PC3 PC4 

16.  LOC_EXECUTABLE        

17.  PARAMETER_COUNT        

18.  GLOBAL_DATA_COMPLEXITY        

19.  GLOBAL_DATA_DENSITY        

20.  HALSTEAD_CONTENT        

21.  HALSTEAD_DIFFICULTY        

22.  HALSTEAD_EFFORT        

23.  HALSTEAD_ERROR_EST        

24.  HALSTEAD_LENGTH        

25.  HALSTEAD_LEVEL        

26.  HALSTEAD_PROG_TIME        

27.  HALSTEAD_VOLUME        

28.  MAINTENANCE_SEVERITY        

29.  MODIFIED_CONDITION_COUNT        

30.  MULTIPLE_CONDITION_COUNT        

31.  NODE_COUNT        

32.  NORMALIZED_CYLOMATIC_COMPLEXITY        

33.  NUM_OPERANDS        

34.  NUM_OPERATORS        

35.  NUM_UNIQUE_OPERANDS        

36.  NUM_UNIQUE_OPERATORS        

37.  NUMBER_OF_LINES        

38.  PERCENT_COMMENTS        

39.  LOC_TOTAL        

 

3.2. Classification via Clustering Techniques 
 

Unsupervised clustering algorithms sorts observations into similar sets or groups according to the 

values of their features even when class labels are absent. We will investigate three types of 

clustering techniques that work under different assumptions: (1) X-means, (2) farthest first, and 
(3) self-organizing map (SOM). The details of these techniques are described in the following 

sections. 

 

3.2.1. X-Means Clustering 

 

The popular K-means clustering algorism has many limitations as it tends to scale poorly and it is 

computationally heavy. Moreover, the solution depends on the initial positions of the cluster 
centers and the number of clusters K has to be delivered by the user as it can only find linearly 

separable clusters. In an attempt to solve these issues, Pelleg and Moore introduced a new and 

efficient algorithm [21]. Their innovations included two ways of exploiting cached sufficient 
statistics and an efficient test that selects the most promising subset of classes for refinement. The 

X-means algorithm searches the space of cluster locations and number of clusters based on the 

outcome of the Bayesian Information or the Akaike Information Criterion. Experimental results 
showed that the X-means algorithm provides a fast and effective way to cluster unstructured data. 

A generalized X-means algorithm procedure is described in the next section. 
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Step 1: Initialize K= Kmin 
 

Step 2: Rub K-Means algorithm 

 

Step 3: For k=1,..., k: Replace each centroid by two centroids 𝜇1and 𝜇2 
 

Step 4: Run K-means algorithm with K=2 over the cluster K. Replace or retain each 

centroid based on the model selection 
   

Step 5: If convergence condition is not satisfied, go to Step 2, Otherwise Stop 

 
Algorithm 1: Procedure for X-Means Algorithm [21] 

 

3.2.2. Farthest First Clustering Technique 

 
Farthest First is a unique clustering algorithm that combines both hierarchical and distance-based 

clustering. This algorithm builds a hierarchy of clusters using an agglomerative hierarchical 

clustering method with a distance measurement criterion that is similar to the one used by K-

Means algorithm. Farthest First assigns a centre to a random point, and then computes the k most 
distant points [22]. 

 

This algorithm starts with randomly choosing an instance as a cluster centroid, assigning the 
objects in the cluster, and then computing the distance between each remaining instance and its 

nearest centroid. The algorithm takes an arbitrary cluster centroid and calculates the distance of 

one centroid from other as the maximum cluster assignment using Farthest First. When outlier 

detection is performed on the dataset, objects that are outliers can be detected. This places the 
cluster centre at the point further from the present cluster. The process is repeated until the 

number of clusters is greater than a predetermined threshold value [23]. This clustering algorithm 

can ultimately speed up the clustering process as this algorithm requires fewer data relocations 
and adjustments. 

 

3.2.3. SOM-Based Cluster Analysis Technique 
 

The SOM has received increasing attention since it was proposed by Kohonen in 1990 [24]. SOM 

is a competitive unsupervised neural network that consists of both input and output layers with 

numerous neurons. The SOM methodology has been used in data analysis as tool for resolving 
and visualizing nonlinear relationships in complex data, topology-based cluster analysis, vector 

quantization, and projection of multidimensional data. It achieves clustering through 

dimensionality reduction using topographically ordered nodes that represent the distribution 
characteristics of the input samples. 

