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ABSTRACT 
 
Knowledge graph embedding (KGE) is to project entities and relations of a knowledge graph (KG) into a 

low-dimensional vector space, which has made steady progress in recent years. Conventional KGE 
methods, especially translational distance-based models, are trained through discriminating positive 

samples from negative ones. Most KGs store only positive samples for space efficiency. Negative sampling 

thus plays a crucial role in encoding triples of a KG. The quality of generated negative samples has a 

direct impact on the performance of learnt knowledge representation in a myriad of downstream tasks, 

such as recommendation, link prediction and node classification. We summarize current negative sampling 

approaches in KGE into three categories, static distribution-based, dynamic distribution-based and custom 

cluster-based respectively. Based on this categorization we discuss the most prevalent existing approaches 

and their characteristics. It is a hope that this review can provide some guidelines for new thoughts about 

negative sampling in KGE.  
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1. INTRODUCTION 
 

A knowledge graph (KG) refers to a network in which nodes are real entities or abstract concepts 
and edges are their in-between relations. Many KGs have been well developed, such as NELL 

[1], Freebase [2] and YAGO [3]. They store and tell ground-truth facts in the triple form, 

expressed as (head entity, relation, tail entity) or (subject, predicate, object). Knowledge graph 

embedding (KGE) aims to encode components of a KG into a low-dimensional continuous vector 
space to support the downstream graph operations and knowledge reuse. A variety of KGE 

models have been successively proposed and deployed in recent years. 

 
Inspired by word embedding [4], people turned to distributed representation of entities and 

relations rather than discrete representation. One-hot encoding is broadly used to convert features 

or instances into vectors, it has great interpretability but incapable of capturing latent semantics 
since it is impossible to compute the similarity between orthogonal vectors. To overcome the 

problems associated with the one-hot encoding, more embedding techniques have been 

developed. In KGE, not only the conventional translational distance-based TransE [5], semantic 

matching-based RESCAL [6] but also the state-of-the-art attention-based KBAT [7] and GAATs 
[8], they are devoted to learning better knowledge representation and serving knowledge graph 

completion tasks.  
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Different embedding models are embodied in their own defined scoring functions that return a 
score to measure the plausibility of a given triple. These models require certain amount of 

training and verification as in the routine. Noise contrastive estimation (NCE) [9]is one of the 

common methods to accelerate training. It transforms the density estimation into a binary 

classification problem by discriminating real samples from noise samples [10]. Mikolov et al. [4] 
simplifies NCE to negative sampling and applies it in word embedding to reduce computational 

complexity that results from large vocabulary size. KGE extends this strategy with the aim of 

ranking observed (“positive”) instances higher than unobserved (“negative”) ones to accomplish 
model training [11]. As seen in translational distance-based models [5, 12-15], they are optimized 

through partitioning scores of positives and negatives with an adaptive margin. Most KGs contain 

only ground-truth triples, for the sake of space efficiency. Following the thought of NCE to 
improve the training efficiency of KGE models, a large number of negative samples are required. 

Negative sampling thus becomes a critical point in knowledge representation learning. Uniform 

sampling [5, 13] is one of the most commonly used negative sampling approaches, it corrupts 

positive triples by replacing the head or tail entities with those that are uniformly sampled from 
the entity set of the KG. However, such generated negative triples are too easy to be 

discriminated and make little contribution towards the training for most of the time. Different 

from that sampling with equal probability in random uniform mode, Bernoulli sampling [12] 
applies different probabilities in head and tail replacement to address the issue of false negatives. 

KBGAN [16] and IGAN [17] are two typical GAN-based negative sampling approaches that take 

advantage of the generative adversarial network (GAN), they adversarially train the generator to 
provide better-quality negatives by applying a pre-trained KGE model as the discriminator. 

TransE-SNS [18] and NSCaching [19] attempt to gather candidate entities of negative sampling 

into custom clusters. Furthermore, enlightened by CKRL [20], NKRL [21] puts forward a 

confidence-aware negative sampling approach. Yang et al. [22] recently derives the general form 
of an effective negative sampling distribution, which is of pioneering significance. They are the 

first to deduce the correlation between positive and negative sampling distribution. Trouillon et 

al. [23] further studies the number of negatives generated for each positive triple, and elicits that 
fifty negative samples per positive is a good choice for balancing accuracy and duration. 

