
International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

DOI: 10.5121/ijaia.2021.12103 39

TOWARDS PREDICTING SOFTWARE DEFECTS WITH

CLUSTERING TECHNIQUES

Waheeda Almayyan

Computer Information Department, Collage of Business Studies, PAAET, Kuwait

ABSTRACT

The purpose of software defect prediction is to improve the quality of a software project by building a

predictive model to decide whether a software module is or is not fault prone. In recent years, much
research in using machine learning techniques in this topic has been performed. Our aim was to evaluate

the performance of clustering techniques with feature selection schemes to address the problem of software

defect prediction problem. We analysed the National Aeronautics and Space Administration (NASA)

dataset benchmarks using three clustering algorithms: (1) Farthest First, (2) X-Means, and (3) self-

organizing map (SOM). In order to evaluate different feature selection algorithms, this article presents a

comparative analysis involving software defects prediction based on Bat, Cuckoo, Grey Wolf Optimizer

(GWO), and particle swarm optimizer (PSO). The results obtained with the proposed clustering models

enabled us to build an efficient predictive model with a satisfactory detection rate and acceptable number

of features.

KEYWORDS

Software defect prediction, Data mining, Machine learning, Clustering, Feature selection.

1. INTRODUCTION

Information technology companies need to develop and build high-quality software, which can be

a challenging process since it leads to extremely high computational complexity [1]. Yet, such

concerns can be eliminated, especially if we test the new software modules through learning from
defect data [2]. Therefore, the software defect prediction process becomes an essential part of

improving software reliability and predicting the potential defects during the early stages of any

software development lifecycle.

During building projects, an evaluation of software life-cycle activities, such as performance

analysis and functional tests accompanied by the measurement of metrics, is highly

recommended to decide at which point to apply quality assurance techniques [3]. Goodman
defines software metrics as: “The continuous application of measurement-based techniques to the

software development process and its products to supply meaningful and timely management

information, together with the use of those techniques to improve that process and its products”
[4].

Software metric tools have been applied to defect prediction to help in improving the quality of
software project management [5]. Therefore, in any information system, every software module

is depicted as a set of metrics values and contains binary fault‐proneness class label information.

The resulting metric values are used to build predictive models to label the module as to whether

it is fault-prone or not.

http://www.airccse.org/journal/ijaia/current2021.html
https://doi.org/10.5121/ijaia.2021.12103

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

40

Throughout the past decade, data mining and machine learning methods have been widely
recognized as solutions for a number of classification problems [6]. However, high

dimensionality threatens the modelling process as most real-time datasets usually include

irrelevant and redundant features. The high dimensionality problem has been subjected to

numerous studies supporting the claim that it leads to extensive computational cost and
degradation of the performance of certain specific models [7]. Therefore, a variety of feature

selection methods were recommended to exclude irrelevant and unnecessary features.

The concept of clustering addresses the discovery of natural groupings in datasets [8]. The

essence of clustering techniques is to analyse data even in the absence of class label. In case of

analysing software quality, defective and non-defective software modules will have similar
software metrics and accordingly will likely form clusters. So, instead of inspecting and labelling

software modules one at a time, software engineers can assign all of the modules with similar in

quality label to the same cluster.

Selecting a suitable clustering algorithm for a software defects prediction problem is worth

investigating. This paper concerns implementation of clustering techniques for predicting

software defects. In order to evaluate different feature selection algorithms, this article presents a
comparative analysis involving the process of combining several swarm-based algorithms with

the clustering method to finding optimal solutions. The performance of these algorithms is

compared to each other by computational simulation results considering the National Aeronautics
and Space Administration (NASA) data repository.

The main contribution of this article is the implementation of a bio-inspired feature selection-

based clustering model for predicting software faults. We conducted a comparative analysis on
the impact of applying several swarm-based feature selection methods to the defect prediction.

We investigated deployment of multiple clustering techniques in an attempt to identify a

collection of crucially needed software design processes.

This paper is organized in several sections. The next section, Section II, discusses the related

work. Section III explains the proposed algorithm. Section IV reflects the results and findings of

the experiments, and Section V concludes this study.

2. RELATED WORK

For more than a decade, software defect prediction has been recognized an important research
topic in software engineering. Software defect prediction has attracted the attention of scholars in

knowledge discovery and data mining fields. Many scholars have considered numerous machine

learning algorithms to tackle the classification problems related to software defect prediction [9–

18].

In [9], researchers studied and explored the data gathered from 27 moderated-size software sets

using six classification models: (1) principal component analysis (PCA), (2) discriminant
analysis, (3) logistic regression (LR), (4) holographic networks, (5) logical classification, and (6)

layered neural networks. The classification models were evaluated with respect to

misclassification rate, predictive validity, verification cost, and achieved quality. Results indicate
that no model satisfied the classification criterion in discriminating the software defects.

Researchers in [10], built a model to predict defect-prone software modules using support vector

machine (SVM) using four NASA datasets, namely PC1, CM1, KC1, and KC3. In addition, the

performance was compared with eight statistical and machine learning models. The researchers
concluded that SVM outperformed the other techniques. In a study by [11], researchers

performed a comparative experimental study of the effectiveness of artificial neural networks

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

41

(ANNs) and SVMs in the dataset obtained from NASA dataset. The performance was compared
with the SVM Gaussian kernel function and indicated that SVM performed better than ANN.

In a study by [12], researchers presented an application back-propagation neural network (BPNN)

based on three cost-sensitive boosting algorithms and tested it over four NASA datasets. The

designs of two of the BPNNs were based on weight updating, while the other was based on
threshold. The empirical results indicated that the threshold-based feed forward neural network

performed better than other methods particularly for object-oriented software modules. In a study

by [13], researchers presented an experiment for comparing several statistical and machine
learning techniques using AR1 and AR6 public domain datasets to find the relationship between

the static code metrics and the fault proneness of a module. Performance was evaluated using

area under the curve (AUC) values. Results revealed that decision tree achieved better results
than other applied techniques.