 

If one assumes that ‘m’ cluster units exist, which are arranged in a one- or two-dimensional 

(1D/2D) array, and the input signals are n-tuples [25]. The cluster unit whose weight vector 
matches the input pattern is approximately selected as winner. The input vector is compared with 

the target vector and if they differ, the weights of the network are altered slightly to reduce the 

error in the output. The Euclidean distance (D) is computed between the input vector and weight 
vectorwij and is represented in Equation 1. 

 

                                                 1 
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The smallest distance was computed, and the weights were updated using Equation 2. 
 

                                              2 
 

in which x denotes the input vector, i and j indicates index values. This process is repeated many 

times and with many sets of vector pairs until the network gives the desired output. 
 

4. RESULTS AND DISCUSSION 
 

In our work for the comparison of various clustering algorithms we used Weka platform [26]. 

Weka is one of data-mining tool which contains a collection of machine learning algorithms. In 

the proposed approach we have used WEKA with 10-foldcross validation method to evaluate 
data and compare results. The performance of the proposed model is measured using sensitivity, 

accuracy, precision, and f-measures [27]. 
 

The next step includes using several swarm-based algorithms and performs further tests on the 

NASA dataset by combining it with several clustering algorithms. Our main objectives were to 
improve the new method, test it on a relevant dataset, and compare this new method with another 

feature selection. Dataset selection was the first stage of proposed framework. The performance 

was compared using seven widely used clustering algorithms, namely K-MEANS, expectation 
maximization (EM), density-based (DB), Farthest First, SOM, learning vector quantization 

(LVQ), neural network, and X-Means clustering algorithms at the first-stage. The results of the 

proposed framework were evaluated through sensitivity, accuracy, precision, and f-measure 
measures. The proposed framework was implemented on seven cleaned NASA Datasets (D’’). 

The results are described in Table 3 to 14. Highest scores are highlighted in bold for easy 

identification. 
 

Tables 3–6 present the prediction performance results for each of the classification via clustering 
algorithms before the feature selection step. The first noteworthy observation in Table 3 was that 

Farthest First algorithm outperformed other algorithms in terms of sensitivity, accuracy, and f-

measures readings. But regarding precision, SOM scored a better result in with KC1, while X-
Means outperformed the others in KC3 dataset. Results of MC2 and MW1 datasets are reflected 

in Table 4. Regarding sensitivity and f-measures, Farthest First outperformed the other classifiers, 

while we noticed that the performance accuracy of all the algorithms and precision in most of the 

classifiers was fairly consistent. The results of PC1, PC3, and PC4 datasets are given in Tables 5 
and 6. It is clear that Farthest First algorithm outperformed other algorithms in sensitivity, 

accuracy, and f-measures readings. However, regarding precision, EM scored a better result in all 

the datasets. Eventually, we noticed that the best results were related with X-MEANS, Farthest 
First, and SOM. 
 

Table 3. Clustering results for KC1 and KC3datasets 
 

 KC1 KC3 

Algorithm sensiti
vity 

accura
cy 

precisi
on 

f-
measures 

sensitivi
ty  

accurac
y 

precision f-
measures 

EM 0.632 0.616 0.838 0.721 0.576 0.550 0.826 0.679 

DB 0.831 0.721 0.803 0.817 0.797 0.727 0.857 0.826 

K-MEANS 0.880 0.740 0.794 0.835 0.861 0.758 0.845 0.853 

X-MEANS 0.629 0.615 0.848 0.722 0.802 0.733 0.861 0.830 

FarthestFirst 0.998 0.748 0.749 0.856 0.962 0.814 0.835 0.894 

SOM 0.579 0.583 0.851 0.689 0.700 0.653 0.848 0.767 

LVQ 0.925 0.741 0.773 0.842 0.924 0.799 0.844 0.882 
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Table 4. Clustering results for MC2 and MW1 datasets 

 

