
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 1, No.1, January 2010

1

REAL TIME CLASSIFICATION AND

CLUSTERING OF IDS ALERTS USING

MACHINE LEARNING ALGORITHMS

T. Subbulakshmi
1
, George Mathew

2
,Dr. S. Mercy Shalinie

 3

1
SeniorGrade Lecturer, Department of Computer Science and Engineering,

Thiagarajar College of Engineering, Madurai

subbulakshmitce@yahoo.com

2
 Lecturer , Department of Computer Science and Engineering,

Rajagiri Engineering College, Cochin.

geomat@gmail.com

3
HODCSE, Department of Computer Science and Engineering,

Thiagarajar College of Engineering, Madurai

shalinie_m@yahoo.com

ABSTRACT

Intrusion Detection Systems (IDS) monitor a secured network for the evidence of malicious

activities originating either inside or outside. Upon identifying a suspicious traffic, IDS

generates and logs an alert. Unfortunately, most of the alerts generated are either false positive,

i.e. benign traffic that has been classified as intrusions, or irrelevant, i.e. attacks that are not

successful. The abundance of false positive alerts makes it difficult for the security analyst to

find successful attacks and take remedial action. This paper describes a two phase automatic

alert classification system to assist the human analyst in identifying the false positives. In the

first phase, the alerts collected from one or more sensors are normalized and similar alerts are

grouped to form a meta-alert. These meta-alerts are passively verified with an asset database to

find out irrelevant alerts. In addition, an optional alert generalization is also performed for root

cause analysis and thereby reduces false positives with human interaction. In the second phase,

the reduced alerts are labeled and passed to an alert classifier which uses machine learning

techniques for building the classification rules. This helps the analyst in automatic classification

of the alerts. The system is tested in real environments and found to be effective in reducing the

number of alerts as well as false positives dramatically, and thereby reducing the workload of

human analyst.

KEYWORDS

Alert Classification, Alert Generalization, Alert Verification, False positives, Intrusion

Detection, machine learning

1. INTRODUCTION

The explosive increase in the number of networked computers and sophisticated attack

strategies made intrusion detection one of the most challenging fields in computer security.

Intrusion Detection Systems (IDS) aim at detecting intrusions, i.e. actions that attempt to

compromise the confidentiality, integrity and availability of a computer resource. As the

signature based IDS became more popular, its limitations and problems have become apparent.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 1, No.1, January 2010

2

One of the major problems faced by IDS is huge number of false positive alerts, i.e. alerts that

are mistakenly classified normal traffic as security violations. A perfect IDS does not generate

false or irrelevant alarms. In practice, signature based IDS found to produce more false alarms

than expected. This is because of the overly general signatures and lack of built in verification

tool to validate the success of the attack. The huge amount of false positives in the alert log

makes the process of taking remedial action for the true positives, i.e. successful attacks,

delayed and labor intensive.

Same intrusion event can trigger hundreds of similar alerts. For example, a single network scan

may cause to generate several alerts which differ by a small amount of time. These alerts can be

fused together before passing to human analyst. Also, different types of alert will be having

same underlying event as the root cause. We can generalize each attributes of all alerts to find

out the correlated alerts. This will help in the process of root cause analysis and hence eliminate

more number of false positives. Alert generalization also helps to speed up alert verification

some times. For example, suppose a large number of IIS exploit attack comes to port 80 of a

particular machine which is running an Apache web server and Linux, obviously all of these can

be marked as irrelevant since they are not successful.

2. RELATED WORKS

Alert aggregation and verification are often part of Alert correlation [4], but it has a different

goal, to reconstruct incidents from alerts and to find attack scenarios. From the processed alerts

the correlation engine tries to find the incident by reconstructing attack threads and sessions. We

have no intension for alert correlation; even then this work can be utilized as a front end for high

level alert correlation.

Kruegel, Robertson and Vigna [6] proposed a method for alert verification using both active and

passive verification methods. In their implementation they use active alert verification

extensively while we only use passive alert verification.

Pietrazek and Tanner [3] propose a two stage alert classification mechanism for reducing false

positives. In the filtering stage they use CLARAty for generalization and in classification stage

they use RIPPER for building classifier rule base. Our work differs from there work in the first

stage, where they lack the process of alert verification. We also have automatic labeling of alerts

for second stage for the purpose of learning phase of classifier.