Researchers in a study by [14], detected faulty components by applying the radial basis function

neural network with novel adaptive dimensional biogeography-based optimization model to
investigate five NASA datasets from the PROMISE repository. Results were satisfactory

compared to conventional models. Researchers in a study done in [15], constructed a graphical

user interface (GUI) tool with the help of MATLAB for software defect prediction based on the
Bayesian regularization neural network (BRNN) technique, which led to a reduction in the

software cost by limiting the squared errors and weights. The performance of the technique was

compared with Levenberg Marquardt and back propagation neural network algorithms, and
according to the results, the BRNN performed better.

Feature selection has a major role in detecting the most significant attributes and consequently

improving software defect prediction to alleviate the high dimensionality concerns. Several
studies have explored the effectiveness of feature selection methods on the performance of defect

prediction models [16–18]. Researchers [16], detected faulty components by applying four

feature ranking and two wrapper methods on the code change-based bug prediction over eleven
software projects. They found that feature selection step led to an improvement in classification

speed and scalability, and optimally reasonable results were obtained with only 3% of the total

feature set. Researchers [17] built a prediction model based on several feature selection models.

They applied seven feature ranking and two wrapper methods and one embedded method. They
applied several changes and source code metrics, and they tested this system over the noisy

NASA dataset. Results indicate no significant differences on defect prediction over the datasets

were found. In [18], researchers combined the output of six feature-ranking based methods and
thoroughly investigated the performance of two ensemble methods over three datasets. The

results on NASA dataset showed that differences between ranking method, classifier and

software dataset significantly impacted the classification outcomes, and the ensemble method
improved the fault prediction results.

In a study by [18], researchers combined the output of six feature-ranking based methods and

thoroughly investigated the performance of two ensemble methods over three datasets. The
results on the NASA dataset showed that differences between ranking method, classifier, and

software dataset had a significant impact on classification outcomes, and the ensemble method

led to an improvement in fault prediction results.

3. MATERIALS AND METHODS

The aim of this study was to suggest a feature selection-based clustering model for predicting

software defects. This section describes the methodology used in this study. The proposed
framework consists of three stages: (1) feature selection, (2) clustering, and (3) decision making.

An experimental framework was implemented in two dimensions, and initially, datasets were

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

42

directly fed into classifiers before the feature selection stage. Yet, in the second dimension, the
datasets started with the feature selection stage. We employed several classifiers to discover the

best algorithms to resume feature selection step.

3.1. Datasets

The NASA benchmark datasets have been extensively used in software defect prediction. Each
dataset implements a NASA-based software system, which includes different metrics that are

closely related to software quality. The datasets contain records classified by a target class and

consists of one value from two of the following: ‘Y’ or ‘N’. ‘Y’ indicates that the particular

record (software module) is defective, and ‘N’ indicates that it is non-defective. Two cleaned
version of NASA datasets are provided by [19]. The first version is called D’ and includes

duplicate and inconsistent instances, whereas the second version D”, does not include duplicate

and inconsistent instances. We used the D’’ version, available for download at [20]. This cleaned
version has already been adapted in the literature [10–12,14,17,18]. Many researchers agree on

considering D’’ superior to its predecessor dataset as it does not contain redundant records and

has a lower complexity level of data. Seven cleaned NASA datasets were used in this research for
experiment. The chosen datasets include KC1, KC3, MC2, MW1, PC1, PC3, and PC4 (Tables 1

and 2).

Table 1. National Aeronautics and Space Administration (NASA) cleaned dataset D” details

Dataset No. Features No. of records Defective Non-Defective Defective (%)

KC1 22 1162 294 868 25.3

KC3 40 194 36 158 18.5

MC2 40 124 44 80 35.4

MW1 38 250 25 225 10

PC1 41 1107 76 1031 6

PC3 41 1563 160 1403 10.2

PC4 38 1270 176 1094 13.8

Table 2. Features of the D’’ dataset

No. Feature KC1 KC3 MC2 MW1 PC1 PC3 PC4

1. LOC_BLANK       

2. BRANCH_COUNT       

3. CALL_PAIRS      

4. LOC_CODE_AND_COMMENT       

5. LOC_COMMENTS       

6. CONDITION_COUNT      

7. CYCLOMATIC_COMPLEXITY       

8. CYCLOMATIC_DENSITY      

9. DECISION_COUNT      

10. DECISION_DENSITY     

11. DESIGN_COMPLEXITY       

12. DESIGN_DENSITY      

13. EDGE_COUNT       

14. ESSENTIAL_COMPLEXITY       

15. ESSENTIAL_DENSITY      

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

43

No. Feature KC1 KC3 MC2 MW1 PC1 PC3 PC4

16. LOC_EXECUTABLE       

17. PARAMETER_COUNT      

18. GLOBAL_DATA_COMPLEXITY   

19. GLOBAL_DATA_DENSITY   

20. HALSTEAD_CONTENT       

21. HALSTEAD_DIFFICULTY       

22. HALSTEAD_EFFORT       

23. HALSTEAD_ERROR_EST       

24. HALSTEAD_LENGTH       

25. HALSTEAD_LEVEL       

26. HALSTEAD_PROG_TIME       

27. HALSTEAD_VOLUME       

28. MAINTENANCE_SEVERITY      

29. MODIFIED_CONDITION_COUNT      

30. MULTIPLE_CONDITION_COUNT      

31. NODE_COUNT      

32. NORMALIZED_CYLOMATIC_COMPLEXITY      

33. NUM_OPERANDS       

34. NUM_OPERATORS       

35. NUM_UNIQUE_OPERANDS       

36. NUM_UNIQUE_OPERATORS       

37. NUMBER_OF_LINES       

38. PERCENT_COMMENTS      

39. LOC_TOTAL       

3.2. Classification via Clustering Techniques

Unsupervised clustering algorithms sorts observations into similar sets or groups according to the

values of their features even when class labels are absent. We will investigate three types of

clustering techniques that work under different assumptions: (1) X-means, (2) farthest first, and
(3) self-organizing map (SOM). The details of these techniques are described in the following

sections.