 MC2 MW1 

Algorithm sensiti

vity 

accurac

y 

precisio

n 

f-

measures 

sensitivit

y  

accuracy precisi

on 

f-measures 

EM 0.440 0.477 0.786 0.564 0.744 0.738 0.944 0.832 

DB 0.925 0.694 0.698 0.796 0.777 0.755 0.941 0.851 

K-MEANS 0.950 0.685 0.685 0.796 0.830 0.802 0.944 0.883 

X-MEANS 0.825 0.667 0.725 0.772 0.718 0.712 0.955 0.820 

Farthest 
First 1.000 0.685 0.672 0.804 0.969 0.884 0.908 0.938 

SOM 0.733 0.663 0.759 0.746 0.772 0.771 0.960 0.856 

LVQ 0.950 0.685 0.685 0.796 0.858 0.816 0.932 0.894 

 
Table 5. Clustering results for PC1 and PC3 datasets 

 

 PC1 PC3 

Algorithm sensitiv

ity 

accurac

y 

precision f-

measures 

sensitivit

y  

accurac

y 

precisi

on 

f-

measures 

EM 0.700 0.708 0.981 0.817 0.651 0.673 0.969 0.779 

DB 0.686 0.669 0.937 0.792 0.637 0.609 0.884 0.741 

K-MEANS 0.684 0.654 0.918 0.784 0.693 0.644 0.874 0.773 

X-MEANS 0.683 0.690 0.968 0.801 0.649 0.666 0.956 0.773 

Farthest 

First 0.998 0.920 0.922 0.958 1.000 0.876 0.876 0.934 

SOM 0.804 0.770 0.931 0.863 0.620 0.640 0.941 0.748 

LVQ 0.998 0.920 0.922 0.958 1.000 0.876 0.876 0.934 

 
Table 6.Clustering results for PC4 dataset 

 

Algorithm sensitivity accuracy precision f-measures 

EM 0.719 0.728 0.949 0.818 

DB 0.671 0.650 0.896 0.767 

K-MEANS 0.671 0.633 0.874 0.759 

X-MEANS 0.703 0.640 0.833 0.763 

Farthest First 0.999 0.862 0.863 0.926 

SOM 0.829 0.731 0.837 0.833 

LVQ 0.989 0.856 0.863 0.922 

 

In the second step, we chose to modify the best-performing clustering algorithms to reach a 

higher prediction reading using four popular swarm intelligence algorithms described in the 
literature, specifically, PSO, Cuckoo, Bat, and GWO algorithms. The primary goal was to 

understand the trends and the relationship in their performance. The results of the selected 

optimization algorithms are reported in Table 7. For each of the selected datasets, we obtained 

four distinctive subsets. In general, we observed that the bio-based feature selection techniques 
helped remarkably in reducing the features numbers. For example, we noticed that feature 

selection techniques led to a reduction in the features in the KC1 dataset from 22 to 7–14 and in 

the PC1 dataset from 41 to 12–14 features. After constructing feature sets using the bio-based 
feature selection techniques, the techniques were individually applied to compare their 

performances. These features were then fed into X-MEANS, Farthest First, and SOM classifiers. 

 

 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021 

47 

Table 7.Selected features of bio-based feature algorithms 

 
Algori

thm 

KC1 KC3 MC2 MW1 PC1 PC3 PC4 

B
at

 