3. SYSTEM ARCHITECTURE

In this paper we describe a two phase alert classification system. Figure 1 gives an overview

about this architecture. The first phase preprocesses and normalizes the alerts, fuse them and

generalize them for root cause analysis and alert verification. After the first phase, alerts which

are marked as false positives can be safely removed or labeled alerts can be passed to second

phase.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 1, No.1, January 2010

3

Figure 1: Real-time alert clustering and classification system architecture

In second phase, we make use of machine learning techniques to build a classifier that

automatically distinguishes true and false positives. It helps the human analyst by providing an

option to discard the false positives it has classified with high classification confidence. The

labeled alerts from first phase are used for the purpose of learning. Upon arrival of next batch of

alerts, the classifier can be updated in a batch incremental manner, since the classification

algorithm we are using, RIPPER, supports incremental learning. The classification rules learned

by RIPPER for each batch of alerts are mentored by a human analyst. This ensures the

correctness of the classifier.

3.1 Alert Clustering

Alerts generated by one or more IDS can be set to log into a centralized database. If we are

using different types of IDS (Application, Network and Host based) the attack messages also

will be in different formats. So we need a preprocessing step to be run, preferably in batch

mode, before passing into the clustering component. While preprocessing the alert we try to

supply best effort values for the missing attributes. Also the timestamp is converted into seconds

for the purpose of comparison.

Since different IDS may use different naming conventions for the same event, we need to

standardize the messages. For example, the messages ‘scanning’, ‘nmap scan’, ’port scan’ all

belongs to the category ‘port scan’. The standard names are chosen either from CVE or Bugtraq

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 1, No.1, January 2010

4

and in some cases names from one of the IDS is taken as standard. In addition, a unique id is

also added to every alert for the purpose of tracking the alerts.

Once the alerts are preprocessed and normalized, it is passed to the first phase for the purpose of

filtering and labeling. First, alerts with same attributes other than time and which differ only by

a small amount of time are fused together for the purpose of alert reduction. This is possible

since multiple IDS may be there in the network which produces redundant alerts and same event

may cause to trigger hundreds of similar alerts. Alert fusion also makes the process of

generalization fast.

For the purpose of generalization of alerts, we need to incorporate hierarchical background

knowledge for each attribute. A sample hierarchy is shown in Fig.2. We prefer human

understandable descriptions of alert clusters since human intervention may be required for

advanced analysis. We carry out generalization as a step by step process. On every iteration, one

of the selected attribute is generalized to the next higher level of hierarchy and those alerts

which have become similar by this generalization are grouped together. This process is repeated

until one of the generalized alerts reach a threshold count. The selection of this threshold is left

as a design choice.

Figure 2: Generalization hierarchies for IP address, port and timestamp

Alert verification is done based on the static asset information collected about the machines

inside the network. The process of collecting services and vulnerability information is done with

Nessus [9] client. The false positives and irrelevant alerts are marked separately for further

analysis. Alert verification is of two types, active and passive. In active verification, whenever

an alert is received an information gathering process is initiated to verify the correctness of alert.

This method requires more resources and it may slow down the whole alert management

process. As an alternative, we have passive alert verification system which depends on a priori

gathered information about the host and network. A drawback of passive alert verification is

that the information may be redundant. But still, for real-time environments, the performance of

passive verification suits well.

After the process of verification each alert is labeled as true positive, false positive, or

irrelevant. The human analyst can optionally examine the output of the first phase for advanced

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 1, No.1, January 2010

5

root cause analysis and for updating firewall and IDS rules for avoiding irrelevant and false

positive alerts. The labeled alerts are passed to the next phase.

3.2 Alert Classification

Unfortunately, alerts generated by IDS have to be reviewed by a mentor since no rule can assure

hundred percent true positive or true negative rates. In the second phase, the labeled alerts from

first phase are used for training the automatic classifier which uses RIPPER algorithm for

learning the classification rules. The main aim of this phase is to build an automatic alert

classifier that reduces the workload of the human analyst.

The analyst examines the rules formed by the classifier and modifies if required. The

qualified rules are updated to an Alert filter which classifies the alerts as true and false positives.

Some algorithms can give confidence level of classification. In this case, the one with high level

of confidence can be safely removed as false positives. The alerts which have been classified as

false positive by the human analyst can be considered for training purpose. In addition to

training examples, background knowledge is used to learn improved classification rules. These

rules are then used by the classifier to classify alerts. The analyst can inspect the rules to make

sure they are correct.