3.2.1. X-Means Clustering

The popular K-means clustering algorism has many limitations as it tends to scale poorly and it is

computationally heavy. Moreover, the solution depends on the initial positions of the cluster
centers and the number of clusters K has to be delivered by the user as it can only find linearly

separable clusters. In an attempt to solve these issues, Pelleg and Moore introduced a new and

efficient algorithm [21]. Their innovations included two ways of exploiting cached sufficient
statistics and an efficient test that selects the most promising subset of classes for refinement. The

X-means algorithm searches the space of cluster locations and number of clusters based on the

outcome of the Bayesian Information or the Akaike Information Criterion. Experimental results
showed that the X-means algorithm provides a fast and effective way to cluster unstructured data.

A generalized X-means algorithm procedure is described in the next section.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

44

Step 1: Initialize K= Kmin

Step 2: Rub K-Means algorithm

Step 3: For k=1,..., k: Replace each centroid by two centroids 𝜇1and 𝜇2

Step 4: Run K-means algorithm with K=2 over the cluster K. Replace or retain each

centroid based on the model selection

Step 5: If convergence condition is not satisfied, go to Step 2, Otherwise Stop

Algorithm 1: Procedure for X-Means Algorithm [21]

3.2.2. Farthest First Clustering Technique

Farthest First is a unique clustering algorithm that combines both hierarchical and distance-based

clustering. This algorithm builds a hierarchy of clusters using an agglomerative hierarchical

clustering method with a distance measurement criterion that is similar to the one used by K-

Means algorithm. Farthest First assigns a centre to a random point, and then computes the k most
distant points [22].

This algorithm starts with randomly choosing an instance as a cluster centroid, assigning the
objects in the cluster, and then computing the distance between each remaining instance and its

nearest centroid. The algorithm takes an arbitrary cluster centroid and calculates the distance of

one centroid from other as the maximum cluster assignment using Farthest First. When outlier

detection is performed on the dataset, objects that are outliers can be detected. This places the
cluster centre at the point further from the present cluster. The process is repeated until the

number of clusters is greater than a predetermined threshold value [23]. This clustering algorithm

can ultimately speed up the clustering process as this algorithm requires fewer data relocations
and adjustments.

3.2.3. SOM-Based Cluster Analysis Technique

The SOM has received increasing attention since it was proposed by Kohonen in 1990 [24]. SOM

is a competitive unsupervised neural network that consists of both input and output layers with

numerous neurons. The SOM methodology has been used in data analysis as tool for resolving
and visualizing nonlinear relationships in complex data, topology-based cluster analysis, vector

quantization, and projection of multidimensional data. It achieves clustering through

dimensionality reduction using topographically ordered nodes that represent the distribution
characteristics of the input samples.

If one assumes that ‘m’ cluster units exist, which are arranged in a one- or two-dimensional

(1D/2D) array, and the input signals are n-tuples [25]. The cluster unit whose weight vector
matches the input pattern is approximately selected as winner. The input vector is compared with

the target vector and if they differ, the weights of the network are altered slightly to reduce the

error in the output. The Euclidean distance (D) is computed between the input vector and weight
vectorwij and is represented in Equation 1.

 1

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

45

The smallest distance was computed, and the weights were updated using Equation 2.

 2

in which x denotes the input vector, i and j indicates index values. This process is repeated many

times and with many sets of vector pairs until the network gives the desired output.

4. RESULTS AND DISCUSSION

In our work for the comparison of various clustering algorithms we used Weka platform [26].

Weka is one of data-mining tool which contains a collection of machine learning algorithms. In

the proposed approach we have used WEKA with 10-foldcross validation method to evaluate
data and compare results. The performance of the proposed model is measured using sensitivity,

accuracy, precision, and f-measures [27].

The next step includes using several swarm-based algorithms and performs further tests on the

NASA dataset by combining it with several clustering algorithms. Our main objectives were to
improve the new method, test it on a relevant dataset, and compare this new method with another

feature selection. Dataset selection was the first stage of proposed framework. The performance

was compared using seven widely used clustering algorithms, namely K-MEANS, expectation
maximization (EM), density-based (DB), Farthest First, SOM, learning vector quantization

(LVQ), neural network, and X-Means clustering algorithms at the first-stage. The results of the

proposed framework were evaluated through sensitivity, accuracy, precision, and f-measure
measures. The proposed framework was implemented on seven cleaned NASA Datasets (D’’).

The results are described in Table 3 to 14. Highest scores are highlighted in bold for easy

identification.

Tables 3–6 present the prediction performance results for each of the classification via clustering
algorithms before the feature selection step. The first noteworthy observation in Table 3 was that

Farthest First algorithm outperformed other algorithms in terms of sensitivity, accuracy, and f-

measures readings. But regarding precision, SOM scored a better result in with KC1, while X-
Means outperformed the others in KC3 dataset. Results of MC2 and MW1 datasets are reflected

in Table 4. Regarding sensitivity and f-measures, Farthest First outperformed the other classifiers,

while we noticed that the performance accuracy of all the algorithms and precision in most of the

classifiers was fairly consistent. The results of PC1, PC3, and PC4 datasets are given in Tables 5
and 6. It is clear that Farthest First algorithm outperformed other algorithms in sensitivity,

accuracy, and f-measures readings. However, regarding precision, EM scored a better result in all

the datasets. Eventually, we noticed that the best results were related with X-MEANS, Farthest
First, and SOM.