LOC_BLAN
K 
BRANCH_

COUNT 
LOC_COM
MENTSHA
LSTEAD_C
ONTENT 
HALSTEA
D_DIFFICU
LTY 

HALSTEA
D_LENGTH 
HALSTEA
D_LEVEL 
NUM_OPE
RANDS 
NUM_UNI
QUE_OPER

ATORS 
 
Total = 9 

LOC_BL
ANK 
BRANCH

_COUNT 
LOC_CO
DE_AND
_COMME
NT 
NORMAL
IZED_CY
LOMATI

C_COMP
LEXITY 
NUMBER
_OF_LIN
ES 
PERCEN
T_COMM
ENTS 

 
Total =6 

LOC_BL
ANK 
CALL_P

AIRS 
LOC_CO
MMENTS 
CYCLOM
ATIC_CO
MPLEXI
TY 
DESIGN_

COMPLE
XITY 
EDGE_C
OUNT 
ESSENTI
AL_COM
PLEXITY 
ESSENTI

AL_DEN
SITY 
GLOBAL
_DATA_
COMPLE
XITY 
GLOBAL
_DATA_

DENSITY 
HALSTE
AD_DIFF
ICULTY 
HALSTE
AD_EFF
ORT 
NODE_C
OUNT 

 
Total = 13 

LOC_BL
ANK 
CALL_P

AIRS 
LOC_CO
MMENTS 
DESIGN_
COMPLE
XITY 
EDGE_C
OUNT 

ESSENTI
AL_COM
PLEXITY 
NODE_C
OUNT 
NUM_UN
IQUE_OP
ERANDS 

NUMBER
_OF_LIN
ES 
 
 
Total =9 

LOC_BLAN
K 
LOC_CODE_

AND_COM
MENT 
LOC_COMM
ENTS 
CYCLOMAT
IC_COMPLE
XITY 
CYCLOMAT

IC_DENSITY 
PARAMETE
R_COUNT 
HALSTEAD_
CONTENT 
HALSTEAD_
DIFFICULT
Y 

HALSTEAD_
LENGTH 
MAINTENA
NCE_SEVER
ITY 
NORMALIZ
ED_CYLOM
ATIC_COMP

LEXITY 
NUM_UNIQ
UE_OPERAT
ORS 
NUMBER_O
F_LINES 
PERCENT_C
OMMENTS 
LOC_TOTAL 

 
Total =15 

LOC_BLAN
K 
LOC_CODE_

AND_COM
MENT 
LOC_COMM
ENTS 
CYCLOMAT
IC_DENSITY 
HALSTEAD_
CONTENT 

HALSTEAD_
LENGTH 
NORMALIZ
ED_CYLOM
ATIC_COMP
LEXITY 
NUM_OPER
ANDS 

NUM_UNIQ
UE_OPERA
NDS 
NUMBER_O
F_LINES 
PERCENT_C
OMMENTS 
 

Total =11 

LOC_BLAN
K 
LOC_CODE

_AND_CO
MMENT 
CONDITIO
N_COUNT 
ESSENTIA
L_COMPLE
XITY 
HALSTEAD

_CONTENT 
MULTIPLE
_CONDITI
ON_COUN
T 
NORMALIZ
ED_CYLO
MATIC_CO

MPLEXITY 
PERCENT_
COMMENT
S 
 
Total =8 
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Algori

thm 

KC1 KC3 MC2 MW1 PC1 PC3 PC4 
C

u
ck

o
o
 

LOC_COM

MENTS 
HALSTEA
D_CONTE
NT 
HALSTEA
D_DIFFICU
LTY 
HALSTEA

D_LEVEL 
HALSTEA
D_VOLUM
E 
NUM_UNI
QUE_OPER
ANDS 
NUM_UNI
QUE_OPER

ATORS 
 
Total =7 

LOC_BL

ANK 
BRANCH
_COUNT 
LOC_CO
DE_AND
_COMME
NT 
NORMAL

IZED_CY
LOMATI
C_COMP
LEXITY 
PERCEN
T_COMM
ENTS 
 
Total =5 

LOC_BL

ANK 
CALL_P
AIRS 
LOC_CO
MMENTS 
CYCLOM
ATIC_CO
MPLEXI

TY 
DESIGN_
COMPLE
XITY 
EDGE_C
OUNT 
GLOBAL
_DATA_
COMPLE

XITY 
GLOBAL
_DATA_
DENSITY 
HALSTE
AD_DIFF
ICULTY 
HALSTE

AD_EFF
ORT 
MAINTE
NANCE_
SEVERIT
Y 
 
Total = 11 

LOC_BL

ANK 
CALL_P
AIRS 
CYCLOM
ATIC_CO
MPLEXI
TY 
EDGE_C

OUNT 
ESSENTI
AL_COM
PLEXITY 
HALSTE
AD_CON
TENT 
MODIFIE
D_COND

ITION_C
OUNT 
NODE_C
OUNT 
NUM_UN
IQUE_OP
ERANDS 
NUMBER

_OF_LIN
ES 
 
Total =10 

LOC_BLAN

K 
BRANCH_C