 

In this paper, we summarize current negative sampling approaches in knowledge representation 

learning and sketch out them into three categories based on their sample source: sampling from 
static distribution, sampling from dynamic distribution and sampling from custom clusters 

respectively. A majority of researches about KGE focus on proposing new embedding models or 

evaluating their performance in downstream tasks, such as knowledge graph completion [24], 
question-answering [25] and recommendation [26]. We argue that despite the broad agreement 

that negative sampling is of great importance in the training of KGE models, it is under explored 

and needs more attention and efforts. In the representative surveys about knowledge 
representation learning [27, 28], negative sampling is mentioned but only in a short space. To the 

best of our knowledge, this paper is the first work to systematically and exhaustively overview 

existing negative sampling approaches in the field of KGE.  

 
The remainder of this review is organized as follows. Section 2 provides a brief definitions and 

notations, and assumptions necessary for understanding the existing KGE models. A variety of 

embedding models that are proposed in knowledge representation learning are briefly covered in 
Section 3, these models are further elaborated according to our categorization schema in Section 

4. Finally, we present our conclusion remarks and future research suggestions. 

 

2. DEFINITIONS, NOTATIONS AND ASSUMPTIONS  
 

All the negative sampling approaches are based on a simple KGE model. That is, in a standard 

KG, 𝔼 represents the set of entities, ℝ represents the set of relations. 𝔻+ and 𝔻− are sets of the 
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positive triples 𝜏+ = (ℎ, 𝑟, 𝑡) and the counterpart negative triples respectively. The following 

formula sets out the components of the set 𝔻−. In general cases, one KGE model can be 

explained by its own defined scoring function 𝑓𝑟(ℎ, 𝑡) where ℎ and 𝑡 belong to 𝔼 and 𝑟 belongs to 

ℝ. The relation 𝑟maps the head entity ℎ to its tail entity 𝑡. The plausibility of each possible triple 

is measured by the scoring function. The higher the plausibility is, the more probability for the 
triple being a piece of truth.  

𝜏− ∈ 𝔻− 

𝔻− = {(ℎ’, 𝑟, 𝑡)|ℎ’ ∈ 𝔼 ⋀  ℎ’ ≠ ℎ ⋀(ℎ, 𝑟, 𝑡) ∈ 𝔻+}                     
∪  {(ℎ, 𝑟, 𝑡’)|𝑡’ ∈ 𝔼 ⋀  𝑡’ ≠ 𝑡 ⋀(ℎ, 𝑟, 𝑡) ∈ 𝔻+}  
∪  {(ℎ, 𝑟’, 𝑡)|𝑟’ ∈ 𝔻 ⋀  𝑟’ ≠ 𝑟 ⋀(ℎ, 𝑟, 𝑡) ∈ 𝔻+} 

 

KGE models are trained under the open world assumption (OWA) [29] or the closed world 

assumption (CWA) [30]. The CWA states that facts that are not observed in D+ are false, while 
the OWA is relaxed to assume that unobserved facts can be either missing or false. Most models 

prefer the OWA due to the incompleteness nature of KGs. The CWA has two main drawbacks, 

worse performance in downstream tasks and scalability issues caused by tremendous negative 
samples [27].  

 

3. KGE MODELS 
 

Knowledge graph embedding is also called knowledge representation learning that aims to embed 
triples (h, r, t) into a low-dimensional continuous vector space and take advantage of numerical 

representation that is processed by machine learning and deep learning models. Different KGE 

models encode latent semantics into the embedding vectors in different ways [27], which are 
reflected in the manually defined scoring functions fr (h, t)that calculate the credibility scores for 

given triples. Generally, the Translational Distance-based and the Semantic Matching-basedare 

two mainstream types of KGE models. In addition, another two frameworks, basing on neural 

networks and incorporating additional information, have also been considered in recent years.  
 

Translational distance-based models. The main idea behind the translation-based models is to 

measure the distance between the head entity and the tail entity after projecting the KG into the 
vector space. Inspired by translation invariance in word embedding vectors, TransE [5] considers 

the relation vector as a transition from the head to the tail, i.e. h + r ≈ t. The equation holds when 

(h, r, t) exists in the KG. The distance between h + r and t reflects the degree of confidence for 
the given triple. TransH [12] improves TransE to make it capable of modeling multiple relations, 

like “1-to-N”, “N-to-1” and “N-to-N”. Some other variants such as TransR [13], TransD [14] and 

TransG [15], they extend TransE by embedding entities into various spaces.  