Table 3. Clustering results for KC1 and KC3datasets

 KC1 KC3

Algorithm sensiti
vity

accura
cy

precisi
on

f-
measures

sensitivi
ty

accurac
y

precision f-
measures

EM 0.632 0.616 0.838 0.721 0.576 0.550 0.826 0.679

DB 0.831 0.721 0.803 0.817 0.797 0.727 0.857 0.826

K-MEANS 0.880 0.740 0.794 0.835 0.861 0.758 0.845 0.853

X-MEANS 0.629 0.615 0.848 0.722 0.802 0.733 0.861 0.830

FarthestFirst 0.998 0.748 0.749 0.856 0.962 0.814 0.835 0.894

SOM 0.579 0.583 0.851 0.689 0.700 0.653 0.848 0.767

LVQ 0.925 0.741 0.773 0.842 0.924 0.799 0.844 0.882

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

46

Table 4. Clustering results for MC2 and MW1 datasets

 MC2 MW1

Algorithm sensiti

vity

accurac

y

precisio

n

f-

measures

sensitivit

y

accuracy precisi

on

f-measures

EM 0.440 0.477 0.786 0.564 0.744 0.738 0.944 0.832

DB 0.925 0.694 0.698 0.796 0.777 0.755 0.941 0.851

K-MEANS 0.950 0.685 0.685 0.796 0.830 0.802 0.944 0.883

X-MEANS 0.825 0.667 0.725 0.772 0.718 0.712 0.955 0.820

Farthest
First 1.000 0.685 0.672 0.804 0.969 0.884 0.908 0.938

SOM 0.733 0.663 0.759 0.746 0.772 0.771 0.960 0.856

LVQ 0.950 0.685 0.685 0.796 0.858 0.816 0.932 0.894

Table 5. Clustering results for PC1 and PC3 datasets

 PC1 PC3

Algorithm sensitiv

ity

accurac

y

precision f-

measures

sensitivit

y

accurac

y

precisi

on

f-

measures

EM 0.700 0.708 0.981 0.817 0.651 0.673 0.969 0.779

DB 0.686 0.669 0.937 0.792 0.637 0.609 0.884 0.741

K-MEANS 0.684 0.654 0.918 0.784 0.693 0.644 0.874 0.773

X-MEANS 0.683 0.690 0.968 0.801 0.649 0.666 0.956 0.773

Farthest

First 0.998 0.920 0.922 0.958 1.000 0.876 0.876 0.934

SOM 0.804 0.770 0.931 0.863 0.620 0.640 0.941 0.748

LVQ 0.998 0.920 0.922 0.958 1.000 0.876 0.876 0.934

Table 6.Clustering results for PC4 dataset

Algorithm sensitivity accuracy precision f-measures

EM 0.719 0.728 0.949 0.818

DB 0.671 0.650 0.896 0.767

K-MEANS 0.671 0.633 0.874 0.759

X-MEANS 0.703 0.640 0.833 0.763

Farthest First 0.999 0.862 0.863 0.926

SOM 0.829 0.731 0.837 0.833

LVQ 0.989 0.856 0.863 0.922

In the second step, we chose to modify the best-performing clustering algorithms to reach a

higher prediction reading using four popular swarm intelligence algorithms described in the
literature, specifically, PSO, Cuckoo, Bat, and GWO algorithms. The primary goal was to

understand the trends and the relationship in their performance. The results of the selected

optimization algorithms are reported in Table 7. For each of the selected datasets, we obtained

four distinctive subsets. In general, we observed that the bio-based feature selection techniques
helped remarkably in reducing the features numbers. For example, we noticed that feature

selection techniques led to a reduction in the features in the KC1 dataset from 22 to 7–14 and in

the PC1 dataset from 41 to 12–14 features. After constructing feature sets using the bio-based
feature selection techniques, the techniques were individually applied to compare their

performances. These features were then fed into X-MEANS, Farthest First, and SOM classifiers.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