4. IMPLEMENTATION DETAILS

We used Snort, an open source light weight intrusion detection system, to detect attacks and

generate alerts. The default rule set of Snort is used because we do not have any intension to

evaluate the performance of Snort as IDS. We placed separate IDS for wireless and wired

networks inside the campus. The alerts generated are logged into a file. Each alert is represented

as a seven filed record containing the following attributes: timestamp, signature ID, Source and

destination IP addresses, message name and protocol.

The alerts generated for a period of 24 hours have been collected for the purpose of analysis.

Alerts from multiple IDS are combined and considered for preprocessing. The preprocessed

alerts are then normalized with standard naming conventions as discussed earlier. After

normalizing similar alerts are fused together for eliminating redundancy. The alerts are then

generalized for root cause analysis and alert verification. The background knowledge for

generalization is represented as a tree structure. The whole system was developed in java.

In the second phase we need to add some more information as background knowledge for the

purpose of learning. Attribute valued representation of background knowledge [1], which is

most suitable for machine learning algorithms, is used in this experiment. Eight more attributes

to the alerts generated by snort has been added. The background knowledge sets used are IP

address classification and operating system for source and destination IP addresses, Aggregate 1

containing number of alerts in the time window of one minute with same source or destination

IP address and total number of alerts in the same time window, Aggregate 2 contains fields

same as Aggregate 1 but within the time window of 5 minutes. We used WEKA implementation

of RIPPER algorithm in our experiments.

5. RESULTS AND DISCUSSION
The result obtained after the first phase using both real-time dataset and DARPA 1999 intrusion

detection evaluation dataset is given in Table 1. For the purpose of comparison, we did not use

alert verification and generalization for the DARPA 1999 dataset. Instead we used the truth

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 1, No.1, January 2010

6

table provided by MIT Lincoln laboratory which contain information about the successful

attacks. All the other alerts are marked as false positives.

Table 1: Alert statistics after the first phase

 Real-time Dataset DARPA 1999 Dataset

Preprocessed Alerts 1201 1201

No: of Alerts after Fusion 531 566

Total FP Alerts 525 564

Total TP Alerts 6 2

Base rate 1.13% 0.35%

We can clearly see that alert fusion increases the basic rate of incidence (base rate) of true

positive alerts and thereby increases the performance of the rule learner and classifier. It also

helps to avoid redundancy and eliminate more than half of the alert after fusing. This introduces

performance and time benefits for both the classifier and human analyst. Alert verification

marks out most of the common and known false positives by comparing the vulnerability listing

of every machine. Alert generalization helps to reduce the number of alerts further to make the

process of verification easier for the analyst. In the case of our real-time dataset, 94.83% of total

alerts were reduced after the process of generalization. Analyst can use active alert verification

with the help of Nessus scanner along with file integrity checkers to find out unknown false

positives.

0

0.2

0.4

0.6

0.8

1

Precision Recall F Measure ROC Area

Figure 3: Performance of the classifier using RIPPER algorithm for rule learning

Figure 3 shows the details of classification of both the datasets using RIPPER rule learner.

RIPPER rules are easily interpreted and can be modified by the human analyst. From the graphs

we can see that RIPPER performs better with real world data rather than standard dataset. The

reason for this might be the presence of redundant alerts which are more in the real-time dataset.

We have also compared the suitability of different classification algorithms as the rule learner in

second phase. Table 2 shows the results obtained for both real-time and DARPA datasets.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 1, No.1, January 2010

7

Table 2: Comparison of results of classification using various classification schemes

Precision Recall F-Measure ROC Area

Real DARPA Real DARPA Real DARPA Real DARPA

Random Forest 0.993 0.958 0.992 0.965 0.991 0.961 0.997 0.625

Decision Stump 0.978 0.954 0.989 0.996 0.983 0.975 0.905 0.473

RIPPER 0.991 0.954 0.991 0.996 0.991 0.975 0.889 0.580

NNge 0.993 0.959 0.992 0.954 0.991 0.956 0.667 0.554

oneR 0.993 0.954 0.992 0.993 0.991 0.973 0.667 0.496

PART 0.989 0.955 0.989 0.985 0.989 0.970 0.896 0.668

By analyzing the results, we can see that algorithms like Random Forest perform very well, but

the rules created by them are not easy to interpret compared to PART, NNge and RIPPER. The

rules created by NNge are not very concise and it need not help the human analyst to build the

correct classifier rules every time. RIPPER and PART (a decision tree based rule learner in

WEKA) can provide confidence of classification which would be very much useful once the

system is deployed to work in automatic mode. We should also consider the algorithms with

minimum false negative rates since false negatives are considered more serious than false

positives in intrusion detection. Figure 8 gives the average false negative rates of different

schemes. We can see that RIPPER has lesser false negative rates compared to other algorithms.