OUNT 
LOC_CODE_
AND_COM
MENT 
LOC_COMM
ENTS 

CYCLOMAT
IC_DENSITY 
PARAMETE
R_COUNT 
HALSTEAD_
CONTENT 
MAINTENA
NCE_SEVER
ITY 

NORMALIZ
ED_CYLOM
ATIC_COMP
LEXITY 
NUM_UNIQ
UE_OPERA
NDS 
NUM_UNIQ

UE_OPERAT
ORS 
NUMBER_O
F_LINES 
PERCENT_C
OMMENTS 
LOC_TOTAL 
 

Total = 14 

LOC_BLAN

K 
LOC_CODE_
AND_COM
MENT 
LOC_COMM
ENTS 
HALSTEAD_
CONTENT 

HALSTEAD_
LENGTH 
NORMALIZ
ED_CYLOM
ATIC_COMP
LEXITY 
NUM_UNIQ
UE_OPERA
NDS 

NUM_UNIQ
UE_OPERAT
ORS 
NUMBER_O
F_LINES 
PERCENT_C
OMMENTS 
 

Total =10 

LOC_BLAN

K 
LOC_CODE
_AND_CO
MMENT 
LOC_COM
MENTS 
CYCLOMA
TIC_COMP

LEXITY 
CYCLOMA
TIC_DENSI
TY 
PARAMET
ER_COUNT 
MULTIPLE
_CONDITI
ON_COUN

T 
NUMBER_
OF_LINES 
PERCENT_
COMMENT
S 
 
Total = 9 
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Algori

thm 

KC1 KC3 MC2 MW1 PC1 PC3 PC4 
P

S
O

 

LOC_BLAN

K 
BRANCH_
COUNT 
LOC_CODE
_AND_CO
MMENT 
LOC_COM
MENTS 

CYCLOMA
TIC_DENSI
TY 
PARAMET
ER_COUNT 
HALSTEA
D_CONTE
NT 
HALSTEA

D_EFFORT 
MAINTEN
ANCE_SEV
ERITY 
NORMALI
ZED_CYLO
MATIC_CO
MPLEXITY 

NUM_UNI
QUE_OPER
ANDS 
NUMBER_
OF_LINES 
PERCENT_
COMMENT
S 

LOC_TOTA
L 
 
Total =14 

BRANCH

_COUNT 
LOC_CO
DE_AND
_COMME
NT 
NORMAL
IZED_CY
LOMATI

C_COMP
LEXITY 
 
Total =3 

LOC_BL

ANK 
LOC_CO
MMENTS 
DESIGN_
COMPLE
XITY 
EDGE_C
OUNT 

GLOBAL
_DATA_
COMPLE
XITY 
GLOBAL
_DATA_
DENSITY 
HALSTE
AD_DIFF

ICULTY 
HALSTE
AD_EFF
ORT 
HALSTE
AD_PRO
G_TIME 
MAINTE

NANCE_
SEVERIT
Y 
 
Total =10 

LOC_BL

ANK 
LOC_CO
MMENTS 
CONDITI
ON_COU
NT 
HALSTE
AD_CON

TENT 
NODE_C
OUNT 
NUM_UN
IQUE_OP
ERANDS 
 
Total =6 

LOC_BLAN
K 
BRANCH_C
OUNT 
LOC_CODE_

AND_COM
MENT 
LOC_COMM
ENTS 
CYCLOMAT
IC_DENSITY 
PARAMETE
R_COUNT 
HALSTEAD_

CONTENT 
HALSTEAD_
EFFORT 
MAINTENA
NCE_SEVER
ITY 
NORMALIZ
ED_CYLOM

ATIC_COMP
LEXITY 
NUM_UNIQ
UE_OPERA
NDS 
NUMBER_O
F_LINES 
PERCENT_C

OMMENTS 
LOC_TOTAL 
 
Total =14 

LOC_BLAN

K 
LOC_CODE_
AND_COM
MENT 
LOC_COMM
ENTS 
DESIGN_CO
MPLEXITY 

HALSTEAD_
CONTENT 
HALSTEAD_
LENGTH 
MAINTENA
NCE_SEVER
ITY 
NORMALIZ
ED_CYLOM

ATIC_COMP
LEXITY 
NUM_OPER
ANDS 
NUM_UNIQ
UE_OPERA
NDS 
PERCENT_C

OMMENTS 
 
Total =11 

LOC_BLAN

K 
LOC_CODE
_AND_CO
MMENT 
CONDITIO
N_COUNT 
CYCLOMA
TIC_DENSI

TY 
DESIGN_D
ENSITY 
ESSENTIA
L_COMPLE
XITY 
HALSTEAD
_CONTENT 
NORMALIZ

ED_CYLO
MATIC_CO
MPLEXITY 
PERCENT_
COMMENT
S 
 
Total =9 
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Algori

thm 

KC1 KC3 MC2 MW1 PC1 PC3 PC4 
G

W
O

 