47

Table 7.Selected features of bio-based feature algorithms

Algori

thm

KC1 KC3 MC2 MW1 PC1 PC3 PC4

B
at

LOC_BLAN
K
BRANCH_

COUNT
LOC_COM
MENTSHA
LSTEAD_C
ONTENT
HALSTEA
D_DIFFICU
LTY

HALSTEA
D_LENGTH
HALSTEA
D_LEVEL
NUM_OPE
RANDS
NUM_UNI
QUE_OPER

ATORS

Total = 9

LOC_BL
ANK
BRANCH

_COUNT
LOC_CO
DE_AND
_COMME
NT
NORMAL
IZED_CY
LOMATI

C_COMP
LEXITY
NUMBER
_OF_LIN
ES
PERCEN
T_COMM
ENTS

Total =6

LOC_BL
ANK
CALL_P

AIRS
LOC_CO
MMENTS
CYCLOM
ATIC_CO
MPLEXI
TY
DESIGN_

COMPLE
XITY
EDGE_C
OUNT
ESSENTI
AL_COM
PLEXITY
ESSENTI

AL_DEN
SITY
GLOBAL
DATA
COMPLE
XITY
GLOBAL
DATA

DENSITY
HALSTE
AD_DIFF
ICULTY
HALSTE
AD_EFF
ORT
NODE_C
OUNT

Total = 13

LOC_BL
ANK
CALL_P

AIRS
LOC_CO
MMENTS
DESIGN_
COMPLE
XITY
EDGE_C
OUNT

ESSENTI
AL_COM
PLEXITY
NODE_C
OUNT
NUM_UN
IQUE_OP
ERANDS

NUMBER
_OF_LIN
ES

Total =9

LOC_BLAN
K
LOC_CODE_

AND_COM
MENT
LOC_COMM
ENTS
CYCLOMAT
IC_COMPLE
XITY
CYCLOMAT

IC_DENSITY
PARAMETE
R_COUNT
HALSTEAD_
CONTENT
HALSTEAD_
DIFFICULT
Y

HALSTEAD_
LENGTH
MAINTENA
NCE_SEVER
ITY
NORMALIZ
ED_CYLOM
ATIC_COMP

LEXITY
NUM_UNIQ
UE_OPERAT
ORS
NUMBER_O
F_LINES
PERCENT_C
OMMENTS
LOC_TOTAL

Total =15

LOC_BLAN
K
LOC_CODE_

AND_COM
MENT
LOC_COMM
ENTS
CYCLOMAT
IC_DENSITY
HALSTEAD_
CONTENT

HALSTEAD_
LENGTH
NORMALIZ
ED_CYLOM
ATIC_COMP
LEXITY
NUM_OPER
ANDS

NUM_UNIQ
UE_OPERA
NDS
NUMBER_O
F_LINES
PERCENT_C
OMMENTS

Total =11

LOC_BLAN
K
LOC_CODE

_AND_CO
MMENT
CONDITIO
N_COUNT
ESSENTIA
L_COMPLE
XITY
HALSTEAD

_CONTENT
MULTIPLE
_CONDITI
ON_COUN
T
NORMALIZ
ED_CYLO
MATIC_CO

MPLEXITY
PERCENT_
COMMENT
S

Total =8

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

48

Algori

thm

KC1 KC3 MC2 MW1 PC1 PC3 PC4
C

u
ck

o
o

LOC_COM

MENTS
HALSTEA
D_CONTE
NT
HALSTEA
D_DIFFICU
LTY
HALSTEA

D_LEVEL
HALSTEA
D_VOLUM
E
NUM_UNI
QUE_OPER
ANDS
NUM_UNI
QUE_OPER

ATORS

Total =7

LOC_BL

ANK
BRANCH
_COUNT
LOC_CO
DE_AND
_COMME
NT
NORMAL

IZED_CY
LOMATI
C_COMP
LEXITY
PERCEN
T_COMM
ENTS

Total =5

LOC_BL

ANK
CALL_P
AIRS
LOC_CO
MMENTS
CYCLOM
ATIC_CO
MPLEXI

TY
DESIGN_
COMPLE
XITY
EDGE_C
OUNT
GLOBAL
DATA
COMPLE

XITY
GLOBAL
DATA
DENSITY
HALSTE
AD_DIFF
ICULTY
HALSTE

AD_EFF
ORT
MAINTE
NANCE_
SEVERIT
Y

Total = 11

LOC_BL

ANK
CALL_P
AIRS
CYCLOM
ATIC_CO
MPLEXI
TY
EDGE_C

OUNT
ESSENTI
AL_COM
PLEXITY
HALSTE
AD_CON
TENT
MODIFIE
D_COND

ITION_C
OUNT
NODE_C
OUNT
NUM_UN
IQUE_OP
ERANDS
NUMBER

_OF_LIN
ES

Total =10

LOC_BLAN

K
BRANCH_C
OUNT
LOC_CODE_
AND_COM
MENT
LOC_COMM
ENTS

CYCLOMAT
IC_DENSITY
PARAMETE
R_COUNT
HALSTEAD_
CONTENT
MAINTENA
NCE_SEVER
ITY

NORMALIZ
ED_CYLOM
ATIC_COMP
LEXITY
NUM_UNIQ
UE_OPERA
NDS
NUM_UNIQ

UE_OPERAT
ORS
NUMBER_O
F_LINES
PERCENT_C
OMMENTS
LOC_TOTAL

Total = 14

LOC_BLAN

K
LOC_CODE_
AND_COM
MENT
LOC_COMM
ENTS
HALSTEAD_
CONTENT

HALSTEAD_
LENGTH
NORMALIZ
ED_CYLOM
ATIC_COMP
LEXITY
NUM_UNIQ
UE_OPERA
NDS

NUM_UNIQ
UE_OPERAT
ORS
NUMBER_O
F_LINES
PERCENT_C
OMMENTS

Total =10

LOC_BLAN

K
LOC_CODE
_AND_CO
MMENT
LOC_COM
MENTS
CYCLOMA
TIC_COMP

LEXITY
CYCLOMA
TIC_DENSI
TY
PARAMET
ER_COUNT
MULTIPLE
_CONDITI
ON_COUN

T
NUMBER_
OF_LINES
PERCENT_
COMMENT
S

Total = 9

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

49

Algori

thm

KC1 KC3 MC2 MW1 PC1 PC3 PC4
P

S
O

LOC_BLAN

K
BRANCH_
COUNT
LOC_CODE
_AND_CO
MMENT
LOC_COM
MENTS

CYCLOMA
TIC_DENSI
TY
PARAMET
ER_COUNT
HALSTEA
D_CONTE
NT
HALSTEA

D_EFFORT
MAINTEN
ANCE_SEV
ERITY
NORMALI
ZED_CYLO
MATIC_CO
MPLEXITY

NUM_UNI
QUE_OPER
ANDS
NUMBER_
OF_LINES
PERCENT_
COMMENT
S

LOC_TOTA
L

Total =14

BRANCH

_COUNT
LOC_CO
DE_AND
_COMME
NT
NORMAL
IZED_CY
LOMATI

C_COMP
LEXITY

Total =3

LOC_BL

ANK
LOC_CO
MMENTS
DESIGN_
COMPLE
XITY
EDGE_C
OUNT

GLOBAL
DATA
COMPLE
XITY
GLOBAL
DATA
DENSITY
HALSTE
AD_DIFF

ICULTY
HALSTE
AD_EFF
ORT
HALSTE
AD_PRO
G_TIME
MAINTE

NANCE_
SEVERIT
Y

Total =10

LOC_BL

ANK
LOC_CO
MMENTS
CONDITI
ON_COU
NT
HALSTE
AD_CON

TENT
NODE_C
OUNT
NUM_UN
IQUE_OP
ERANDS

Total =6

LOC_BLAN
K
BRANCH_C
OUNT
LOC_CODE_

AND_COM
MENT
LOC_COMM
ENTS
CYCLOMAT
IC_DENSITY
PARAMETE
R_COUNT
HALSTEAD_

CONTENT
HALSTEAD_
EFFORT
MAINTENA
NCE_SEVER
ITY
NORMALIZ