 
Semantic matching-based models. Compared to the translational distance-based models, 

semantic matching-based models focus on modeling the latent semantics embodied in vectorized 

entities and relations by means of matrix decomposition. RESCAL [6] is one of the most 
representative KGE models that define the scoring function based on matching semantics. The 

relations are encoded in the mapping matrix Mr to connect the head and the tail while the matrix 

product hMrt measures the plausibility of triples. Furthermore, DistMult [31] simplifies RESCAL 
by limiting Mr to be a diagonal matrix, and ComplEx [23] extends DistMult to depict 

antisymmetric relations in the complex number field.  

 

Neural network-based models. Applying neural networks in knowledge representation learning 
has also gained wide attention. MLP [32] feeds vectors of entities and relations into a fully-

connected layer to capture implied semantics. ConvE [33] attempts to form its scoring function 

with 2D convolution. RSN [34] introduces a recurrent skip mechanism in order to benefit the 
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embedding of KGs. In addition, KG-BERT [35] bases on Transformer (BERT) to integrate 
knowledge representation learning and natural language processing. In the emerging field of 

graph neural networks (GNNs), R-GCN [36] builds a graph convolutional network framework to 

encode the multi-relational data of KGs.  

 
Auxiliary-dependent models. Apart from triples that compose KGs, some additional 

information can be incorporated as the auxiliary to enhance semantic representation learning. 

Guo et al. [37] takes the entity type into account and assumes that entities of the same type ought 
to be closer to each other in the embedded space. PTransE [38] attempts to model multi-hop 

relations using addition, multiplication and RNN rules so that the relation paths between entities 

can be reflected in the calculations among vectors. Besides, Wang et al. [39] considers text 
information and puts forward a joint model to accomplish the embedding process. Guo et al. [40] 

comes up with a rule-based KGE model by combining some rule information. 

 

Negative sampling is a variation of NCE, that firstly proposed in the word2vec tool   [41]. 
Knowledge representation learning follows this strategy. A majority of studies above focus on 

inventing novel embedding models, and adopt some random sampling approaches to provide 

negative training samples [27]. Till now, a few works have been devoted to improving the quality 
of negatives in embedding KGs. We outline these studies with the aim of gaining more attention 

to negative sampling. In addition, application scenarios and future trends about conventional and 

the state-of-the-art KGE models can be found in the representative surveys [27, 28, 42].  
 

4. NEGATIVE SAMPLING 
 

All the above models require negative samples during training. The thought of negative sampling 

was firstly raised in probabilistic neural models of language and labelled as importance sampling 
[43]. Mikolov et al. [4] emphasizes it as a simplified version of NCE [9] to benefit the training of 

word2vec. NCE is used to overcome the computational difficulty associated with probabilistic 

models of language since they involve evaluating partition functions by summing over all the 
words, which may be a huge vocabulary. Evolved from NCE, negative sampling transforms the 

difficult density estimation problem into a binary classification problem that distinguishes real 

samples from noise samples, which simplifies the computation and accelerates the training. 

Instead of normalizing the partition function into a probability distribution based on the entire 
vocabulary, separating the “true” samples from those that are sampled from the noise distribution 

is beneficial for asymptotically estimating the “true” distribution with high efficiency and low 

computational cost.  
 

Graph representation learning is similar to language modeling when regarding nodes as the words 

and neighbors as the context. Negative sampling is also applied in KGE so that the knowledge 

representation can be learnt through discriminating positive triples from negative triples that are 
generated by perturbing the positive ones, rather than modeling conditional on all nodes. In KGE, 

poor or too obviously incorrect negative triples fail in facilitating the capture of latent semantics 

and easily bring about the zero loss problem. In contrast, high-quality negatives will ensure that 
the training smoothly moves on and the learnt knowledge representation performs better in a 

myriad of downstream tasks.  

 
Recognising the importance and benefits of negative sampling, we systematically collect the 

existing sampling approaches, study them and most importantly, categorize them from three 

distinct perspectives, i.e. static distribution-based, dynamic distribution-based and custom cluster-

based. Brief comments on the characteristics and pros and cons are provided.  