LOC_BLAN

K 
LOC_COM
MENTS 
HALSTEA
D_CONTE
NT 
HALSTEA
D_DIFFICU

LTY 
HALSTEA
D_LEVEL 
HALSTEA
D_VOLUM
E 
NUM_UNI
QUE_OPER
ANDS 

NUM_UNI
QUE_OPER
ATORS 
 
Total =8 

BRANCH

_COUNT 
LOC_CO
DE_AND
_COMME
NT 
NORMAL
IZED_CY
LOMATI

C_COMP
LEXITY 
 
Total =3 

LOC_BL

ANK 
CALL_P
AIRS 
LOC_CO
MMENTS 
CYCLOM
ATIC_CO
MPLEXI

TY 
ESSENTI
AL_DEN
SITY 
GLOBAL
_DATA_
COMPLE
XITY 
GLOBAL

_DATA_
DENSITY 
HALSTE
AD_DIFF
ICULTY 
HALSTE
AD_EFF
ORT 

NODE_C
OUNT 
 
Total =10 

LOC_BL

ANK 
LOC_CO
MMENTS 
EDGE_C
OUNT 
HALSTE
AD_CON
TENT 

MODIFIE
D_COND
ITION_C
OUNT 
NODE_C
OUNT 
NUM_UN
IQUE_OP
ERANDS 

 
Total =7 

LOC_BLAN

K 
LOC_CODE_
AND_COM
MENT 
LOC_COMM
ENTS 
CYCLOMAT
IC_DENSITY 

PARAMETE
R_COUNT 
HALSTEAD_
CONTENT 
NODE_COU
NT 
NORMALIZ
ED_CYLOM
ATIC_COMP

LEXITY 
NUM_UNIQ
UE_OPERA
NDS 
NUMBER_O
F_LINES 
PERCENT_C
OMMENTS 

LOC_TOTAL 
 
Total =12 

LOC_BLAN

K 
LOC_CODE_
AND_COM
MENT 
LOC_COMM
ENTS 
HALSTEAD_
CONTENT 

HALSTEAD_
LENGTH 
MAINTENA
NCE_SEVER
ITY 
NORMALIZ
ED_CYLOM
ATIC_COMP
LEXITY 

NUM_UNIQ
UE_OPERA
NDS 
PERCENT_C
OMMENTS 
 
Total =9 

LOC_CODE

_AND_CO
MMENT 
PARAMET
ER_COUNT 
MULTIPLE
_CONDITI
ON_COUN
T 

PERCENT_
COMMENT
S 
 
Total =4 

 

Tables 8–11 present the performance of the clustering scheme based on the selected datasets. 
According to Table 8, highest sensitivity scores were obtained using KC1 feature set construction 

methods for Bat and PSO, with using 41% and 64% of the original feature size. KC3 and PC4 

recorded the highest sensitivity scores using Cuckoo feature set method, with nearly 13% and 

24% of the feature set respectively. The overall highest sensitivity scores were obtained when 
MW1, PC1 and PC3 applied the features extracted from Bat, Cuckoo and GWO. Worth noting 

that the highest scores were obtained with the Farthest First scheme. 

 
Table 8.Sensitivity results of each clustering algorithm 

 