ED_CYLOM

ATIC_COMP
LEXITY
NUM_UNIQ
UE_OPERA
NDS
NUMBER_O
F_LINES
PERCENT_C

OMMENTS
LOC_TOTAL

Total =14

LOC_BLAN

K
LOC_CODE_
AND_COM
MENT
LOC_COMM
ENTS
DESIGN_CO
MPLEXITY

HALSTEAD_
CONTENT
HALSTEAD_
LENGTH
MAINTENA
NCE_SEVER
ITY
NORMALIZ
ED_CYLOM

ATIC_COMP
LEXITY
NUM_OPER
ANDS
NUM_UNIQ
UE_OPERA
NDS
PERCENT_C

OMMENTS

Total =11

LOC_BLAN

K
LOC_CODE
_AND_CO
MMENT
CONDITIO
N_COUNT
CYCLOMA
TIC_DENSI

TY
DESIGN_D
ENSITY
ESSENTIA
L_COMPLE
XITY
HALSTEAD
_CONTENT
NORMALIZ

ED_CYLO
MATIC_CO
MPLEXITY
PERCENT_
COMMENT
S

Total =9

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

50

Algori

thm

KC1 KC3 MC2 MW1 PC1 PC3 PC4
G

W
O

LOC_BLAN

K
LOC_COM
MENTS
HALSTEA
D_CONTE
NT
HALSTEA
D_DIFFICU

LTY
HALSTEA
D_LEVEL
HALSTEA
D_VOLUM
E
NUM_UNI
QUE_OPER
ANDS

NUM_UNI
QUE_OPER
ATORS

Total =8

BRANCH

_COUNT
LOC_CO
DE_AND
_COMME
NT
NORMAL
IZED_CY
LOMATI

C_COMP
LEXITY

Total =3

LOC_BL

ANK
CALL_P
AIRS
LOC_CO
MMENTS
CYCLOM
ATIC_CO
MPLEXI

TY
ESSENTI
AL_DEN
SITY
GLOBAL
DATA
COMPLE
XITY
GLOBAL

DATA
DENSITY
HALSTE
AD_DIFF
ICULTY
HALSTE
AD_EFF
ORT

NODE_C
OUNT

Total =10

LOC_BL

ANK
LOC_CO
MMENTS
EDGE_C
OUNT
HALSTE
AD_CON
TENT

MODIFIE
D_COND
ITION_C
OUNT
NODE_C
OUNT
NUM_UN
IQUE_OP
ERANDS

Total =7

LOC_BLAN

K
LOC_CODE_
AND_COM
MENT
LOC_COMM
ENTS
CYCLOMAT
IC_DENSITY

PARAMETE
R_COUNT
HALSTEAD_
CONTENT
NODE_COU
NT
NORMALIZ
ED_CYLOM
ATIC_COMP

LEXITY
NUM_UNIQ
UE_OPERA
NDS
NUMBER_O
F_LINES
PERCENT_C
OMMENTS

LOC_TOTAL

Total =12

LOC_BLAN

K
LOC_CODE_
AND_COM
MENT
LOC_COMM
ENTS
HALSTEAD_
CONTENT

HALSTEAD_
LENGTH
MAINTENA
NCE_SEVER
ITY
NORMALIZ
ED_CYLOM
ATIC_COMP
LEXITY

NUM_UNIQ
UE_OPERA
NDS
PERCENT_C
OMMENTS

Total =9

LOC_CODE

_AND_CO
MMENT
PARAMET
ER_COUNT
MULTIPLE
_CONDITI
ON_COUN
T

PERCENT_
COMMENT
S

Total =4

Tables 8–11 present the performance of the clustering scheme based on the selected datasets.
According to Table 8, highest sensitivity scores were obtained using KC1 feature set construction

methods for Bat and PSO, with using 41% and 64% of the original feature size. KC3 and PC4

recorded the highest sensitivity scores using Cuckoo feature set method, with nearly 13% and

24% of the feature set respectively. The overall highest sensitivity scores were obtained when
MW1, PC1 and PC3 applied the features extracted from Bat, Cuckoo and GWO. Worth noting

that the highest scores were obtained with the Farthest First scheme.

Table 8.Sensitivity results of each clustering algorithm

Algorithm KC1 KC3 MC2 MW1 PC1 PC3 PC4

B
at

 X-MEANS 0.625 0.797 0.763 0.584 0.584 0.649 0.696

Farthest First 0.993 0.949 0.975 1.000 1.000 1.000 0.988

SOM 0.647 0.708 0.793 0.692 0.692 0.620 0.676

C
u
ck

o
o

X-MEANS 0.685 0.738 0.714 0.818 0.610 0.661 0.658

Farthest First 0.985 0.975 0.975 0.960 1.000 1.000 0.992

SOM 0.640 0.650 0.723 0.884 0.700 0.667 0.659

P
S

O
 X-MEANS 0.714 0.821 0.714 0.775 0.626 0.691 0.691

Farthest First 0.993 0.962 1.000 0.978 1.000 0.960 0.960

SOM 0.704 0.568 0.810 0.901 0.712 0.712 0.712

G
W

O
 X-MEANS 0.693 0.821 0.746 0.806 0.714 0.654 0.657

Farthest First 0.984 0.962 0.975 0.969 0.993 1.000 0.991

SOM 0.652 0.568 0.793 0.914 0.704 0.707 0.681

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

51

Tables 9 present the performance of the clustering scheme based on the selected datasets
according to accuracy scores. The highest accuracy scores were obtained using MW1 and PC1

feature set construction methods for Bat, Cuckoo, and PSO with 24%, 34%, and 34% of the

original feature size, respectively. PC3 yielded good accuracy scores using the Bat, Cuckoo, and

GWO feature set methods with nearly 28%, 24%, and 22% of the feature set respectively. PC4
and KC3 scored 86% and 81% based on GWO and Cuckoo features, respectively, while KC1

obtained the highest scores with features extracted from Bat and PSO. Most of the best results

were obtained using Farthest First algorithm, except the case in which MC2 scored the highest
accuracy using the SOM and GWO feature sets.

