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ABSTRACT 

Intrusion Detection Systems (IDS) monitor a secured network for the evidence of malicious 

activities originating either inside or outside. Upon identifying a suspicious traffic, IDS 

generates and logs an alert. Unfortunately, most of the alerts generated are either false positive, 

i.e. benign traffic that has been classified as intrusions, or irrelevant, i.e. attacks that are not 

successful. The abundance of false positive alerts makes it difficult for the security analyst to 

find successful attacks and take remedial action. This paper describes a two phase automatic 

alert classification system to assist the human analyst in identifying the false positives. In the 

first phase, the alerts collected from one or more sensors are normalized and similar alerts are 

grouped to form a meta-alert. These meta-alerts are passively verified with an asset database to 

find out irrelevant alerts. In addition, an optional alert generalization is also performed for root 

cause analysis and thereby reduces false positives with human interaction.  In the second phase, 

the reduced alerts are labeled and passed to an alert classifier which uses machine learning 

techniques for building the classification rules. This helps the analyst in automatic classification 

of the alerts. The system is tested in real environments and found to be effective in reducing the 

number of alerts as well as false positives dramatically, and thereby reducing the workload of 

human analyst.  
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1. INTRODUCTION 
 
The explosive increase in the number of networked computers and sophisticated attack 

strategies made intrusion detection one of the most challenging fields in computer security. 

Intrusion Detection Systems (IDS) aim at detecting intrusions, i.e. actions that attempt to 

compromise the confidentiality, integrity and availability of a computer resource. As the 

signature based IDS became more popular, its limitations and problems have become apparent.  
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One of the major problems faced by IDS is huge number of false positive alerts, i.e. alerts that 

are mistakenly classified normal traffic as security violations.  A perfect IDS does not generate 

false or irrelevant alarms. In practice, signature based IDS found to produce more false alarms 

than expected. This is because of the overly general signatures and lack of built in verification 

tool to validate the success of the attack. The huge amount of false positives in the alert log 

makes the process of taking remedial action for the true positives, i.e. successful attacks, 

delayed and labor intensive. 

 

Same intrusion event can trigger hundreds of similar alerts. For example, a single network scan 

may cause to generate several alerts which differ by a small amount of time. These alerts can be 

fused together before passing to human analyst. Also, different types of alert will be having 

same underlying event as the root cause. We can generalize each attributes of all alerts to find 

out the correlated alerts. This will help in the process of root cause analysis and hence eliminate 

more number of false positives.  Alert generalization also helps to speed up alert verification 

some times. For example, suppose a large number of IIS exploit attack comes to port 80 of a 

particular machine which is running an Apache web server and Linux, obviously all of these can 

be marked as irrelevant since they are not successful. 

 

2. RELATED WORKS 
 
Alert aggregation and verification are often part of Alert correlation [4], but it has a different 

goal, to reconstruct incidents from alerts and to find attack scenarios. From the processed alerts 

the correlation engine tries to find the incident by reconstructing attack threads and sessions. We 

have no intension for alert correlation; even then this work can be utilized as a front end for high 

level alert correlation. 

 

Kruegel, Robertson and Vigna [6] proposed a method for alert verification using both active and 

passive verification methods. In their implementation they use active alert verification 

extensively while we only use passive alert verification. 

 

Pietrazek and Tanner [3] propose a two stage alert classification mechanism for reducing false 

positives. In the filtering stage they use CLARAty for generalization and in classification stage 

they use RIPPER for building classifier rule base. Our work differs from there work in the first 

stage, where they lack the process of alert verification. We also have automatic labeling of alerts 

for second stage for the purpose of learning phase of classifier. 

   

3. SYSTEM ARCHITECTURE 
 
In this paper we describe a two phase alert classification system. Figure 1 gives an overview 

about this architecture. The first phase preprocesses and normalizes the alerts, fuse them and 

generalize them for root cause analysis and alert verification. After the first phase, alerts which 

are marked as false positives can be safely removed or labeled alerts can be passed to second 

phase. 
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Figure 1: Real-time alert clustering and classification system architecture 

 

In second phase, we make use of machine learning techniques to build a classifier that 

automatically distinguishes true and false positives. It helps the human analyst by providing an 

option to discard the false positives it has classified with high classification confidence. The 

labeled alerts from first phase are used for the purpose of learning. Upon arrival of next batch of 

alerts, the classifier can be updated in a batch incremental manner, since the classification 

algorithm we are using, RIPPER, supports incremental learning. The classification rules learned 

by RIPPER for each batch of alerts are mentored by a human analyst. This ensures the 

correctness of the classifier. 