4.1. Static Distribution-Based Sampling 
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Static distribution-based negative sampling approaches are commonly used because of their 

simplicity and efficiency. Static distribution contains uniform distribution, Bernoulli distribution 

and improved Bernoulli distribution that considers relation replacement. However, ignoring the 

dynamics in the negative sampling distribution is likely to bring about the vanishing gradient 
problem and impede the model training.  

 

4.1.1. Uniform sampling 
 

Uniform sampling [5]is the earliest, easiest and most widely-used negative sampling approach in 

knowledge representation learning. It refers to constructing negative triples by replacing either 
the head h or the tail t of a positive triple with the entity that is randomly sampled from the entity 

set E according to uniform distribution. However, in most cases, the uniformly sampled entity is 

unrelated with the corrupted positive triple, then the formed negative triple is too wrong to 

benefit the training. Taking the triple (London, locatedIn, UnitedKingdom) as an example, its tail 
entity UnitedKingdom needs to be replaced to produce counterpart negative triples. Under the 

uniform sampling schema, the generated negatives could be (London, locatedIn, apple) or 

(London, locatedIn, football). These low-quality triples will be easily distinguished by the KGE 
model merely in terms of different entity types, which can slow down the convergence of model 

training[44]. Similarly, IGAN emphasizes the zero loss problem in the random sampling mode, 

and explains the little contribution made by the low-quality negatives. Translation-based KGE 
models prefer adopting a marginal loss function with a fixed margin to discriminate positive 

triples from negative ones. Unreliable negatives tend to be out of the margin, which easily gives 

rise to zero loss. Another severe drawback of uniform sampling lies in false negative samples. To 

replace the head in (DonaldTrump, Gender, Male) with JoeBiden, (JoeBiden, Gender, Male) is 
still a true (false negative)fact. 

 

4.1.2. Bernoulli Sampling 
 

To alleviate the problem of false negatives, Bernoulli negative sampling [12]suggests replacing 

head or tail entities with different probabilities according to the mapping property of relations. 

That is, to give more chance of replacing the head in one-to-many relations and the tail in many-
to-one relations. In the mathematical explanation, to set the probability tph⁄((tph+hpt)) for 

replacing the head and the probability hpt⁄((tph+hpt)) for replacing the tail after denoting tphas 

the average number of tail entities per head entity and hptas the average number of head entities 
per tail entity. Gender is a typical many-to-one relation. Replacing the tail in (DonaldTrump, 

Gender, Male) with high probability that is computed by Bernoulli distribution is unlikely to 

bring about false negative triples. Furthermore, it may generate high-quality negatives if setting 
extra constraints on the entity type.  

 

Improvement in the Bernoulli sampling. Zhang et al. [45]extends Bernoulli sampling by 

considering relation replacement following the probability α=r⁄((r+e)), here r is the number of 
relations and e is the number of entities. The rest 1-α is divided by head entity replacement and 

tail entity replacement according to Bernoulli distribution. Such changes enhance the ability of 

KGE models in relation link prediction.  
 

4.1.3. Probabilistic Sampling  
 
Kanojia et al. [46] proposes probabilistic negative sampling to address the issue of skewed data 

that commonly exists in knowledge bases. For relations with less data, Uniform or Bernoulli 

random sampling fails to predict the missing part of golden triples among semantically possible 
options even after hundreds of epochs of training. Probabilistic negative sampling speeds up the 
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process of generating corrupted triples by bringing in a tuning parameter β known as train bias 
that determines the probability by which the generated negative examples are complemented with 

early-listed possible instances. Kanojia et al. evaluates probabilistic negative sampling (PNS) 

over TransR in link prediction, and elicits that TransR-PNS achieves 190 and 47 position gains in 

Mean Rank on benchmark datasets WN18 and FB15K [5] respectively compared to TransR using 
Bernoulli sampling.  

 

4.2. Dynamic Distribution-Based Sampling 
 

Static distribution-based sampling fails in modeling the changes in negative sampling distribution 

and generating the negative triples with high plausibility dynamically. GAN is short for 
Generative Adversarial Network [47], it is capable of modeling dynamic distribution. In the 

GAN-based negative sampling framework, the generator dynamically approximates the 

constantly updated negative sampling distribution in order to provide high-quality triples while 
the target KGE model acts as the discriminator to distinguish between positives and negatives. 