Table 9. Accuracy results of each clustering algorithm

Algorithm KC1 KC3 MC2 MW1 PC1 PC3 PC4

B
at

 X-MEANS 0.582 0.737 0.651 0.615 0.615 0.666 0.692

Farthest First 0.748 0.804 0.677 0.922 0.922 0.876 0.853

SOM 0.612 0.693 0.718 0.697 0.697 0.640 0.691

C
u
ck

o
o

X-MEANS 0.636 0.671 0.607 0.809 0.633 0.666 0.656

Farthest First 0.742 0.808 0.677 0.900 0.922 0.876 0.856

SOM 0.608 0.617 0.654 0.868 0.706 0.662 0.651

P
S

O
 X-MEANS 0.643 0.742 0.607 0.772 0.634 0.709 0.709

Farthest First 0.748 0.794 0.694 0.916 0.922 0.838 0.838

SOM 0.655 0.580 0.651 0.882 0.717 0.719 0.719

G
W

O
 X-MEANS 0.635 0.742 0.667 0.798 0.643 0.663 0.665

Farthest First 0.745 0.794 0.677 0.908 0.748 0.876 0.865

SOM 0.620 0.580 0.721 0.894 0.655 0.700 0.697

According to Table 10, the highest precision scores were obtained using MW1 and PC1feature

set construction methods for Bat method with 24% and 37% of the original feature size,
respectively. PC3 and PC4 give the second highest precision scores using Bat and PSO feature

set methods with nearly 28% and 27% of the feature sets, respectively. The highest precision

scores of KC3, MC2, and KC1 datasets were obtained when the features extracted from Bat,
Cuckoo and PSO were applied. It should be noted that the highest scores were obtained with the

SOM and X-MEANS schemes.

Table 10. Precision results of each clustering algorithm

Algorithm KC1 KC3 MC2 MW1 PC1 PC3 PC4

B
at

 X-MEANS 0.775 0.869 0.744 0.978 0.978 0.956 0.926

Farthest First 0.751 0.833 0.672 0.922 0.922 0.876 0.861

SOM 0.788 0.911 0.793 0.963 0.963 0.941 0.968

C
u
ck

o
o

X-MEANS 0.791 0.849 0.714 0.959 0.966 0.935 0.904

Farthest First 0.749 0.823 0.672 0.931 0.922 0.876 0.862

SOM 0.793 0.838 0.825 0.965 0.967 0.930 0.887

P
S

O
 X-MEANS 0.792 0.855 0.714 0.959 0.936 0.966 0.966

Farthest First 0.750 0.817 0.678 0.932 0.922 0.867 0.867

SOM 0.814 0.888 0.723 0.965 0.967 0.962 0.962

G
W

O
 X-MEANS 0.785 0.855 0.758 0.959 0.792 0.936 0.923

Farthest First 0.752 0.817 0.672 0.932 0.750 0.876 0.870

SOM 0.799 0.888 0.793 0.965 0.814 0.935 0.954

Tables 11 presents the performance of the clustering scheme based on the selected datasets

according to f-measures scores. The best scores were obtained using MW1 and PC1 feature set

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

52

construction methods for Bat, Cuckoo, and PSO with 24% to 37% of the original feature size.
PC3 yielded f-measures scores of 93.4% using Bat, Cuckoo, and PSO, while PC4 yielded 92.6%

based on GWO features, which represents 11% of the original feature size. Overall, the highest f-

measures scores were obtained when KC3, KC1, and MC2 was presented using the features

extracted from Bat, Cuckoo, and GWO. It is worth noting that the highest scores were obtained
mostly with the Farthest First scheme.

Table 11. f-measures results of each clustering algorithm

Algorithm KC1 KC3 MC2 MW1 PC1 PC3 PC4

B
at

 X-MEANS 0.692 0.832 0.753 0.732 0.732 0.773 0.795

Farthest First 0.855 0.888 0.796 0.959 0.959 0.934 0.920

SOM 0.710 0.797 0.793 0.806 0.806 0.748 0.796

C
u
ck

o
o

X-MEANS 0.734 0.789 0.714 0.883 0.748 0.775 0.762

Farthest First 0.851 0.892 0.796 0.945 0.959 0.934 0.922

SOM 0.708 0.732 0.770 0.923 0.812 0.777 0.756

P
S

O
 X-MEANS 0.751 0.838 0.714 0.857 0.750 0.805 0.805

Farthest First 0.855 0.884 0.808 0.954 0.959 0.911 0.911

SOM 0.755 0.693 0.764 0.932 0.820 0.818 0.818

G
W

O
 X-MEANS 0.736 0.838 0.752 0.875 0.751 0.770 0.767

Farthest First 0.852 0.884 0.796 0.950 0.855 0.934 0.926

SOM 0.718 0.693 0.793 0.939 0.755 0.806 0.795

In Figures 1 and 2, consistency has also been validated by drawing boxplots diagrams based on

accuracy rates of the clustering results versus the accuracy rates of the original dataset when

addressing all datasets. Figure 1 shows the standardized boxplots of accuracy values for each
dataset on all the clustering methods, whereas Figure 2 shows the boxplots of accuracy values in

the second phase after applying bio-based feature selection techniques. It can be observed that the

superiority of the proposed technique is evident on the majority of data sets as compared to

original dataset. So, the suggested clustering technique is suitable for analysing our experimental
results on the clean NASA dataset. In almost all cases, the proposed technique generates more

consistent and convincing results as compared to other algorithms.