 

3.1 Alert Clustering 
 
Alerts generated by one or more IDS can be set to log into a centralized database. If we are 

using different types of IDS (Application, Network and Host based) the attack messages also 

will be in different formats. So we need a preprocessing step to be run, preferably in batch 

mode, before passing into the clustering component. While preprocessing the alert we try to 

supply best effort values for the missing attributes. Also the timestamp is converted into seconds 

for the purpose of comparison. 

 

Since different IDS may use different naming conventions for the same event, we need to 

standardize the messages. For example, the messages ‘scanning’, ‘nmap scan’, ’port scan’ all 

belongs to the category ‘port scan’. The standard names are chosen either from CVE or Bugtraq 
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and in some cases names from one of the IDS is taken as standard. In addition, a unique id is 

also added to every alert for the purpose of tracking the alerts. 

 

Once the alerts are preprocessed and normalized, it is passed to the first phase for the purpose of 

filtering and labeling. First, alerts with same attributes other than time and which differ only by 

a small amount of time are fused together for the purpose of alert reduction. This is possible 

since multiple IDS may be there in the network which produces redundant alerts and same event 

may cause to trigger hundreds of similar alerts. Alert fusion also makes the process of 

generalization fast. 

 

For the purpose of generalization of alerts, we need to incorporate hierarchical background 

knowledge for each attribute. A sample hierarchy is shown in Fig.2. We prefer human 

understandable descriptions of alert clusters since human intervention may be required for 

advanced analysis. We carry out generalization as a step by step process. On every iteration, one 

of the selected attribute is generalized to the next higher level of hierarchy and those alerts 

which have become similar by this generalization are grouped together. This process is repeated 

until one of the generalized alerts reach a threshold count. The selection of this threshold is left 

as a design choice.     

 
Figure 2: Generalization hierarchies for IP address, port and timestamp 

 
Alert verification is done based on the static asset information collected about the machines 

inside the network. The process of collecting services and vulnerability information is done with 

Nessus [9] client. The false positives and irrelevant alerts are marked separately for further 

analysis. Alert verification is of two types, active and passive. In active verification, whenever 

an alert is received an information gathering process is initiated to verify the correctness of alert. 

This method requires more resources and it may slow down the whole alert management 

process. As an alternative, we have passive alert verification system which depends on a priori 

gathered information about the host and network. A drawback of passive alert verification is 

that the information may be redundant. But still, for real-time environments, the performance of 

passive verification suits well. 

 

After the process of verification each alert is labeled as true positive, false positive, or 

irrelevant. The human analyst can optionally examine the output of the first phase for advanced 
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root cause analysis and for updating firewall and IDS rules for avoiding irrelevant and false 

positive alerts. The labeled alerts are passed to the next phase. 

 

3.2 Alert Classification 
 
Unfortunately, alerts generated by IDS have to be reviewed by a mentor since no rule can assure 

hundred percent true positive or true negative rates. In the second phase, the labeled alerts from 

first phase are used for training the automatic classifier which uses RIPPER algorithm for 

learning the classification rules. The main aim of this phase is to build an automatic alert 

classifier that reduces the workload of the human analyst.  

 

The analyst examines the rules formed by the classifier and modifies if required. The 

qualified rules are updated to an Alert filter which classifies the alerts as true and false positives. 

Some algorithms can give confidence level of classification. In this case, the one with high level 

of confidence can be safely removed as false positives. The alerts which have been classified as 

false positive by the human analyst can be considered for training purpose. In addition to 

training examples, background knowledge is used to learn improved classification rules. These 

rules are then used by the classifier to classify alerts. The analyst can inspect the rules to make 

sure they are correct. 

 

4. IMPLEMENTATION DETAILS 
 
We used Snort, an open source light weight intrusion detection system, to detect attacks and 

generate alerts. The default rule set of Snort is used because we do not have any intension to 

evaluate the performance of Snort as IDS. We placed separate IDS for wireless and wired 

networks inside the campus. The alerts generated are logged into a file. Each alert is represented 

as a seven filed record containing the following attributes: timestamp, signature ID, Source and 

destination IP addresses, message name and protocol. 

 

The alerts generated for a period of 24 hours have been collected for the purpose of analysis. 

Alerts from multiple IDS are combined and considered for preprocessing. The preprocessed 

alerts are then normalized with standard naming conventions as discussed earlier. After 

normalizing similar alerts are fused together for eliminating redundancy. The alerts are then 

generalized for root cause analysis and alert verification. The background knowledge for 

generalization is represented as a tree structure. The whole system was developed in java. 

 

In the second phase we need to add some more information as background knowledge for the 

purpose of learning. Attribute valued representation of background knowledge [1], which is 

most suitable for machine learning algorithms, is used in this experiment. Eight more attributes 

to the alerts generated by snort has been added. The background knowledge sets used are IP 

address classification and operating system for source and destination IP addresses, Aggregate 1 

containing number of alerts in the time window of one minute with same source or destination 

IP address and total number of alerts in the same time window, Aggregate 2 contains fields 

same as Aggregate 1 but within the time window of 5 minutes. We used WEKA implementation 

of RIPPER algorithm in our experiments. 