Hence we choose RIPPER to be our default rule learner.

Figure 4: Average False Negative Ratio for different classification schemes

6. CONCLUSION

We have discussed an architecture for a two phase alert management system that assists a

human analyst to eliminate false positives as fast as possible. The conventional method of using

an alert classifier has the disadvantage of lacking an alert labeling system for real-time data. For

the purpose training the classifier, the analyst has to manually verify thousands of alert which

can be time consuming and annoying if the training has to be done in regular intervals. We

proposed a method for correct labeling of alert with the help of human analyst by alert fusion

0

0 .0 1

0 .0 2

0 .0 3

0 .0 4

0 .0 5

0 .0 6

0 .0 7

0 .0 8

0 .0 9

0 .1

R F D S J r ip N N g e o n e R P A R T

C la s s i f ic a t io n S c h e m e

F
N

R

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 1, No.1, January 2010

8

and alert generalization, which reduces the workload of the analyst considerably. The system is

implemented in real-time and compared with other systems with different classification schemes

and datasets. The results show that the system can be deployed safely after sufficient amount of

training.

This work may be extended by identifying the most important attributes for intrusion detection

using feature selection. Concepts from rough set theory can be used for this purpose. Also, the

binary classification can be extended to multi-classes which include the causes of false positives

and categories. Another possible extension is to develop a feedback system that modifies the

IDS parameters and rule base to eliminate false positive based on the feedback given by the alert

management system.

REFERENCES

[1]Tadeusz Pietraszek. "Using adaptive alert classification to reduce false positives in intrusion

detection", In Recent Advances in Intrusion Detection (RAID2004), volume 3324 of Lecture

Notes in Computer Science, pages 102–124, Sophia Antipolis, France, 2004. Springer-Verlag.

[2]William W. Cohen. "Fast effective rule induction". In Armand Prieditis and Stuart Russell,

editors, Proceedings of the 12th International Conference on Machine Learning, pages 115–123,

Tahoe City, CA, 1995. Morgan Kaufmann Publishers.

[3] Tadeusz Pietraszek and Axel Tanner. Data mining and machine learning-Towards reducing

false positives in intrusion detection. Information Security Technical Report, 10:169–183, 2005

[4]Herv´e Debar, Andreas Wespi, “Aggregation and correlation of intrusion detection alerts”, In

Recent Advances in Intrusion Detection (RAID2001), volume 2212 of Lecture Notes in

Computer Science, pages 85–103. Springer-Verlag, 2001

[5] Guy Helmer, Johny S.K. Wong, Vasant Honavar, Les Miller, “Automated discovery of

concise predictive rules for intrusion detection”, The Journal of Systems and Software,

60(2):165–175, 2002.

[6] Christopher Kruegel, W. Robertson and Giovanni Vigna, “Using alert verification to identify

successful intrusion attaempts”, K.G. Saur Verlag, Munchen, 2004

[7] Weka 3: Data Mining Software in Java, Web page at http://www.cs.waikato.ac.nz/ml/weka,

2008

[8] Snort Intrusion Detection and Prevention system, Web page at http://www.snort.org, 2008.

[9] Nessus vulnerability scanner, Web page at http://www.nessus.org
ensemble of soft computing paradigms”, Third international conference on intelligent systems design and

applications advances in soft computing, Germany: Springer Verlag; pp: 239e48.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 1, No.1, January 2010

9

Authors

T. Subbulakshmi is working as a Senior

Grade Lecturer in department of Computer

Science and Engineering, Thiagarajar

College of Engineering, Madurai,

Tamilnadu. She has published papers in

conferences and Journals. She is currently

pursuing Ph. D in the area of Information

Security. Her research interests includes

information Security and Machine learning

algorithms

Dr. S. Mercy Shalinie, is currently heading

the Department of Computer Science and

Engineering, Thiagarajar College of

Engineering, Madurai, Tamilnadu. She has

published 50 papers in International

Journals. Her research interests include

Application of Neuro Fuzzy systems to

various research problems.

George Mathew is working as a lecturer

in Rajagiri Engineering College, Cochin. He

has published papers in Conferences and

Journals. His research interests includes

Machine Learning and Information Security