Having insight into the clustering results before and after feature selection, it is clear that most of

the performance metrics performed better as the dimensionality of features decreased

considerably. Performance results reveals that the Bat and Cuckoo algorithms yielded the best
performance on the datasets. It is evident that the Farthest First clustering algorithm is good for

predicting software faultiness, while Bat and Cuckoo were useful in comparison to all other

metaheuristic algorithms. Although the class imbalance issue, which is the main reason of biased

performance in any classification problem, was not considered in this study we suggest including
resampling technique in any future framework system.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

53

Figure 1. Boxplots of accuracy rates of clustering on original datasets

Figure 2. Boxplots of accuracy rates of clustering using the proposed technique

5. CONCLUSION

The main contribution of this article is the implementation of a bio-inspired feature selection-

based clustering framework for software fault prediction. The proposed framework consisted of

three stages, including feature selection, clustering, and evaluation. Two different dimensions
were used in the framework, one with and one without feature selection. This research compared

the ability of PSO, Bat, Cuckoo, and GWO bio-inspired algorithms. Several clustering algorithms

were applied: (1) X-means, (2) Farthest First, and (3) SOM. For experiments, seven cleaned

publicly available NASA datasets were used. Results showed the effectiveness of Farthest First
clustering algorithm in predicting software faultiness, and Bat and Cuckoo were useful in

comparison to all other metaheuristic algorithms.

REFERENCES

[1] E. Erturk and E. Akcapinar, A comparison of some soft computing methods for software fault

prediction, Expert Syst. Appl., vol. 42, no. 4, pp. 1872–1879, 2015.

[2] Y. Ma, G. Luo, X. Zeng, and A. Chen, Transfer learning for cross company software defect

prediction, Inf. Softw. Technol., vol. 54, no. 3, Mar. 2012.

[3] R. Malhotra, Empirical research in software engineering: concepts, analysis, and applications.

Chapman and Hall/CRC, 2016.

[4] P. Goodman, 1993, Practical Implementation of Software Metrics, McGraw Hill, London.

[5] G. Czibula, Z. Marian, and I. G. Czibula, "Software defect prediction using relational association rule

mining," Information Sciences, vol. 264, pp. 260-278, 2014.

[6] I., Lee, Y.J. Shin, Machine learning for enterprises: Applications, algorithm selection, and challenges.

Business Horizons, 63(2), 157e170, 2020.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021

54

[7] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim. Reducing features to improve code change-based

bug prediction. IEEE Transactions on Software Engineering, 39(4): 552-569, 2013.

[8] A. Balogun, M. Mabayoje, S. Salihu, and S. Arinze, "Enhanced Classification Via Clustering Using

Decision Tree for Feature Selection," International Journal of Applied Information Systems (IJAIS),

vol. 9, no. 6, pp. 11-16, 2015.
[9] F. Lanubile, A. Lonigro, and G. Vissagio, Comparing models for identifying fault-prone software

components. Seke, no. July, pp. 312– 319, 1995.

[10] K. O. Elish and M. O. Elish, Predicting defect-prone software modules using support vector

machines, J. Syst. Softw., vol. 81, no. 5, pp. 649– 660, 2008.

[11] I. Gondra, Applying machine learning to software fault-proneness prediction, J. Syst. Softw., vol. 81,

no. 2, pp. 186–195, 2008.

[12] J. Zheng, Cost-sensitive boosting neural networks for software defect prediction, Expert Syst. Appl.,

vol. 37, no. 6, pp. 4537–4543, 2010.

[13] R. Malhotra, Comparative analysis of statistical and machine learning methods for predicting faulty

modules, Appl. Soft Comput. J., vol. 21, pp. 286–297, 2014.

[14] P. Kumudha and R. Venkatesan, Cost-Sensitive Radial Basis Function Neural Network Classifier for

Software Defect Prediction, Sci. World J., vol. 2016, 2016.
[15] R. Mahajan, S. K. Gupta, and R. K. Bedi, Design of software fault prediction model using BR

technique, in Procedia Computer Science, vol. 46, no. Icict 2014, pp. 849–858, 2015.

[16] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim. Reducing features to improve code change-based

bug prediction. IEEE Transactions on Software Engineering, 39(4): 552-569, 2013.

[17] K. Muthukumaran, A. Rallapalli, and N. L. Murthy. Impact of feature selection techniques on bug

prediction models. In Proceedings of the 8th India Software Engineering Conference(ISEC). ACM,

120-129, 2015.

[18] H. Wang, T. M. Khoshgoftaar, J. V. Hulse, and K. Gao. Metric selection for software defect

prediction. International Journal of Software Engineering and Knowledge Engineering, 21(02): 237-

257, 2011.

[19] M. Shepperd, Q. Song, Z. Sun and C. Mair, “Data Quality: Some Comments on the NASA Software
Defect Datasets,” IEEE Trans. Softw. Eng., vol. 39, pp. 1208–1215, 2013.

[20] NASA Defect Dataset, [Online]. Available: https://github.com/klainfo/NASADefectDataset.

[Accessed: 28-September-2020].

[21] D.PELLEG, A.MOORE, X-means: Extending K-means with Efficient Estimation of the Number of

Clusters. In Proceedings 17th ICML, Stanford University, 2000.

[22] S. D.Hochbaum and B. D. Shmoys, A Best Possible Heuristic for the k-Center Problem, Mathematics

of Operational Research, 10(2): pp. 180-184,1985.

[23] S. Dasgupta and P. M. Long. Performance guarantees for hierarchical clustering, Journal of Computer

and System Sciences, 70(4):555-569, 2005.

[24] T. Kohonen, The self-organizing map, Neurocomputing, vol. 21, no. 1–3, pp. 1–6, 1998.

[25] K. Melody, Extending the Kohonen self-organizing map networks for clustering analysis. Comput

Stat Data Anal 2001; 38: 161-180, 2001.
[26] M., Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA data mining

software: An update, ACM SIGKDD Explor. News, 11, 10–18, 2009.

[27] X.Y. Liu, Q.Q. Li, Z.H. Zhou, Learning imbalanced multiclass data with optimal dichotomy weights,

Proceeding of IEEE 13th International Conference on Data Mining, Dallas, TX, USA, pp. 478–487,

2013.