 

5. RESULTS AND DISCUSSION 
The result obtained after the first phase using both real-time dataset and DARPA 1999 intrusion 

detection evaluation dataset is given in Table 1. For the purpose of comparison, we did not use 

alert verification and generalization for the DARPA 1999 dataset. Instead we used the truth 
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table provided by MIT Lincoln laboratory which contain information about the successful 

attacks. All the other alerts are marked as false positives.  

 

Table 1: Alert statistics after the first phase 

 Real-time Dataset DARPA 1999  Dataset 

Preprocessed Alerts 1201 1201 

No: of Alerts after Fusion 531 566 

Total FP Alerts 525 564 

Total TP Alerts 6 2 

Base rate 1.13% 0.35% 

 
We can clearly see that alert fusion increases the basic rate of incidence (base rate) of true 

positive alerts and thereby increases the performance of the rule learner and classifier. It also 

helps to avoid redundancy and eliminate more than half of the alert after fusing. This introduces 

performance and time benefits for both the classifier and human analyst. Alert verification 

marks out most of the common and known false positives by comparing the vulnerability listing 

of every machine. Alert generalization helps to reduce the number of alerts further to make the 

process of verification easier for the analyst. In the case of our real-time dataset, 94.83% of total 

alerts were reduced after the process of generalization. Analyst can use active alert verification 

with the help of Nessus scanner along with file integrity checkers to find out unknown false 

positives.  
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Figure 3: Performance of the classifier using RIPPER algorithm for rule learning 

 

Figure 3 shows the details of classification of both the datasets using RIPPER rule learner. 

RIPPER rules are easily interpreted and can be modified by the human analyst. From the graphs 

we can see that RIPPER performs better with real world data rather than standard dataset. The 

reason for this might be the presence of redundant alerts which are more in the real-time dataset. 

We have also compared the suitability of different classification algorithms as the rule learner in 

second phase. Table 2 shows the results obtained for both real-time and DARPA datasets.  
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Table 2: Comparison of results of classification using various classification schemes 

 

 
Precision Recall F-Measure ROC Area 

Real DARPA Real DARPA Real DARPA Real DARPA 

Random Forest 0.993 0.958 0.992 0.965 0.991 0.961 0.997 0.625 

Decision Stump 0.978 0.954 0.989 0.996 0.983 0.975 0.905 0.473 

RIPPER 0.991 0.954 0.991 0.996 0.991 0.975 0.889 0.580 

NNge 0.993 0.959 0.992 0.954 0.991 0.956 0.667 0.554 

oneR 0.993 0.954 0.992 0.993 0.991 0.973 0.667 0.496 

PART 0.989 0.955 0.989 0.985 0.989 0.970 0.896 0.668 

 
By analyzing the results, we can see that algorithms like Random Forest perform very well, but 

the rules created by them are not easy to interpret compared to PART, NNge and RIPPER. The 

rules created by NNge are not very concise and it need not help the human analyst to build the 

correct classifier rules every time. RIPPER and PART (a decision tree based rule learner in 

WEKA) can provide confidence of classification which would be very much useful once the 

system is deployed to work in automatic mode. We should also consider the algorithms with 

minimum false negative rates since false negatives are considered more serious than false 

positives in intrusion detection. Figure 8 gives the average false negative rates of different 

schemes. We can see that RIPPER has lesser false negative rates compared to other algorithms. 

Hence we choose RIPPER to be our default rule learner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Average False Negative Ratio for different classification schemes 

 

6. CONCLUSION 
 

We have discussed an architecture for a two phase alert management system that assists a 

human analyst to eliminate false positives as fast as possible. The conventional method of using 

an alert classifier has the disadvantage of lacking an alert labeling system for real-time data. For 

the purpose training the classifier, the analyst has to manually verify thousands of alert which 

can be time consuming and annoying if the training has to be done in regular intervals. We 

proposed a method for correct labeling of alert with the help of human analyst by alert fusion 
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and alert generalization, which reduces the workload of the analyst considerably. The system is 

implemented in real-time and compared with other systems with different classification schemes 

and datasets. The results show that the system can be deployed safely after sufficient amount of 

training. 

 

This work may be extended by identifying the most important attributes for intrusion detection 

using feature selection. Concepts from rough set theory can be used for this purpose. Also, the 

binary classification can be extended to multi-classes which include the causes of false positives 

and categories. Another possible extension is to develop a feedback system that modifies the 

IDS parameters and rule base to eliminate false positive based on the feedback given by the alert 

management system.  
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