Algorithm KC1  KC3 MC2 MW1 PC1 PC3 PC4 

B
at

 X-MEANS 0.625 0.797 0.763 0.584 0.584 0.649 0.696 

Farthest First 0.993 0.949 0.975 1.000 1.000 1.000 0.988 

SOM 0.647 0.708 0.793 0.692 0.692 0.620 0.676 

C
u
ck

o
o
 

X-MEANS 0.685 0.738 0.714 0.818 0.610 0.661 0.658 

Farthest First 0.985 0.975 0.975 0.960 1.000 1.000 0.992 

SOM 0.640 0.650 0.723 0.884 0.700 0.667 0.659 

P
S

O
 X-MEANS 0.714 0.821 0.714 0.775 0.626 0.691 0.691 

Farthest First 0.993 0.962 1.000 0.978 1.000 0.960 0.960 

SOM 0.704 0.568 0.810 0.901 0.712 0.712 0.712 

G
W

O
 X-MEANS 0.693 0.821 0.746 0.806 0.714 0.654 0.657 

Farthest First 0.984 0.962 0.975 0.969 0.993 1.000 0.991 

SOM 0.652 0.568 0.793 0.914 0.704 0.707 0.681 
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Tables 9 present the performance of the clustering scheme based on the selected datasets 
according to accuracy scores. The highest accuracy scores were obtained using MW1 and PC1 

feature set construction methods for Bat, Cuckoo, and PSO with 24%, 34%, and 34% of the 

original feature size, respectively. PC3 yielded good accuracy scores using the Bat, Cuckoo, and 

GWO feature set methods with nearly 28%, 24%, and 22% of the feature set respectively. PC4 
and KC3 scored 86% and 81% based on GWO and Cuckoo features, respectively, while KC1 

obtained the highest scores with features extracted from Bat and PSO. Most of the best results 

were obtained using Farthest First algorithm, except the case in which MC2 scored the highest 
accuracy using the SOM and GWO feature sets. 

 
Table 9. Accuracy results of each clustering algorithm 

 

Algorithm KC1  KC3 MC2 MW1 PC1 PC3 PC4 

B
at

 X-MEANS 0.582 0.737 0.651 0.615 0.615 0.666 0.692 

Farthest First 0.748 0.804 0.677 0.922 0.922 0.876 0.853 

SOM 0.612 0.693 0.718 0.697 0.697 0.640 0.691 

C
u
ck

o
o
 

X-MEANS 0.636 0.671 0.607 0.809 0.633 0.666 0.656 

Farthest First 0.742 0.808 0.677 0.900 0.922 0.876 0.856 

SOM 0.608 0.617 0.654 0.868 0.706 0.662 0.651 

P
S

O
 X-MEANS 0.643 0.742 0.607 0.772 0.634 0.709 0.709 

Farthest First 0.748 0.794 0.694 0.916 0.922 0.838 0.838 

SOM 0.655 0.580 0.651 0.882 0.717 0.719 0.719 

G
W

O
 X-MEANS 0.635 0.742 0.667 0.798 0.643 0.663 0.665 

Farthest First 0.745 0.794 0.677 0.908 0.748 0.876 0.865 

SOM 0.620 0.580 0.721 0.894 0.655 0.700 0.697 

 

According to Table 10, the highest precision scores were obtained using MW1 and PC1feature 

set construction methods for Bat method with 24% and 37% of the original feature size, 
respectively. PC3 and PC4 give the second highest precision scores using Bat and PSO feature 

set methods with nearly 28% and 27% of the feature sets, respectively. The highest precision 

scores of KC3, MC2, and KC1 datasets were obtained when the features extracted from Bat, 
Cuckoo and PSO were applied. It should be noted that the highest scores were obtained with the 

SOM and X-MEANS schemes. 

 
Table 10. Precision results of each clustering algorithm 

 

Algorithm KC1  KC3 MC2 MW1 PC1 PC3 PC4 

B
at

 X-MEANS 0.775 0.869 0.744 0.978 0.978 0.956 0.926 

Farthest First 0.751 0.833 0.672 0.922 0.922 0.876 0.861 

SOM 0.788 0.911 0.793 0.963 0.963 0.941 0.968 

C
u
ck

o
o
 

X-MEANS 0.791 0.849 0.714 0.959 0.966 0.935 0.904 

Farthest First 0.749 0.823 0.672 0.931 0.922 0.876 0.862 

SOM 0.793 0.838 0.825 0.965 0.967 0.930 0.887 

P
S

O
 X-MEANS 0.792 0.855 0.714 0.959 0.936 0.966 0.966 

Farthest First 0.750 0.817 0.678 0.932 0.922 0.867 0.867 

SOM 0.814 0.888 0.723 0.965 0.967 0.962 0.962 

G
W

O
 X-MEANS 0.785 0.855 0.758 0.959 0.792 0.936 0.923 

Farthest First 0.752 0.817 0.672 0.932 0.750 0.876 0.870 

SOM 0.799 0.888 0.793 0.965 0.814 0.935 0.954 

 