Adversarial training is going on between the generator and the discriminator to optimize the final 

knowledge representation. Reinforcement learning is required for training GAN [19]. GAN-based 
framework can be performed on various KGE models as it is independent of the specific form of 

the discriminator [17]. However, potential risks (training instability and model collapse) 

embodied in reinforcement learning should not be neglected. Besides, a general estimation about 

negative sampling distribution, Markov chain Monte Carlo negative sampling [22], that is 
derived from positive sampling distribution needs to be highly regarded. 

 

4.2.1. KBGAN 
 

KBGAN [16] is the first work to adapt GAN to negative sampling in knowledge representation 

learning. It considers selecting one of two translational distance-based KGE models (DistMult 
[31], ComplEx [23]) as the negative sample generator and one of two semantic matching-based 

KGE models (TransE [5], TransD [14]) as the discriminator for adversarial training. The 

generator produces the probability distribution over a candidate set of uniformly sampled 

negativesand selects the one with highest probability to feed into the discriminator. The 
discriminator minimizes the marginal loss between positive and negative samples to learn the 

final embedding vectors. KBGAN combines four Generator-Discriminator pairs that show better 

performance than baselines, which reflects the strengths of the adversarial learning framework.  
 

4.2.2. IGAN 

 

Unlike KBGAN [16] that considers probability-based, log-loss KGE models as the generator, 
IGAN [17] applies a two-layer fully-connected neural network as its generator to provide 

negative samples with high quality. The discriminator is still the target KGE model. The 

embedding vectors of the corrupted positive triple are fed into the neural network and followed 
by non-linear activation function ReLU. The softmax function is added after to calculate the 

probability distribution over the whole entity set E instead of a small candidate set in KBGAN. 

The plausibility of the formed negative is measured by the scoring function of the target KGE 
model. IGAN can dynamically select negative samples with relatively high quality during 

adversarial training but suffers from high computational complexity.  

 

Comparison between GAN-based and self-adversarial sampling. Adversarial Contrastive 
Estimation (ACE) [48] introduces a general adversarial negative sampling framework for NCE 

that is commonly used in natural language processing. RotatE [49] thinks that such adversarial 

framework is difficult to optimize since it needs to train the discrete negative sample generator 
and the embedding model simultaneously, which costs a lot in computation. Therefore, RotatE 
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proposes a self-adversarial sampling approach based on the self-scoring function and introduces 
αas the temperature of sampling, which avoids the use of reinforcement learning. GAN-based 

sampling has no advantage in efficiency. In order to reduce the risk of training instability caused 

by reinforcement learning, both KBGAN and IGAN requires to be pre-trained, which gives rise 

to extra costs. By comparison, self-adversarial sampling is easier to operate, and experimental 
results show that it outperforms KBGAN in link prediction.  

 

4.2.3. MCNS 
 

Yang et al. [22] creatively derives that a nice negative sampling distribution that should be 

positively but sub-linearly correlated to the positive sampling distribution, and raises Markov 
chain Monte Carlo negative sampling (MCNS). In the proposed Sampled NCE framework, the 

depth first search (DFS) algorithm is applied to traverse the graph to obtain the Markov chain of 

the last node, from which negative samples are generated. MCNS uses the self-contrast 

approximation to estimate positive sampling distribution, and the Metropolis-Hastings algorithm 
[50]to speed up negative sampling. Embedding vectors are updated by minimizing the hinge loss 

after inputting the positive sample and the generated negative sample into the encoder of the 

framework. The importance of negative sampling is proved in the formula derivation. 
Experiments exhibit that MCNS performs better than all baselines in the downstream tasks and 

wins in terms of efficiency. The proposal of MCNS is based on the graph structureddata without 

limitation to knowledge representation learning, which is a generic solution to modelling 
dynamic negative sampling.  

 

4.3. Custom Cluster-Based Sampling 
 

Sampling from custom clusters means that the desired negative sample is selected from a handful 

of candidates rather than sampled from the whole entity set, which requires to collect entities that 
meet some custom standards into clusters firstly. For examples, domain sampling [51] suggests to 

sample from entities of the same domain, and affinity dependent sampling emphasizes the 

closeness between entities. Two more cluster-based sampling approaches, Trans E-SNS [18] and 

NSCaching[19], are elaborated in this section. Narrowing the sampling scope makes the target of 
negative sampling more clear, which gains efficiency. Because KGs grow rapidly and update 

frequently, renewing the custom clusters continually is essential and difficult. 