Tables 11 presents the performance of the clustering scheme based on the selected datasets 

according to f-measures scores. The best scores were obtained using MW1 and PC1 feature set 
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construction methods for Bat, Cuckoo, and PSO with 24% to 37% of the original feature size. 
PC3 yielded f-measures scores of 93.4% using Bat, Cuckoo, and PSO, while PC4 yielded 92.6% 

based on GWO features, which represents 11% of the original feature size. Overall, the highest f-

measures scores were obtained when KC3, KC1, and MC2 was presented using the features 

extracted from Bat, Cuckoo, and GWO. It is worth noting that the highest scores were obtained 
mostly with the Farthest First scheme. 

 
Table 11. f-measures results of each clustering algorithm 

 

Algorithm KC1  KC3 MC2 MW1 PC1 PC3 PC4 

B
at

 X-MEANS 0.692 0.832 0.753 0.732 0.732 0.773 0.795 

Farthest First 0.855 0.888 0.796 0.959 0.959 0.934 0.920 

SOM 0.710 0.797 0.793 0.806 0.806 0.748 0.796 

C
u
ck

o
o
 

X-MEANS 0.734 0.789 0.714 0.883 0.748 0.775 0.762 

Farthest First 0.851 0.892 0.796 0.945 0.959 0.934 0.922 

SOM 0.708 0.732 0.770 0.923 0.812 0.777 0.756 

P
S

O
 X-MEANS 0.751 0.838 0.714 0.857 0.750 0.805 0.805 

Farthest First 0.855 0.884 0.808 0.954 0.959 0.911 0.911 

SOM 0.755 0.693 0.764 0.932 0.820 0.818 0.818 

G
W

O
 X-MEANS 0.736 0.838 0.752 0.875 0.751 0.770 0.767 

Farthest First 0.852 0.884 0.796 0.950 0.855 0.934 0.926 

SOM 0.718 0.693 0.793 0.939 0.755 0.806 0.795 

 

In Figures 1 and 2, consistency has also been validated by drawing boxplots diagrams based on 

accuracy rates of the clustering results versus the accuracy rates of the original dataset when 

addressing all datasets. Figure 1 shows the standardized boxplots of accuracy values for each 
dataset on all the clustering methods, whereas Figure 2 shows the boxplots of accuracy values in 

the second phase after applying bio-based feature selection techniques. It can be observed that the 

superiority of the proposed technique is evident on the majority of data sets as compared to 

original dataset. So, the suggested clustering technique is suitable for analysing our experimental 
results on the clean NASA dataset. In almost all cases, the proposed technique generates more 

consistent and convincing results as compared to other algorithms. 

 
Having insight into the clustering results before and after feature selection, it is clear that most of 

the performance metrics performed better as the dimensionality of features decreased 

considerably. Performance results reveals that the Bat and Cuckoo algorithms yielded the best 
performance on the datasets. It is evident that the Farthest First clustering algorithm is good for 

predicting software faultiness, while Bat and Cuckoo were useful in comparison to all other 

metaheuristic algorithms. Although the class imbalance issue, which is the main reason of biased 

performance in any classification problem, was not considered in this study we suggest including 
resampling technique in any future framework system. 
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Figure 1. Boxplots of accuracy rates of clustering on original datasets 

 

 
 

Figure 2. Boxplots of accuracy rates of clustering using the proposed technique 

 

5. CONCLUSION 
 
The main contribution of this article is the implementation of a bio-inspired feature selection-

based clustering framework for software fault prediction. The proposed framework consisted of 

three stages, including feature selection, clustering, and evaluation. Two different dimensions 
were used in the framework, one with and one without feature selection. This research compared 

the ability of PSO, Bat, Cuckoo, and GWO bio-inspired algorithms. Several clustering algorithms 

were applied: (1) X-means, (2) Farthest First, and (3) SOM. For experiments, seven cleaned 

publicly available NASA datasets were used. Results showed the effectiveness of Farthest First 
clustering algorithm in predicting software faultiness, and Bat and Cuckoo were useful in 

comparison to all other metaheuristic algorithms. 
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