 

4.3.1. TransE-SNS 

 

Qin et al. [18]puts forward the entity similarity-based negative sampling (SNS) to mine valid 

negatives. Inspired by the observation that smaller distance between two entity vectors in the 
embedding space imply their higher similarity, the K-Means clustering algorithm [52] is used to 

divide all entities into a number of groups. An entity is uniformly sampled from the same cluster 

of the replaced head entity to complete the corrupted positive triple and when necessary, the tail 
entity is replaced in the same manner. The negatives generated in such a way should be highly 

similar to the given positive triple. Adapting SNS to TransE (TransE-SNS) and then being 

evaluated in link prediction and triple classification, the experiment demonstrates that SNS 
enhances the ability of TransE. 

 

4.3.2. NS Caching 

 
High-quality negative samples tend to get high plausibility measured by the scoring functions.  

Motivated by the skewed score distribution of negative samples, Zhang et al. [19]attempts to only 

track helpful and rare negatives of high plausibility using a cache. NSCaching can be considered 
in the same group with GAN-based approaches since they all parametrize the dynamic 
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distribution of negative samples. To be precise, NSCaching is a distilled version of GAN-based 
strategy, because it has fewer parameters, it does not need to be trained through reinforcement 

learning, and it also avoids the model collapse that might be brought by GAN. After storing the 

high-quality negative triples in the cache, NSCaching samples from the cache according to 

uniform distribution and applies importance sampling to update it. With more concentrated 
sampling and more concise training, NSCaching performs better than GAN-based approaches in 

terms of efficiency and effectiveness. 

 

4.4. Other Novel Approaches  
 

There is another negative sampling strategy which cannot be definitely sorted into the three 
categories specified above but it ought to be mentioned since it accomplishes negative sampling 

and noise detection simultaneously. Because human knowledge is innumerable and changeable, 

bypassing crowdsourcing and manual efforts in building KGs is the mainstream. Noises and 
conflicts are inevitably involved due to the auto-construction, explosive growth and frequent 

updates of KGs. Xie et al. [20] initially proposes a novel confidence-aware knowledge 

representation learning framework (CKRL), and Shan et al. [21] extends this idea to negative 
sampling in noisy knowledge representation learning (NKRL). CKRL detects noises but applies 

uniform negative sampling that easily causes zero loss problems and false detection issues. 

NKRL proposes a confidence-aware negative sampling approach to address these problems, and 

the concept of negative triple confidence it introduces is conducive to generate plausible 
negatives by measuring their quality. NKRL also modifies the triple quality function defined in 

CKRL with the aim of reducing the false detection problems and improving ability of detection 

noises. Both CKRL and NKRL are performed on translation-based KGE models, and NKRL 
outperforms CKRL in link prediction.  

 

By looking into the defined negative sampling distribution in NKRL, we find that it is similar to 
the self-adversarial sampling in RotatE [49] since they both sample according to the self-scoring 

function of the current embedding model.  

 

5. CONCLUSIVE REMARKS 
 
In this paper we have reviewed negative sampling in knowledge graph embedding. It is stated 

that KGE is a useful way to take advantage of machine learning and neural networks for 

knowledge graph computation and operations such as subgraph classification, node classification 

and link prediction. Learnt from language models in natural language processing, we argue that 
negative sampling is important for KGE as for language modeling. By studying negative 

sampling, we have sketched out existing well-known negative sampling approaches that are 

applied in KGE models and categorize them. We aimed to provide a basis for selecting the proper 
negative sampling approach to train a KGE model to its best.  

 

We find that the existing KGE studies focus on finding new scoring functions to model multi-
relational data in KGs, and with simply selecting the random mode for negative sampling. The 

importance and significance of negative sampling is ignored or failed to be recognized in 

comparison with the positive sampling. 

 
We hope that this review can be of some help to those who are interested in negative sampling. 

Subsequent work maylie in comparing the approaches mentioned here through performing KG 

downstream applications like link prediction on benchmark datasets to find the shortages of 
current negative sampling and possibly to propose a new strategy for negative sampling after 

fully understanding the existing ones.  
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